首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The cricket Gryllus bimaculatus forms a stable olfactory memory that lasts for practically a lifetime. As a first step to elucidate the cellular mechanisms of olfactory learning and memory retention in crickets, we studied the dependency of memory retention on the de novo brain protein synthesis by injecting the protein synthesis inhibitor cycloheximide (CHX) into the head capsule. Injection of CHX inhibited (3)H-leucine incorporation into brain proteins by > 90% for 3 hr. Crickets were trained to associate peppermint odor with water (reward) and vanilla odor with saline solution (non-reward) and were injected with CHX before or at different times after training. Their odor preferences were tested at 2 hr, 1 day and 4 days after training. Memory retention at 2 hr after training was unaffected by CHX injection. However, the level of retention at 1 day and 4 days after training was lowered when CHX was injected 1 hour before training or at 1 hr or 6 hr after training. To study the time course of the development of CHX-sensitive memory phase, crickets that had been injected with CHX at 1 hr after training were tested at different times from 2 to 12 hr after training. The level of retention was unaffected up to 4 hr after training but significantly lowered at 5 hr after training, and the CHX-sensitive memory phase developed gradually during the next several hours. CHX dissociates two phases of olfactory memory in crickets: earlier protein synthesis-independent phase (< 4 hr) and later (> 5 hr) protein synthesis-dependent phase.  相似文献   

2.
3.
Peritoneal-and pulmonary macrophages can be activated in vitro with lymphokines (LK) or IFN-gamma, without exogenous lipopolysaccharide, for fungicidal activity against several pathogenic fungi. However, neither the biochemical nor metabolic events of the activation process or of the effector phase have been defined. In the present work we sought to elucidate these events with time-course studies using inhibitors of protein synthesis as well as immunosuppressive agents. We found that protein synthesis inhibitors abrogated the activation process, because cycloheximide (CHX) (1-2 micrograms/ml) prevented activation of macrophages for fungicidal activity against Candida albicans, Blastomyces dermatitidis, and Paracoccidioides brasiliensis. Blocking of the activation process by CHX was not due to macrophage cytotoxicity, and CHX did not impair the ability of nonactivated macrophages to kill Candida parapsilosis. In kinetic studies we showed that activation of macrophages was induced in 4 hr of LK treatment and that CHX had no effect if added after this time. In contrast to CHX, therapeutic concentrations of hydrocortisone (HC), such as less than or equal to 5 micrograms/ml, or cyclosporin A (CsA), 5 micrograms/ml, did not significantly inhibit LK activation of macrophages for killing of fungi. In the effector phase, the fungicidal capacity of activated macrophages in short-term (less than or equal to 4 hr) killing assays could not be abrogated by CHX (5 micrograms/ml), HC (100 micrograms/ml), or CsA (10 micrograms/ml). These results demonstrate that the activation but not the effector mechanism of macrophages for fungicidal activity is blocked by inhibition of protein synthesis. In contrast, therapeutic concentrations of HC or CsA may not interfere with activation of macrophages or their killing mechanisms, thus providing a rationale for antifungal immunotherapy in certain clinical situations (e.g., infection in the immunosuppressed patient).  相似文献   

4.
哺乳动物卵母细胞在排卵后停滞在第二次减数分裂中期,受精和多种物理或是化学刺激可以克服这一阻滞使卵母细胞活化。蛋白合成抑制剂亚胺环己酮可以诱导小鼠卵母细胞发生孤雌活化,但其机制尚未完全阐明。以前的研究提示亚胺环己酮可能是通过抑制蛋白激酶MOS的合成来发挥孤雌激活的作用的。本实验发现,CHX诱导的卵母细胞孤雌活化是Ca^2 依赖性,其效率可被钙离子载体A23187大大提高,免疫蛋白印迹结果表明,卵母细胞孤雌活化后MAPK发生去磷酸化。蛋白磷酸酶抑制剂冈田酸可以克服CHX+A23187对小鼠放母细胞活化作用,并且部分阻止MAPK去磷酸化。以上结果表明,抑制MOS的合成并非CHX诱导的孤雌活化过程的惟一原因,并且蛋白磷酸酶抑制剂可以阻断这一激活事件。  相似文献   

5.
We have recently shown constitutive IkappaB kinase (IKK) activation and aberrant p52 expression in adult T cell leukemia (ATL) cells that do not express human T cell leukemia virus type I (HTLV-I) Tax, but the mechanism of IKK activation in these cells has remained unknown. Here, we demonstrate distinct regulation of IKK activity in ATL and HTLV-I-transformed T cells in response to protein synthesis inhibition or arsenite treatment. Protein synthesis inhibition for 4 h by cycloheximide (CHX) barely affects IKK activity in Tax-positive HTLV-I-transformed cells, while it diminishes IKK activity in Tax-negative ATL cells. Treatment of ATL cells with a proteasome inhibitor MG132 prior to protein synthesis inhibition reverses the inhibitory effect of CHX, and MG132 alone greatly enhances IKK activity. In addition, treatment of HTLV-I-transformed cells with arsenite for 1 h results in down-regulation of IKK activity without affecting Tax expression, while 8 h of arsenite treatment does not impair IKK activity in ATL cells. These results indicate that a labile protein sensitive to proteasome-dependent degradation governs IKK activation in ATL cells, and suggest a molecular mechanism of IKK activation in ATL cells distinct from that in HTLV-I-transformed T cells.  相似文献   

6.
Cells of the human promyelocytic HL-60 line, when treated with a variety of antitumor agents in the presence of the protein synthesis inhibitor cycloheximide (CHX), or with CHX alone, rapidly undergo apoptosis (“active cell death”). It is presumed, therefore, that such cells are “primed” to apoptosis in that no new protein synthesis is required for induction of their death. We have studied apoptosis of HL-60 cells triggered by the DNA topoisomerase I inhibitor camptothecin (CAM) in the absence and presence of CHX and apoptosis induced by CHX alone. Two different flcw cytometric methods were used, each allowing us to relate the apoptosis-associated DNA degradation to the cell cycle position. Apoptosis induced by CAM was limited to S phase cells, e.g., at a CAM concentration of 0.15 μM, nearly 90% of the S phase cells underwent apoptosis after 4 h. In contrast, apoptosis triggered by CHX was indiscriminate, affecting all phases of the cycle: ~40% of the cells from each phase the cycle underwent apoptosis at 5 μM CHX concentration. When CAM and CHX were added together, the pattern of apoptosis resembled that of cycloheximide alone, namely, cells in all phases of the cycle in similar proportion were affected. Thus, CHX, while itself inducing apoptosis of a fraction of cells, protected the S phase cells against apoptosis triggered by CAM. Because CHX (5 μM) did not significantly affect the rate of cell progression through S phase, the observed protective effect was most likely directly related to inhibition of protein synthesis, rather than to its possible indirect effect on DNA replication. Furthermore, whereas apoptosis (DNA degradation) triggered by CAM was prevented by the serine protease inhibitor N-tosyl-L-lysylchloromethyl ketone (TLCK), this process was actually potentiated by this inhibitor when induced by CHX. The present data indicate differences in mechanism of apoptosis triggered by CAM (and perhaps other antitumor drugs) as compared with CHX. Apoptosis caused by CHX may be unique in that it may not involve new protein synthesis. These data are compatible with the assumption that the loss of a hypothetical, rapidly turning over suppressor of apoptosis may be the trigger of apoptosis of HL-60 cells treated with CHX, whereas de novo protein synthesis is required when apoptosis is triggered by other agents. © 1993 Wiley-Liss, Inc.  相似文献   

7.
We have examined the effect of tumor-promoting phorbol esters such as phorbol myristate acetate (PMA) on the murine B cell leukemia BCL-1 and its in vitro adapted derivative CW.13.20. Phorbol esters, including PMA and phorbol dibutyrate (PDBu), were potent inhibitors of BCL-1 IgM secretion induced by either LPS or lymphokines; half-maximal inhibition was obtained with 0.1 nM PMA and 0.8 nm PDBu. The inhibitory action of PDBu on BCL-1 cells was reversible for over 1 hr, but after 5 hr 70% of the inhibition was irreversible. Irreversible inhibition could be blocked by cycloheximide, suggesting a requirement for protein synthesis. The specificity of PDBu inhibition was examined by comparing the patterns of protein synthesis in PDBu-treated and control BCL-1 cells. Total incorporation of [35S]methionine into protein by BCL-1 cells cultured in the presence of PDBu was similar to that of untreated cells. Analysis of radiolabeled proteins by SDS-PAGE and autoradiography revealed no consistent changes in the pattern of protein synthesis except at those positions corresponding to the heavy and light chains of IgM. Immunoprecipitation with an affinity-purified anti-IgM indicated that PDBu inhibited the increased synthesis of heavy and light chain that follows stimulation by lymphokine but did not diminish control IgM synthesis. Induced IgM secretion from CW.13.20 cells was also inhibited by phorbol esters, indicating a direct action on B cells. Delaying the addition of phorbol ester relative to lymphokine or LPS by 24 hr significantly reduced inhibition of induced IgM secretion from both BCL-1 and CW.13.20 cells. This suggests that phorbol esters specifically interfere with the signal for induction of IgM secretion by both lymphokine and LPS.  相似文献   

8.
9.
10.
环己亚胺(CHX)单独作用会增加高梁苗中游离脯氨酸的含量,原因可能有:一是CHX抑制了根的正常吸收功能,导致植株失水,游离脯氨酸增加;二是CHX抑制了蛋白质合成,使总的游离氨基酸累积,从而也表现出游离脯氨酸含量的增加,后者可能更为主要。为此,用CHX研究与脯氨酸合成有关的基因活性化或表达时,一定要考虑CHX单独的作用。NaCl诱导的游离脯氨酸的累积可被CHX处理所抑制。在NaCl处理2~4h内加CHX后,抑制效果几乎可达到100%,以后随CHX处理的时间越长,其抑制作用越小。  相似文献   

11.
The larval–pupal transformation of Manduca sexta is accompanied by the loss of the abdominal prolegs. The proleg muscles degenerate, the dendritic arbors of proleg motoneurons regress, and a subset of the proleg motoneurons dies. The regression and death of proleg motoneurons are triggered by the prepupal peak of ecdysteroids in the hemolymph. To investigate the possible involvement of protein synthesis in these events, we gave insects repeated injections of the protein synthesis inhibitor, cycloheximide (CHX), during the prepupal peak. Examination of insects 3–5 days following CHX treatment showed that CHX inhibited the death of proleg motoneurons and the production of pupal cuticle in a dose-dependent fashion. When insects were allowed to survive for 10 days after the final CHX injection, motoneuron death and pupal cuticle production sometimes occurred belatedly, apparently in response to the ecdysteroid rise that normally triggers adult development. CHX treatments that inhibited motoneuron death were less effective in inhibiting dendritic regression in the same neurons. In another set of experiments, abdomens were isolated from the ecdysteroid-secreting glands prior to the prepupal peak, and infused with 20-hydroxyecdysone (20-HE). Single injections of CHX delivered just prior to the start of the 20-HE infusion inhibited motoneuron death and pupal cuticle production, but in the range of doses tested, did not prevent dendritic regression. Our findings suggest that protein synthesis is a required step in the steroid-mediated death of proleg motoneurons, and that dendritic regression is less susceptible to inhibition by CHX than is motoneuron death. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Protein synthesis inhibitors such as cycloheximide (CHX) are known to suppress protein degradation including autophagy. The fact that CHX inhibits autophagy has been generally interpreted to indicate that newly synthesized protein is indispensable for autophagy. However, CHX is also known to increase the intracellular level of amino acids and activate mTORC1 activity, a master negative regulator of autophagy. Accordingly, CHX can affect autophagic activity through inhibition of de novo protein synthesis and/or modulation of mTORC1 signaling. In this study, we investigated the effects of CHX on autophagy using specific autophagy markers. We found that CHX inhibited starvation-induced autophagy but not Torin1-induced autophagy. CHX also suppressed starvation-induced puncta formation of GFP-ULK1, an early-step marker of the autophagic process which is regulated by mTORC1. CHX activated mTORC1 even under autophagy-inducible starvation conditions. Finally, the inhibitory effect of CHX on starvation-induced autophagy was cancelled by the mTOR inhibitor Torin1. These results suggest that CHX inhibits starvation-induced autophagy through mTORC1 activation and also that autophagy does not require new protein synthesis at least in the acute phase of starvation.  相似文献   

13.
Han D  Liu XY  Jiao GZ  Liang B  He N  Gao WQ  Tan JH 《Theriogenology》2012,77(9):1900-1910
Cyclin B1 turnover and the insensitivity of fully-grown mouse oocytes to cycloheximide (CHX) inhibition of germinal vesicle breakdown (GVBD) were examined by assaying GVBD and cyclin B1 levels after treatment of oocytes with various combinations of eCG and CHX. Whereas over 95% of oocytes underwent GVBD after culture for 24 h with CHX alone, only 10% did so after culture with CHX + eCG (P < 0.05). In addition, preculture with eCG alone had no effect, but preculture with eCG + CHX prevented GVBD during a second culture with CHX alone. Therefore, we inferred that eCG delayed GVBD long enough for CHX inhibition of protein synthesis to allow cyclin B1 to decrease below a threshold where GVBD became dependent upon its de novo synthesis. However, western blot revealed no cyclin B1 synthesis, but cyclin B1 degradation, as long as GVs were maintained intact with eCG. Regarding the function of CHX in preculture without protein synthesis to block subsequent GVBD, whereas eCG delayed GVBD for only 3 h, CHX had an ongoing effect that further postponed GVBD, thus allowing cyclin B1 to decrease below the threshold. When oocytes precultured with eCG + CHX were further cultured without eCG and CHX, cyclin B1 first decreased but then, because of the ongoing effects of CHX, increased to a level sufficient to induce GVBD. The content of P34Cdc2 was not altered under any of the culture conditions (P > 0.05). We concluded that insensitivity of mouse germinal vesicle (GV) oocytes to CHX was due to the presence of sufficient cyclin B1, and that cyclin B1 level in such oocytes was maintained by an equilibrium between synthesis and degradation.  相似文献   

14.
Inhibition of cartilage proteoglycan synthesis by interleukin I   总被引:4,自引:0,他引:4  
We have investigated the mechanism of inhibition of cartilage proteoglycan by interleukin 1. Proteoglycan synthesis was inhibited using lower doses of interleukin 1 than those required to cause cartilage resorption. There was no significant effect on DNA or total protein synthesis. Gel electrophoresis showed a direct inhibitory effect on core protein synthesis while pulse-chase experiments using radiolabelled sulphate showed no alteration in the rate of intracellular transport and secretion of completed proteoglycan. Chondrocytes incubated with cycloheximide showed a first-order decrease in rate of uptake of radiolabelled sulphate (t1/2 = 25 mins) but interleukin 1 induced inhibition showed a delay of at least 1 hr, consistent with a requirement to deplete intracellular pools of protein before effects on post-translational events could be observed. Foetal and neonatal cartilage responded to the cytokine in a similar way to adult cartilage.  相似文献   

15.
Human A431 carcinoma cell line is known to have 30 fold amplified epidermal growth factor receptor (EGF-R) gene. We have studied the effect of steroid hormone dexamethasone (DEX) and protein synthesis inhibitor cycloheximide (CHX) on the expression of EGF-R gene in this cell line. DEX treatment and protein synthesis inhibition by CHX treatment cause a rapid 3 to 4 fold increase in the level of EGF-R mRNA and combined treatment of the above two agents have less than additive effect. It appears that mRNA for EGF-R accumulate within the cell during protein synthesis inhibition and upon removal of CHX, gets translated into EGF-R specific protein as judged by immuno-dot assay. We did not observe the phenomenon of super induction nor much of an additive effect under condition of combined DEX and CHX treatment.Abbreviations EGF-R Epidermal Growth Factor Receptor - DEX Dexamethasone - CHX Cycloheximide  相似文献   

16.
The wound healing process of frog skin fragments in epibolic cultures has provided information on FN localizations during the migration of keratinocytes. Mainly two FN localizations were studied by indirect immunodetections: Epidermal localization around keratinocytes which have acquired a fibroblastic shape. Dermal localizations of the sectioned collagen of the stratum spongiosum and stratum compactum detected at the beginning of the culture. Both localizations were observed in this epibolic wound healing process during 6 hr and 24 hr in culture and showed a differential sensitivity to cycloheximide (CHX). It was worth noting that fibronectin was permanently detected in the subcutaneous tissue of non-cultured or cultured skin fragments with or without CHX.  相似文献   

17.
Reversible inhibitors of protein synthesis, cycloheximide and puromycin, and an irreversible inhibitor of RNA synthesis, actinomycin D, were employed to study the kinetics and types of macromolecular synthetic events required for the production of migration inhibitory factor (MIF) and macrophage activating factor (MAF) by Con A-stimulated lymphocytes. Reversible inhibition of protein synthesis during the first 2 hr of stimulation completely inhibited MIF and MAF production. The same treatment, performed 4 hr after the beginning of the stimulation, had no effect. When the inhibitors of protein synthesis were left in the cultures, a block of lymphokine production was observed when the drugs were added at 6 hr as well as at time 0. In contrast, irreversible inhibition of RNA synthesis at 6 hr was ineffective and only treatment at the beginning of culture blocked lymphokine production. These data suggest that a critical protein is synthesized during the first few hours of stimulation, which is required for subsequent production of lymphokines. After this special early requirement, however, continued protein synthesis is needed for lymphokine production. In contrast, the RNA required for MIF and MAF production seemed to be completely synthesized within 4 to 6 hr of stimulation. The possibility that suppressor macrophages inhibit lymphokine production via modulation of macromolecular synthesis is discussed.  相似文献   

18.
Frog ovarian fragments were prevented from ovulating in vitro by the addition of actinomycin D up to 3 hr following pituitary stimulation; but addition of Actinomycin D 6 hr after stimulation was far less effective. Puromycin, on the other hand, effectively inhibited ovulation when added as late as 6 hr after pituitary stimulation. Although actinomycin D reduced uptake of uridine-3H, and puromycin reduced uptake of leucine-3H and lysine-14 by pituitary-stimulated ovarian tissue minus oocytes (OTMO) in vitro, it was found that pituitary stimulation did not significantly increase uptake of these compounds by OTMO. Radioautographs of ovarian follicles fixed 6 hr after the addition of pituitary extract and uridine-3H in vitro revealed increased RNA synthesis in the peritoneal surface epithelium, compared with unstimulated controls, while the ovarian sac epithelium showed no increase. Gross ultrastructural changes occurred in the peritoneal area of ovarian follicles following pituitary stimulation in vivo, including loss of collagen fibrils, and general disorganization of the connective tissue theca. Changes in the rough endoplasmic reticulum of the peritoneal epithelial cells, while frequently encountered, were less pronounced. None of these changes was observed in the ovarian sac area, or in the interfollicular region. The above data are consistent with the hypothesis that pituitary stimulation of the frog ovary results in increased synthesis of RNA and protein by the peritoneal epithelial cells, and that the protein may be collagenase.  相似文献   

19.
The Goodwin model is a negative feedback oscillator which describes rather closely the putative molecular mechanism of the circadian clock of Neurospora and Drosophila. An essential feature is that one or two clock proteins are synthesized and degraded in a rhythmic fashion. When protein synthesis in N. crassa (wild-type frq+and long-period mutant frq7) was inhibited by continuous incubation with increasing concentrations of cycloheximide (CHX) the period of the circadian sporulation rhythmicity is only slightly increased. The explanation of this effect may be seen in the inhibition of protein synthesis and protein degradation. In the model, increasing inhibition of both processes led to very similar results with respect to period length. That protein degradation is, in fact, inhibited by CHX is shown by determining protein degradation in N. crassa by means of pulse chase experiments. Phase response curves (PRCs) of the N. crassa sporulation rhythm toward CHX which were reported in the literature and investigated in this paper revealed significant differences between frq+and the long period mutants frq7and csp -1 frq7. These PRCs were also convincingly simulated by the model, if a transient inhibition of protein degradation by CHX is assumed as well as a lower constitutive degradation rate of FRQ-protein in the frq7/ csp -1 frq7mutants. The lower sensitivities of frq7and csp -1 frq7towards CHX may thus be explained by a lower degradation rate of clock protein FRQ7. The phase shifting by moderate temperature pulses (from 25 to 30 degrees C) can also be simulated by the Goodwin model and shows large phase advances at about CT 16-20 as observed in experiments. In case of higher temperature pulses (from 35 to 42 or 45 degrees C=heat shock) the phase position and form of the PRC changes as protein synthesis is increasingly inhibited. It is known from earlier experiments that heat shock not only inhibits the synthesis of many proteins but also inhibits protein degradation. Taking this into account, the Goodwin model also simulates the PRCs of high temperature (heat shock) pulses.  相似文献   

20.
Masuda T  Iigo M  Mizusawa K  Aida K 《Zoological science》2003,20(11):1405-1410
Effects of macromolecule synthesis inhibitors on the light-induced phase shift of the circadian clock in the photoreceptive pineal organ of a teleost, ayu (Plecoglosus altivelis) were investigated using melatonin release as an indicator. A single light pulse during the early- and late-subjective night delayed and advanced the phase of the circadian rhythm in melatonin release, respectively. During the late subjective-night, protein synthesis inhibitor cycloheximide (CHX) delayed the rhythm while RNA synthesis inhibitor 5,6-dichlorobenzimidazole riboside (DRB) had little effect. Light-induced phase advance was diminished by the treatment of CHX but not by DRB. During the early subjective-night, DRB, CHX, light and combination of these (DRB+light, CHX+light) all phase-delayed the rhythm. There were no additive effects of light and DRB or CHX. These results indicate that macromolecule synthesis is somehow involved in generation of circadian oscillation, and that de novo protein synthesis is required for light-induced phase shift of the circadian clock in the ayu pineal organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号