首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study presents an improved version of a published biomathematical model, the Random Coincidence Model-Radiation Adapted (RCM-RA). That model describes how cancer mortality increases as dose rate increases in the high-dose rate range, as well as how mortality decreases as dose rate increases in the low-dose rate range. It was assumed that low-dose rates of ionizing radiation induce cellular defense mechanisms that also prevent or repair endogenous DNA damage caused by natural cell metabolism. The model presented describes the development of cancer by a phase of initiation that consists of a series of DNA lesions in the critical regions of tumor-associated genes such as proto-oncogenes or tumor-suppressor genes. Initiated cells can divide and form a clone of initiated cells. This clonal growth is called promotion and leads to premalignant cells. Premalignant clones can sustain further genomic damage that may lead to a malignant cell and ultimately a malignant tumor. The model thereby shares structural features with Moolgavkar's two-stage clonal expansion model. It was tested on published, U-shaped data of radon exposure in U.S. homes. The model correctly reflects the ratio of endogenous DNA damage to radiation-induced damage.  相似文献   

2.
Ionizing radiation damage to the genome of a non-cycling mammalian cell is analyzed using continuous time Markov chains. Immediate damage induced by the radiation is modeled as a batch Poisson arrival process of DNA double strand breaks (DSBs). Different kinds of radiation, for example gamma rays or alpha particles, have different batch probabilities. Enzymatic modulation of the immediate damage is modeled as a Markov process similar to the processes described by the master equation of stochastic chemical kinetics. An illustrative example is the restitution/complete exchange model, which postulates that radiation induced DSBs can subsequently either undergo enzymatically mediated repair (restitution) or can participate pairwise in chromosome exchanges, some of which make irremediable lesions such as dicentric chromosome aberrations. One may have rapid irradiation followed by enzymatic DSB processing or have prolonged irradiation with both DSB arrival and enzymatic DSB processing continuing throughout the irradiation period. A complete solution of the Markov chain is known for the case that the exchange rate constant is negligible so that no irremediable chromosome lesions are produced and DSBs are the only damage to the genome. Using PDEs for generating functions, a perturbation calculation is made assuming the exchange rate constant is small compared to the repair rate constant. Some non-perturbative results applicable to very prolonged irradiation are also obtained using matrix methods: Perron-Frobenius theory, variational methods and numerical approximations of eigenvalues. Applications to experimental results on expected values, variances and statistical distributions of DNA lesions are briefly outlined.Continuous time Markov chain models are the most systematic of those current radiation damage models which treat DSB-DSB interactions within the cell nucleus as homogeneous (e.g. ignore diffusion limitations). They contain most other homogeneous models as special cases, limiting cases or approximations. However, applying the continuous time Markov chain models to studying spatial dependence of DSB interactions, which is generally believed to be very important in some situations, presents difficulties.  相似文献   

3.
Zhizhina  G. P. 《Biophysics》2011,56(4):738-746
Chronic effects of low doses of low-intensity ionizing radiation (IR) on biological objects have gained great social significance. This has given a considerable impetus to research into the biological effects and mechanisms of such exposures, both in Russia and abroad. In this paper, an overview of the physicochemical and molecular basis of IR influence at low doses is provided. Means of cell protection from radiation damage are studied and an analysis of the typical features and differences in the radiation effects at low and high doses is carried out. We considered DNA radiation damage, both in cell cultures and in vivo, as well as the processes and results of their repair. Particular attention is paid to changes in the basic paradigms of biological radiation effects at low doses.  相似文献   

4.
A general model of biological response to radiation is proposed which incorporates recent findings and observations on the nature of common repair processes. The dynamic nature of radiation response through extensive repair processes is contrasted with the assumption of irrepairability implicit in “Target Theory”. It is proposed that a high degree of resistance to the biological effects of radiation, presumably DNA damage, is achieved through a combination of constitutive (N Type), induced (T Type) and specialized (PR Type) repair systems. Each repair system is capable of complete repair; however, in fact, they interact in complex but predictable ways to achieve the high resistance required for life in an environment where all living organisms are erratically or chronically exposed to injurious levels of irradiation. A qualitative consideration of repair system interactions provides insight into radiation response and explains many seemingly paradoxical responses to radiation.  相似文献   

5.
《Autophagy》2013,9(12):1822-1823
Mitochondrial DNA (mtDNA) is different in many ways from nuclear DNA. A key difference is that certain types of DNA damage are not repaired in the mitochondrial genome. What, then, is the fate of such damage? What are the effects? Both questions are important from a health perspective because irreparable mtDNA damage is caused by many common environmental stressors including ultraviolet C radiation (UVC). We found that UVC-induced mtDNA damage is removed slowly in the nematode Caenorhabditis elegans via a mechanism dependent on mitochondrial fusion, fission, and autophagy. However, knockdown or knockout of genes involved in these processes—many of which have homologs involved in human mitochondrial diseases—had very different effects on the organismal response to UVC. Reduced mitochondrial fission and autophagy caused no or small effects, while reduced mitochondrial fusion had dramatic effects.  相似文献   

6.
Chronic effects of low doses of low intensity ionizing radiation (IR) on biological objects have now become of great social significance. This has given a considerable impetus to research into biological effects and mechanisms of such exposures both in Russia and abroad. This paper provides an overview of physicochemical and molecular bases of the IR influence at small doses and the ways of cell protection from the radiation damage, as well as the analysis of characteristic features and differences in the effects of radiation at small and high doses. We consider the DNA radiation damage both in cell cultures and in vivo, as well as processes and results of their repair. Particular attention is paid to the changes in the basic paradigms of radiation biological effects of small doses.  相似文献   

7.
Several types of cellular responses to ionizing radiation, such as the adaptive response or the bystander effect, suggest that low-dose radiation may possess characteristics that distinguish it from its high-dose counterpart. Accumulated evidence also implies that the biological effects of low-dose and high-dose ionizing radiation are not linearly distributed. We have investigated, for the first time, global gene expression changes induced by ionizing radiation at doses as low as 2 cGy and have compared this to expression changes at 4 Gy. We applied cDNA microarray analyses to G1-arrested normal human skin fibroblasts subjected to X irradiation. Our data suggest that both qualitative and quantitative differences exist between gene expression profiles induced by 2 cGy and 4 Gy. The predominant functional groups responding to low-dose radiation are those involved in cell-cell signaling, signal transduction, development and DNA damage responses. At high dose, the responding genes are involved in apoptosis and cell proliferation. Interestingly, several genes, such as cytoskeleton components ANLN and KRT15 and cell-cell signaling genes GRAP2 and GPR51, were found to respond to low-dose radiation but not to high-dose radiation. Pathways that are specifically activated by low-dose radiation were also evident. These quantitative and qualitative differences in gene expression changes may help explain the non-linear correlation of biological effects of ionizing radiation from low dose to high dose.  相似文献   

8.
9.
Kirsch DG 《Radiation research》2011,176(3):275-279
The laboratory mouse has been used for many decades as a model system for radiation research. Recent advances in genetic engineering now allow scientists to delete genes in specific cell types at different stages of development. The ability to manipulate genes in the mouse with spatial and temporal control opens new opportunities to investigate the role of genes in regulating the response of normal tissues and tumors to radiation. Currently, we are using the Cre-loxP system to delete genes, such as p53, in a cell-type specific manner in mice to study mechanisms of acute radiation injury and late effects of radiation. Our results demonstrate that p53 is required in the gastrointestinal (GI) epithelium to prevent radiation-induced GI syndrome and in endothelial and/or hematopoietic cells to prevent late effects of radiation. We have also used these genetic tools to generate primary tumors in mice to study tumor response to radiation therapy. These advances in genetic engineering provide a powerful model system to dissect both the mechanisms of normal tissue injury after irradiation and the mechanisms by which radiation cures cancer.  相似文献   

10.
Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionising radiation. Other outstanding questions include links between the different non-targeted responses and the variations in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects.  相似文献   

11.
DNA damage that is not repaired with high fidelity can lead to chromosomal aberrations or mitotic cell death. To date, it is unclear what factors control the ultimate fate of a cell receiving low levels of DNA damage (i.e. survival at the risk of increased mutation or cell death). We investigated whether DNA damage could be introduced into human cells at a level and frequency that could evade detection by cellular sensors of DNA damage. To achieve this, we exposed cells to equivalent doses of ionizing radiation delivered at either a high dose rate (HDR) or a continuous low dose rate (LDR). We observed reduced activation of the DNA damage sensor ataxia-telangiectasia mutated (ATM) and its downstream target histone H2A variant (H2AX) following LDR compared with HDR exposures in both cancerous and normal human cells. This lack of DNA damage signaling was associated with increased amounts of cell killing following LDR exposures. Increased killing by LDR radiation has been previously termed the "inverse dose rate effect," an effect for which no clear molecular processes have been described. These LDR effects could be abrogated by the preactivation of ATM or simulated in HDR-treated cells by inhibiting ATM function. These data are the first to demonstrate that DNA damage introduced at a reduced rate does not activate the DNA damage sensor ATM and that failure to activate ATM-associated repair pathways contributes to the increased lethality of continuous LDR radiation exposures. This inactivation may reflect one strategy by which cells avoid accumulating mutations as a result of error-prone DNA repair and may have a broad range of implications for carcinogenesis and, potentially, the clinical treatment of solid tumors.  相似文献   

12.
13.
The space radiation environment consists of trapped particle radiation, solar particle radiation, and galactic cosmic radiation (GCR), in which protons are the most abundant particle type. During missions to the moon or to Mars, the constant exposure to GCR and occasional exposure to particles emitted from solar particle events (SPE) are major health concerns for astronauts. Therefore, in order to determine health risks during space missions, an understanding of cellular responses to proton exposure is of primary importance. The expression of DNA repair genes in response to ionizing radiation (X-rays and gamma rays) has been studied, but data on DNA repair in response to protons is lacking. Using qPCR analysis, we investigated changes in gene expression induced by positively charged particles (protons) in four categories (0, 0.1, 1.0, and 2.0 Gy) in nine different DNA repair genes isolated from the testes of irradiated mice. DNA repair genes were selected on the basis of their known functions. These genes include ERCC1 (5' incision subunit, DNA strand break repair), ERCC2/NER (opening DNA around the damage, Nucleotide Excision Repair), XRCC1 (5' incision subunit, DNA strand break repair), XRCC3 (DNA break and cross-link repair), XPA (binds damaged DNA in preincision complex), XPC (damage recognition), ATA or ATM (activates checkpoint signaling upon double strand breaks), MLH1 (post-replicative DNA mismatch repair), and PARP1 (base excision repair). Our results demonstrate that ERCC1, PARP1, and XPA genes showed no change at 0.1 Gy radiation, up-regulation at 1.0 Gy radiation (1.09 fold, 7.32 fold, 0.75 fold, respectively), and a remarkable increase in gene expression at 2.0 Gy radiation (4.83 fold, 57.58 fold and 87.58 fold, respectively). Expression of other genes, including ATM and XRCC3, was unchanged at 0.1 and 1.0 Gy radiation but showed up-regulation at 2.0 Gy radiation (2.64 fold and 2.86 fold, respectively). We were unable to detect gene expression for the remaining four genes (XPC, ERCC2, XRCC1, and MLH1) in either the experimental or control animals.  相似文献   

14.
15.
DSBs are harmful lesions produced through endogenous metabolism or by exogenous agents such as ionizing radiation, that can trigger genomic rearrangements. We have recently shown that exposure to 2 Gy of X-rays has opposite effects on the induction of Shh-dependent MB in NHEJ- and HR-deficient Ptch1+/− mice. In the current study we provide a comprehensive link on the role of HR/NHEJ at low doses (0.042 and 0.25 Gy) from the early molecular changes through DNA damage processing, up to the late consequences of their inactivation on tumorigenesis. Our data indicate a prominent role for HR in genome stability, by preventing spontaneous and radiation-induced oncogenic damage in neural precursors of the cerebellum, the cell of origin of MB. Instead, loss of DNA-PKcs function increased DSBs and apoptosis in neural precursors of the developing cerebellum, leading to killing of tumor initiating cells, and suppression of MB tumorigenesis in DNA-PKcs-/-/Ptch1+/− mice. Pathway analysis demonstrates that DNA-PKcs genetic inactivation confers a remarkable radiation hypersensitivity, as even extremely low radiation doses may deregulate many DDR genes, also triggering p53 pathway activation and cell cycle arrest. Finally, by showing that DNA-PKcs inhibition by NU7441 radiosensitizes human MB cells, our in vitro findings suggest the inclusion of MB in the list of tumors beneficiating from the combination of radiotherapy and DNA-PKcs targeting, holding promise for clinical translation.  相似文献   

16.
High dose, acute radiation exposure, as in radiation accidents, induces three clinical syndromes that reflect consequences of oxidative protein, lipid, and DNA damage to tissues such as intestine, lung, and liver. In the present study, we irradiated C57BL/6 mice with 18 Gy whole-body radiation (XRT) and evaluated N-acetyl cysteine (NAC) isomers LNAC and DNAC as potential radioprotectors under conditions that would model the gastrointestinal syndrome. We focused on tissues thought not immediately involved in the gastrointestinal syndrome. Both LNAC and DNAC protected the lung and red blood cells (RBC) from glutathione (GSH) depletion following radiation exposure. However, only LNAC also supplemented the spleen GSH levels following XRT. Protection from increased malondialdehyde (MDA) levels (lung) and increased 8-hydroxy-deoxyguanosine (8-oxo-dG) presence (liver) following XRT was observed with treatment by either isomer of NAC. These results imply that either NAC isomer can act as a radioprotectant against many aspects of oxidative damage; chirality is only important for certain aspects. This pattern would be consistent with direct action of NAC in many radioprotection and repair processes, with a delimited role for NAC in GSH synthesis in some aspects of the problem.  相似文献   

17.
Chaudhry MA 《Mutation research》2006,597(1-2):98-112
In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell communication processes in bystander cells receiving media from irradiated cells supports the active involvement of these processes in inducing bystander effect.  相似文献   

18.
This study provides an analysis of the development of cellular response to the critical DNA damage and the mechanisms for limiting the efficiency of repairing such damages induced by low doses of ionizing radiation exposure. Based on the data of many studies, one can conclude that the majority of damages occurring in the DNA of the cells after exposure to ionizing radiation significantly differ in their chemical nature from the endogenous ones. The most important characteristic of radiation-induced DNA damages is their complexity and clustering. Double strand breaks, interstrand crosslinks or destruction of the replication fork and formation of long single-stranded gaps in DNA are considered to be critical damages for the fate of cells. The occurrence of such lesions in DNA may be a key event in the etiology and the therapy of cancer. The appearance in the cells of the critical DNA damage induces a rapid development of a complex and ramified network of molecular and biochemical reactions which are called the cellular response to DNA damage. Induction of the cellular response to DNA damage involves the activation of the systems of cell cycle checkpoints, DNA repair, changes in the expression of many genes, reconstruction of the chromatin or apoptosis. However, the efficiency of repair of the complex DNA damage in cells after exposure to low doses of radiation remains at low levels. The development of the cell response to DNA damages after exposure to low doses of radiation does not reach the desired result due to a small amount of damage, with the progression of the phase cell cycle being ahead of the processes of DNA repair. This is primarily due to the failure of signalization to activate the checkpoint of the cell cycle for its arrest in the case of a small number of critical DNA lesions. In the absence of the arrest of the phase cell cycle progression, especially during the G2/M transition, the reparation mechanisms fail to completely restore DNA, and cells pass into mitosis with a damaged DNA. It is assumed that another reason for the low efficiency of DNA repair in the cells after exposure to low doses of radiation is the existence of a restricted access for the repair system components to the complex damages at the DNA sites of highly compacted chromatin.  相似文献   

19.
20.
We harvested and analyzed cells from four different non-transformed cell lines surviving a single X-ray exposure. Evidence of radiation-induced karyotype instability was observed in 100% of C3H 10T1/2 fibroblast clones and 11.3% of V79 fibroblast clones. Heritable damage: predisposition to apoptosis, but not karyotype instability, was induced in TK6 (p53(wt/wt)) and WTK1 (p53(mut/mut)) human B-lymphoblastoid cell clones. The studies indicate: (1) genetic instability and/or heritable damage are induced in cells exposed to radiation at a high frequency, and induction of genetic instability is not limited to morphologically transformed cells [Radiat. Res. 138 (1994) S105; Radiat. Environ. Biophys. 36 (1998) 255]; (2) sensitivity to genetic instability and heritable damage depend on cell type; (3) checkpoint stringency and p53 status significantly influence the frequency of radiation-induced genetic instability and heritable damage; (4) in some cell lines, damage induced by low doses of radiation (below 2 Gy) leads to heritable cytotoxic and genotoxic effects in 100% of cells exposed. The data suggest that mammalian cells misinterpret damage induced by ionizing radiation as if it were a physiological cell signal. This contrasts strongly with the response of mammalian cells to damage induced by other types of DNA-toxic agents where damage-specific repair mechanisms are activated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号