首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:1,他引:1  
Mutations in the polytopic lysosomal membrane glycoprotein CLN3 result in a severe neurodegenerative disorder. Previous studies identified two cytosolic signal structures contributing to lysosomal targeting. We now examined the role of glycosylation and the C-terminal CAAX motif in lysosomal transport of CLN3 in non-neuronal and neuronal cells. Mutational analysis revealed that in COS7 cells, CLN3 is glycosylated at asparagine residues 71 and 85. Both partially and non-glycosylated CLN3 were transported correctly to lysosomes. Mevalonate incorporation and farnesyltransferase inhibitor studies indicate that CLN3 is prenylated most likely at cysteine 435. Substitution of cysteine 435 reduced the steady-state level of CLN3 in lysosomes most likely because of impaired sorting in early endosomal structures, particularly in neuronal cells. Additionally, the cell surface expression of CLN3 was increased in the presence of farnesyltransferase inhibitors. Alteration of the spacing between the transmembrane domain and the CAAX motif or the substitution of the entire C-terminal domain of CLN3 with cytoplasmic tails of mannose 6-phosphate receptors have demonstrated the importance of the C-terminal domain of proper length and composition for exit of the endoplasmic reticulum. The data suggest that co-operative signal structures in different cytoplasmic domains of CLN3 are required for efficient sorting and for transport to the lysosome.  相似文献   

2.
CLN6 is a polytopic membrane protein of unknown function resident in the endoplasmic reticulum (ER). Mutant CLN6 causes the lysosomal storage disorder neuronal ceroid lipofuscinosis. Defining the topology of CLN6, and the structural domains and motifs required for interaction with cytosolic and luminal proteins may allow insights into its function. In this study we analysed the topology, ER retention and oligomerization of CLN6. We demonstrated, by differential membrane permeabilization of transfected BHK cells using specific detergents and two distinct antibodies, that CLN6 contains an N-terminal cytoplasmic domain, seven transmembrane domains, and a luminal C terminus. Mutational analyses and confocal immunofluorescence microscopy showed that changes of potential ER localization signals in the N- or C-terminal domain (a triple arginine cluster, and a dileucine motif) did not alter the subcellular localization of CLN6. The deletion of a dilysine motif impaired partially the ER localization of CLN6. Furthermore, expression analyses of fusion and deletion constructs in non-neuronal and neuronal cells suggested that two portions of CLN6 contributed to its retention within the ER. We showed that the N-terminal domain was necessary but not sufficient for ER retention of CLN6 and that deletion of transmembrane domains 6 and 7 was accompanied with the loss of ER localization and, in some instances, trafficking to the cisGolgi. From these data we concluded that CLN6 maintains its ER localization by expressing retention signals present in both the N-terminal cytosolic domain and in the carboxy-proximal transmembrane domains 6 and 7. Additionally, the ability of CLN6 to homodimerize may also prevent exit from the ER via an interaction with membrane-associated factors.  相似文献   

3.
Juvenile neuronal ceroid lipofuscinosis (JNCL) is an autosomal recessively inherited lysosomal storage disease involving a mutation in the CLN3 gene. The sequence of CLN3 was determined in 1995; however, the localization of the CLN3 gene product (Cln3p) was not confirmed. In this study, we investigated endogenous Cln3p using two peptide antibodies raised against two distinct epitopes of murine Cln3p. Identification of the liver 60 kDa protein as Cln3p was ascertained by amino acid sequence analysis using tandem mass spectrometry. Liver Cln3p was predominantly localized in the lysosomal membranes, not in endoplasmic reticulum (ER) or Golgi apparatus. As the tissue concentration of brain Cln3p was much lower than that of liver Cln3p, it could be detected only after purification from brain extract using anti-Cln3p IgG Sepharose. The apparent molecular masses of liver Cln3p and brain Cln3p were determined to be about 60 kDa and 55 kDa, respectively. Both brain and liver Cln3p were deglycosylated by PNGase F treatment to form polypeptides with almost the same molecular mass (45 kDa). However, they were not affected by Endo h treatment. In addition, it was also elucidated that the amino terminal region of Cln3p faces the cytosol.  相似文献   

4.
Abnormal accumulation of undigested macromolecules, often disease-specific, is a major feature of lysosomal and neurodegenerative disease and is frequently attributed to defective autophagy. The mechanistic underpinnings of the autophagy defects are the subject of intense research, which is aided by genetic disease models. To gain an improved understanding of the pathways regulating defective autophagy specifically in juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), a neurodegenerative disease of childhood, we developed and piloted a GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) screening assay to identify, in an unbiased fashion, genotype-sensitive small molecule autophagy modifiers, employing a JNCL neuronal cell model bearing the most common disease mutation in CLN3. Thapsigargin, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) Ca2+ pump inhibitor, reproducibly displayed significantly more activity in the mouse JNCL cells, an effect that was also observed in human-induced pluripotent stem cell-derived JNCL neural progenitor cells. The mechanism of thapsigargin sensitivity was Ca2+-mediated, and autophagosome accumulation in JNCL cells could be reversed by Ca2+ chelation. Interrogation of intracellular Ca2+ handling highlighted alterations in endoplasmic reticulum, mitochondrial, and lysosomal Ca2+ pools and in store-operated Ca2+ uptake in JNCL cells. These results further support an important role for the CLN3 protein in intracellular Ca2+ handling and in autophagic pathway flux and establish a powerful new platform for therapeutic screening.  相似文献   

5.
The rate of accumulation of Luxol Fast Blue staining material in the hippocampus of motor neuron degeneration (mnd/mnd) mice, a model of Batten Disease, was quantitated. Stained material increased linearly up to 8 months of age. A quantitative immunoassay was used to measure levels of mitochondrial ATP synthase subunit 9 in brain and liver of mnd/mnd mice. Levels of subunit 9 increased progressively throughout the lifespan of mnd/mnd mice reaching levels approximately 5-fold higher than in control animals. The rate of accumulation of subunit 9 is not consistent with any simple complete or partial degradation defect that is constant throughout the animal's life. Two more complicated models are discussed which are consistent with the observed accumulation rate of subunit 9.  相似文献   

6.
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Currently, there is no cure for NCL and the mechanisms underlying the disease are not well understood. In the social amoeba Dictyostelium discoideum, the CLN3 homolog, Cln3, localizes predominantly to the contractile vacuole (CV) system. This dynamic organelle functions in osmoregulation, and intriguingly, osmoregulatory defects have been observed in mammalian cell models of CLN3 disease. Therefore, we used Dictyostelium to further study the involvement of CLN3 in this conserved cellular process. First, we assessed the localization of GFP-Cln3 during mitosis and cytokinesis, where CV system function is essential. GFP-Cln3 localized to the CV system during mitosis and cln3? cells displayed defects in cytokinesis. The recovery of cln3? cells from hypotonic stress and their progression through multicellular development was delayed and these effects were exaggerated when cells were treated with ammonium chloride. In addition, Cln3-deficiency reduced the viability of cells during hypotonic stress and impaired the integrity of spores. During hypertonic stress, Cln3-deficiency reduced cell viability and inhibited development. We then performed RNA sequencing to gain insight into the molecular pathways underlying the sensitivity of cln3? cells to osmotic stress. This analysis revealed that cln3-deficiency upregulated the expression of tpp1A, the Dictyostelium homolog of human TPP1/CLN2. We used this information to show a correlated increase in Tpp1 enzymatic activity in cln3? cells. In total, our study provides new insight in the mechanisms underlying the role of CLN3 in osmoregulation and neurodegeneration.  相似文献   

7.
A simplified and rapid method for simultaneous activity measurements of three lysosomal marker enzymes, acid phosphatase, beta-glucuronidase, and beta-N-acetyl-D-hexosaminidase is described. The incubation is carried out in a single test tube and stopped by adding an alkaline sodium dodecyl sulfate solution, thus avoiding centrifugations and allowing for higher Triton X-100 concentrations in the incubation media. Two products of the beta-glycosidases (phenolphthalein and 2-nitrophenolate) are measured spectrophotometrically at the respective wavelengths (555 and 420 nm), and one of the acid phosphatase products is quantitatively determined by measuring inorganic phosphate.  相似文献   

8.
The neuronal ceroid lipofuscinoses comprise a group of inherited severe neurodegenerative lysosomal disorders characterized by lysosomal dysfunction and massive accumulation of fluorescent lipopigments and aggregated proteins. To examine the role of lipids in neurodegenerative processes of these diseases, we analysed phospho- and glycolipids in the brains of ctsd−/− and nclf mice, disease models of cathepsin D and CLN6 deficiency, respectively. Both ctsd−/− and nclf mice exhibited increased levels of GM2 and GM3 gangliosides. Immunohistochemically GM2 and GM3 staining was found preferentially in neurons and glial cells, respectively, of ctsd−/− mice. Of particular note, a 20-fold elevation of the unusual lysophospholipid bis(monoacylglycero)phosphate was specifically detected in the brain of ctsd−/− mice accompanied with sporadic accumulation of unesterified cholesterol in distinct cells. The impaired processing of the sphingolipid activator protein precursor, an in vitro cathepsin D substrate, in the brain of ctsd−/− mice may provide the mechanistic link to the storage of lipids. These studies show for the first time that cathepsin D regulates the lysosomal phospho- and glycosphingolipid metabolism suggesting that defects in the composition, trafficking and/or recycling of membrane components along the late endocytic pathway may be critical for the pathogenesis of early onset neuronal ceroid lipofuscinoses.  相似文献   

9.
A lysosomal pepstatin-insensitive proteinase (CLN2p) deficiency is the underlying defect in the classical late-infantile neuronal ceroid lipofuscinosis (LINCL, CLN2). The natural substrates for CLN2p and the causative factors for the neurodegeneration in this disorder are still not understood. We have now purified the CLN2p from bovine brain to apparent homogeneity. The proteinase has a molecular mass of 46 kDa and an aminoterminal sequence, L-H-L-G-V-T-P-S-V-I-R-K, that is identical to the human enzyme. Peptide: N-glycosidase F and endoglycosidase H treatment of the CLN2p reduced its molecular mass to 39.5 and 40.5 kDa, respectively, suggesting the presence of as many as five N-glycosylated residues. The CLN2p activity was not affected by common protease inhibitors, and thiol reagents, metal chelators, and divalent metal ions had no significant effect on the proteolytic activity of the CLN2p. Among the naturally occurring neuropeptides, angiotensin II, substance P, and beta-amyloid were substrates for the CLN2p, whereas angiotensin I, Leu-enkephalin, and gamma-endorphin were not. Peptide cleavage sites indicated that the CLN2p is a tripeptidyl peptidase that cleaves peptides having free amino-termini. Synthetic amino- and carboxyl-terminal peptides from the subunit c sequence, which is the major storage material in LINCL, are hydrolyzed by the CLN2p, suggesting that the subunit c may be one of the natural substrates for this proteinase and its accumulation in LINCL is the direct result of the proteinase deficiency.  相似文献   

10.
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a pediatric lysosomal storage disorder characterized by accumulation of autofluorescent storage material and neurodegeneration, which result from mutations in CLN3. The function of CLN3, a lysosomal membrane protein, is currently unknown. We report that CLN3 interacts with cytoskeleton-associated nonmuscle myosin-IIB. Both CLN3 and myosin-IIB are ubiquitously expressed, yet mutations in either produce dramatic consequences in the CNS such as neurodegeneration in JNCL patients and Cln3−/− mouse models, or developmental deficiencies in Myh10−/− mice, respectively. A scratch assay revealed a migration defect associated with Cln3−/− cells. Inhibition of nonmuscle myosin-II with blebbistatin in WT cells resulted in a phenotype that mimics the Cln3−/− migration defect. Moreover, inhibiting lysosome function by treating cells with chloroquine exacerbated the migration defect in Cln3−/−. Cln3−/− cells traversing a transwell filter under gradient trophic factor conditions displayed altered migration, further linking lysosomal function and cell migration. The myosin-IIB distribution in Cln3−/− cells is elongated, indicating a cytoskeleton defect caused by the loss of CLN3. In summary, cells lacking CLN3 have defects that suggest altered myosin-IIB activity, supporting a functional and physical interaction between CLN3 and myosin-IIB. We propose that the migration defect in Cln3−/− results, in part, from the loss of the CLN3–myosin-IIB interaction.  相似文献   

11.
A genetic locus controlling the electrophoretic mobility of an acid phosphatase in mouse kidney is described. This locus, called acid phosphatase-kidney (Apk), is not expressed in erythrocytes, liver, spleen, heart, lung, brain, skeletal muscle, stomach, or testes. The product of Apk hydrolyzes the substrate naphthol AS-MX phosphoric acid but is not active on a-naphthylphosphate or 4-methylumbelliferylphosphate. It is not inactivated by 50 C for 1 hr, nor is its electrophoretic mobility altered by incubation with neuraminidase. The locus is invariant among 31 inbred strains (Apka), with a variant allele (Apkm) observed only in Mus musculus molossinus. Codominant expression was observed in F1 hybrids of M. m. molossinus and inbred strains. Apk was mapped on Chr 10, near the neurological mutant waltzer (v).This work was supported by Contract NO1-ES42159 from the National Institute of Environmental Health Sciences and by Grant 1-476 from the National Foundation—March of Dimes. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

12.
Lipoprotein cholesterol taken up by cells is processed in the endosomal/lysosomal (E/L) compartment by the sequential action of lysosomal acid lipase (LAL), Niemann-Pick C2 (NPC2), and Niemann-Pick C1 (NPC1). Inactivation of NPC2 in mouse caused sequestration of unesterified cholesterol (UC) and expanded the whole animal sterol pool from 2,305 to 4,337 mg/kg. However, this pool increased to 5,408 and 9,480 mg/kg, respectively, when NPC1 or LAL function was absent. The transport defect in mutants lacking NPC2 or NPC1, but not in those lacking LAL, was reversed by cyclodextrin (CD), and the ED50 values for this reversal varied from ∼40 mg/kg in kidney to >20,000 mg/kg in brain in both groups. This reversal occurred only with a CD that could interact with UC. Further, a CD that could interact with, but not solubilize, UC still overcame the transport defect. These studies showed that processing and export of sterol from the late E/L compartment was quantitatively different in mice lacking LAL, NPC2, or NPC1 function. In both npc2−/− and npc1−/− mice, the transport defect was reversed by a CD that interacted with UC, likely at the membrane/bulk-water interface, allowing sterol to move rapidly to the export site of the E/L compartment.  相似文献   

13.
14.
The gene PHO5 coding for one of the repressible acid phosphatases of the yeastSaccharomyces cerevisiae has been expressed at high efficiency in the baby hamster kidney (BHK) cell line. The expression vector was constructed from PHO5 driven by the human -actin promoter and was transfected into BHK cells by the calcium phosphate method. The recombinant APase (r-APase) which was secreted in active form from the cells was estimated by SDS/polyacrylamide gel electrophoresis to have molecular massM r=62000, indicating substitution of the polypeptide moiety by 2–3 asparagine-linked glycans. Analysis by sequential lectin affinity chromatography of glycopeptides obtained from r-APase with Pronase showed that the glycans are predominantly of the 2.2.4 triantennary and tetraantennary complex-type. These data suggest that the extensive glycosylation of yeast APase, which contains eight polymannose substituents, is not essential for secretion and expression of enzymatic activity of the transfected gene product.Abbreviations APase acid phosphatase - PBS phosphate buffered saline - TBS Tris buffered saline - con A concanavalin A - TCA Tetracarpidium conophorum agglutinin  相似文献   

15.
Intracellular calcium homeostasis is important for cell survival. However, increase in mitochondrial calcium (Ca2+m) induces opening of permeability transition pore (PTP), mitochondrial dysfunction and apoptosis. Since alterations of intracellular Ca2+ and reactive oxygen species (ROS) generation are involved in cell death, they might be involved in neurodegenerative processes such as Huntington's disease (HD). HD is characterized by the inhibition of complex II of respiratory chain and increase in ROS production. In this report, we studied the correlation between the inhibitor of the complex II, 3-nitropropionic acid (3NP), Ca2+ metabolism, apoptosis and behavioural alterations. We showed that 3NP (1 mm) is able to release Ca2+m, as neither Thapsigargin (TAP, 2 microm) nor free-calcium medium affected its effect. PTP inhibitors and antioxidants inhibited this process, suggesting an increase in ROS generation and PTP opening. In addition, 3NP (0.1 mm) also induces apoptotic cell death. Behavioural changes in animals treated with 3NP (20 mg/kg/day for 4 days) were also attenuated by pre- and co-treatment with vitamin E (VE, 20 mg/kg/day). Taken together, our results show that complex II inhibition could involve Ca2+m release, oxidative stress and cell death that may precede motor alterations in neurodegenerative processes such as HD.  相似文献   

16.
17.
Summary Protein-tyrosine phosphatase PTPN3 is a membrane-associated non-receptor protein-tyrosine phosphatase. PTPN3 contains a N-terminal FERM domain, a middle PDZ domain, and a C-terminal phosphatase domain. Upon co-expression of PTPN3, the level of human hepatitis B viral (HBV) RNAs, 3.5 kb, 2.4/2.1 kb, and 0.7 kb transcribed from a replicating HBV expression plasmid is significantly reduced in human hepatoma HuH-7 cells. When the expression of endogenous PTPN3 protein is diminished by specific small interfering RNA, the expression of HBV genes is enhanced, indicating that the endogenous PTPN3 indeed plays a suppressive role on HBV gene expression. PTPN3 can interact with HBV core protein. The interaction is mediated via the PDZ domain of PTPN3 and the carboxyl-terminal last four amino acids of core. Either deletion of PDZ domain of PTPN3 or substitution of PDZ ligand in core has no effect on PTPN3-mediated suppression. These results clearly show that the interaction of PTPN3 with core is not required for PTPN3 suppressive effect. Mutation of 359serine and 835serine of 14-3-3β binding sites to alanine, which slightly reduces the interaction with 14-3-3β, does not influence the PTPN3 effect. In contrast, mutation of the invariant 842cysteine residue in phosphatase domain to serine, which makes the phosphatase activity inactive, does not change its subcellular localization and interaction with core or 14-3-3β, but completely abolishes PTPN3-mediated suppression. Furthermore, deletion of FERM domain does not affect the phosphatase activity or interaction with 14-3-3β, but changes the subcellular localization from cytoskeleton-membrane interface to cytoplasm and nucleus, abolishes binding to core, and diminishes the PTPN3 effect on HBV gene expression. Taken together, these results demonstrate that the phosphatase activity and FERM domain of PTPN3 are essential for its suppression of HBV gene expression. En-Chi Hsu, Yen-Cheng Lin have equal contributions to this work.  相似文献   

18.
19.
Qiao S  Tuohimaa P 《FEBS letters》2004,577(3):451-454
FAS and FACL3 are enzymes of fatty acid metabolism. In our previous studies, we found that FAS and FACL3 genes were vitamin D3-regulated and involved in the antiproliferative effect of 1alpha,25(OH)2D3 in the human prostate cancer LNCaP cells. Here, we elucidated the mechanism behind the downregulation of FAS expression by vitamin D3. Triacsin C, an inhibitor of FACL3 activity, completely abolished the downregulation of FAS expression by vitamin D3, whereas an inhibitor of FAS activity, cerulenin, had no significant effect on the upregulation of FACL3 expression by vitamin D3 in LNCaP cells. In human prostate cancer PC3 cells, in which FACL3 expression is not regulated by vitamin D3, no regulation of FAS expression was seen. This suggests that the downregulation of FAS expression by vitamin D3 is mediated by vitamin D3 upregulation of FACL3 expression. Myristic acid, one of the substrates preferential for FACL3, enhanced the repression of FAS expression by vitamin D3. The action of myristic acid was abrogated by inhibition of FACL3 activity, suggesting that the enhancement in the downregulation of FAS expression by vitamin D3 is due to the formation of myristoyl-CoA. The data suggest that vitamin D3-repression of FAS mRNA expression is the consequence of feedback inhibition of FAS expression by long chain fatty acyl-CoAs, which are formed by FACL3 during its upregulation by vitamin D3 in human prostate cancer LNCaP cells.  相似文献   

20.
ARID3B is a DNA binding protein that is overexpressed in neuroblastoma and ovarian cancer. To understand the extent that ARID3B participates in tumor development, we assessed protein expression of ARID3B in normal adult and malignant tissues. We found that ARID3B is highly expressed in differentiated layers of squamous epithelium. We also examined expression of an alternative splice form of ARID3B and found that it has similar but not identical expression patterns to the full length ARID3B isoform. ARID3B has two closely related paralogues, ARID3A and ARID3C. Each of these 3 family members exhibits different patterns of expression. Of the ARID3 family members, ARID3B is the most widely expressed and is particularly expressed in epithelium. In addition to examining normal tissue, we investigated ARID3B expression in a variety of tumor types. Most notably we found that ARID3B expression is decreased in esophagus and stomach tumors compared to normal corresponding tissues. Our results indicate that the different patterns of ARID3B in normal tissues translate into different roles for ARID3B in carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号