共查询到20条相似文献,搜索用时 15 毫秒
1.
A cytosolic flavoprotein enzyme for the protozoan, Trypanosoma cruzi, has been purified essentially to homogeneity by DEAE-cellulose and 2',5'-ADP-agarose column chromatography. The native enzyme has a molecular weight of 100,000 +/- 6,000, is composed of two identical subunits of molecular weight 52,000 +/- 1,000, and contains FAD in the ratio of 1 mol of FAD per mol of enzyme subunit. The enzyme is NADPH-dependent and is capable of reducing cytochrome c, ferricyanide, 2,6-dichloroindophenol, and menadione, but not adrenalin. It does not hydroxylate either sodium salicylate or sodium p-hydroxybenzoate, but N-methylaniline and N,N-dimethylaminobenzaldehyde-supported oxidation of NADPH has been demonstrated. Plots of initial velocity against NADPH concentration give hyperbolic curves with Km values of 6.289 X 10(-5) M. The enzyme is clearly different from the microsomal NADPH-cytochrome c reductase in its intracellular distribution, molecular weight, dimeric nature, presence of only FAD, and activity against secondary and tertiary aromatic amines. 相似文献
2.
Sanz-Rodríguez CE Concepción JL Pekerar S Oldfield E Urbina JA 《The Journal of biological chemistry》2007,282(17):12377-12387
Trypanosoma cruzi, the etiologic agent of Chagas disease, has an unusual ATP-dependent hexokinase (TcHK) that is not affected by D-glucose 6-phosphate, but is non-competitively inhibited by inorganic pyrophosphate (PP(i)), suggesting a heterotropic modulator effect. In a previous study we identified a novel family of bisphosphonates, metabolically stable analogs of PP(i), which are potent and selective inhibitors of TcHK as well as the proliferation of the clinically relevant intracellular amastigote form of the parasite in vitro (Hudock, M. P., Sanz-Rodriguez, C. E., Song, Y., Chan, J. M., Zhang, Y., Odeh, S., Kosztowski, T., Leon-Rossell, A., Concepcion, J. L., Yardley, V., Croft, S. L., Urbina, J. A., and Oldfield, E. (2006) J. Med. Chem. 49, 215-223). In this work, we report a detailed kinetic analysis of the effects of three of these bisphosphonates on homogeneous TcHK, as well as on the enzyme in purified intact glycosomes, peroxisome-like organelles that contain most of the glycolytic pathway enzymes in this organism. We also investigated the effects of the same compounds on glucose consumption by intact and digitonin-permeabilized T. cruzi epimastigotes, and on the growth of such cells in liver-infusion tryptose medium. The bisphosphonates investigated were several orders of magnitude more active than PP(i) as non-competitive or mixed inhibitors of TcHK and blocked the use of glucose by the epimastigotes, inducing a metabolic shift toward the use of amino acids as carbon and energy sources. Furthermore, there was a significant correlation between the IC(50) values for TcHK inhibition and those for epimastigote growth inhibition for the 12 most potent compounds of this series. Finally, these bisphosphonates did not affect the sterol composition of the treated cells, indicating that they do not act as inhibitors of farnesyl diphosphate synthase. Taken together, our results suggest that these novel bisphosphonates act primarily as specific inhibitors of TcHK and may represent a novel class of selective anti-T. cruzi agents. 相似文献
3.
Pereira CA Alonso GD Ivaldi S Bouvier LA Torres HN Flawiá MM 《The Journal of eukaryotic microbiology》2003,50(2):132-134
Arginine kinase catalyzes the transphosphorylation between phosphoarginine and ADP. Phosphoarginine is involved in temporal ATP buffering and inorganic phosphate regulation. Trypanosoma cruzi arginine kinase phosphorylates only L-arginine (specific activity 398.9 x mUE-min(-1) x mg(-1)), and is inhibited by the arginine analogs, agmatine, canavanine, nitroarginine, and homoarginine. Canavanine and homoarginine also produce a significant inhibition of the epimastigote culture growth (79.7% and 55.8%, respectively). Inhibition constants were calculated for canavanine and homoarginine (7.55 and 6.02 mM, respectively). In addition, two novel guanidino kinase activities were detected in the epimastigote soluble extract. The development of the arginine kinase inhibitors of T. cruzi could be an important feature because the phosphagens biosynthetic pathway in trypanosomatids is different from the one in their mammalian hosts. 相似文献
4.
《Inorganica chimica acta》1987,137(3):139-143
A range of organic hydroxy compounds, many of them naturally occurring, have been assayed for their ability to reduce the electron transfer protein cytochrome c. Those with conjugated hydroxyl systems e.g. catechol, acted as reducing agents while those which were phenol-like, either by separation of conjugation e.g. resorcinol or by having only one free hydroxyl group, did not. Rapid reaction kinetic investigations of the reaction of rhodizonic acid with cytochrome c revealed rapid reduction of the protein. The dianion of rhodizonic acid is the most reactive species in agreement with results obtained with catecholato compounds. The pH-dependence of this reaction is discussed in terms of the complex solution chemistry of rhodizonic acid. 相似文献
5.
Kinetic studies of the reactions of selected eukaryotic and prokaryotic cytochromes c with mitochondrial cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase (EC 1.9.3.1) using a standardized complex IV preparation from beef heart are reported. Data on reactions with NADH-linked cytochrome c reductase (complexes I and III) are included. The concentration ranges employed provide a basis for quantitative demonstration of a general rate law applicable to oxidase reactions of cytochrome c of greatly differing reactivities. Results are interpreted on the basis of a modified Minnaert mechanism (Minnaert, K. (1961) Biochim. Biophys. Acta 50, 23), assuming productive complex formation between cytochrome c and free oxidase in addition to further complex binding of a second cytochrome c molecule to the initially formed oxidase complex. Kinetic constants so obtained are consistent with the assumption that binding is the dominant parameter in reactivity, and can be rationalized most simply on this basis. 相似文献
6.
The reaction of Neurospora crassa cytochrome c oxidase with CO was studied by flash-photolysis and rapid-mixing experiments, leading to the determination of the association and dissociation rate constants (7 X 10(4) M-1 X s-1 and 0.02s-1 respectively). Pre-steady-state kinetic investigations of the catalytic properties of the enzyme showed that under proper conditions Neurospora cytochrome c oxidase can be 'pulsed', i.e. activated, like the mammalian enzyme. The 'pulsed' species is spectroscopically different from the 'resting' one, and the decay into the 'resting' state is fast (t1/2 approx. 3 min). 相似文献
7.
8.
The kinetic properties of a 1:1 covalent complex between horse-heart cytochrome c and yeast cytochrome c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) have been investigated by transient-state and steady-state kinetic techniques. Evidence for heterogeneity in the complex is presented. About 50% of the complex reacts with hydrogen peroxide with a rate 20–40% faster than that of native enzyme; 20% of the complex exists in a conformation which does not react with hydrogen peroxide but converts to the reactive form at a rate of 20 ± 5 s−1; 30% of the complex does not react with hydrogen peroxide to form the oxidized enzyme intermediate, cytochrome c peroxidase Compound I. Intramolecular electron transfer between covalently bound ferrocytochrome c and an oxidized site in cytochrome c peroxidase Compound I is too fast to measure, but a lower limit of 600 s−1 can be estimated at 5°C in a 10 mM potassium phosphate buffer at pH 7.5. Free ferrocytochrome c reduces cytochrome c peroxidase Compound I covalently bound to ferricytochrome c at a rate 10−4 to 10−5-times slower than for free Compound I. The transient-state ferrocytochrome c reduction rates of Compound I covalently linked to ferricytochrome c are about 70-times too slow to account for the steady-state catalytic properties of the 1:! covalent complex. This indicates that hydrogen peroxide can interact with the 1:1 complex at sites other than the heme of cytochrome c peroxidase, generating additional species capable of oxidizing free ferrocytochrome c. 相似文献
9.
Using STD NMR experiments, we have studied the binding epitopes of p-nitrophenyl glycosides of sialic acid and analogs thereof when bound to Trypanosoma cruzi trans-sialidase (TSia). Time-dependent NMR spectra yielded data on the rate of substrate hydrolysis in comparison to sialic acid transfer. Our experiments clearly demonstrate that shortening of the glycerol side chain significantly favors the transfer reaction over hydrolysis. Our results extend the basis on which specific trans-sialidase inhibitors may be designed. 相似文献
10.
During oxidation of hydroxylamine, hydroxylamine oxidoreductase (HAO) transfers two electrons to tetraheme cytochrome c554 at rates sufficient to account for physiological rates of oxidation of ammonia to nitrite in Nitrosomonas europaea. Spectroscopic changes indicate that the two electrons are taken up by a high-potential pair of hemes (E degrees' = +47 mV) (one apparently high spin and one low spin). During single-turnover experiments, in which the reduction of oxidized cytochrome c554 by NH2OH-reduced HAO is monitored, one electron is taken up by the high-spin heme at a rate too fast to monitor directly (greater than 100 s-1) but which is inferred either by a loss of amplitude (relative to that observed under multiple-turnover conditions) or is slowed down by increasing ionic strength (greater than or equal to 300 mM KCl). The second electron is taken up by the low-spin heme at a 10-30-fold slower rate. The latter kinetics appear multiphasic and may be complicated by a transient oxidation of HAO due to the rapid transfer of the first electron into the high-spin heme of cytochrome c554. Under multiple-turnover conditions, a "slower" rate of reduction is observed for the high-spin heme of cytochrome c554 with a maximum rate constant of approximately 30 s-1, a value also obtained for the reduction, by NH2OH, of the cytochrome c554 high-spin heme within an oxidized HAO/c554 complex. Under these conditions, the maximum rate of reduction of the low-spin heme was approximately 11.0 s-1. Both rates decreased as the concentration of cytochrome c554 was increased above the concentration of HAO.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
Yeast cytochrome c peroxidase (CcP) was purified from baker's yeast and immobilised onto a nylon membrane. The kinetics of the soluble and immobilised forms of the enzyme were investigated for the catalysed oxidation of potassium ferrocyanide in the presence of H2O2 and m-chloroperoxybenzoic acid. The pH dependence of the two forms of the enzyme differed. Although both the soluble and the immobilised enzymes showed optimal activity at pH 6.2, a different kinetic behaviour was demonstrated. Both forms of the enzyme showed similar activity toward H2O2, although when m-chloroperoxybenzoic acid was replaced as the electron acceptor, the immobilised form of the enzyme had a reduced turnover number and an increased Km. The activation energy of immobilised CcP was greater in the presence of both H2O2 [16.6 kJ mol-1] and m-chloroperoxybenzoic acid [37.9 kJ mol-1] than for soluble CcP [11.4 and 23.4 kJ mol-1, respectively]. The activities of both soluble and immobilised CcP were greatly reduced above 45 degrees C, although at higher temperatures the immobilised enzyme retained a relatively greater percentage of its maximum activity. 相似文献
12.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2019,1863(10):1583-1594
BackgroundTrypanosoma cruzi cytosolic tryparedoxin peroxidase (c-TXNPx) is a 2-Cys peroxiredoxin that plays an important role in coping with host cell oxidative response during the infection process, for which it has been described as a virulence factor.MethodsFour residues corresponding to c-TXNPx catalytic and solvent-exposed cysteines were individually mutated to serine by site-specific mutagenesis. Susceptibility to redox treatments and oligomeric dynamics were investigated by western-blot and gel filtration chromatography. Chaperone and peroxidase activities were determined.ResultsIn this study we demonstrated that c-TXNPx exists as different oligomeric forms, from decameric to high molecular mass aggregates. Moreover, c-TXNPx functions as a dual-function protein acting both as a peroxidase and as a molecular chaperone. Its chaperone function was shown to be independent of the presence of catalytic cysteines, even in the reduced and decameric forms, although it is enhanced when the protein is overoxidized leading to the formation of high molecular mass aggregates.Conclusionsc-TXNPx has chaperone activity which does not depend on the redox state. c-TXNPx does not undergo the dimer-decamer transition in the oxidized state described for other peroxiredoxins. Overoxidized c-TXNPx exists as different oligomeric forms from decamer to high molecular mass aggregates which are in a very slow dynamic equilibrium. The non-catalytic C57 residue may have a role in the maintenance of the decameric form, but seems not to have an alternative CP and CR role.General significanceThis study provides novel insights into some key aspects of the oligomerization dynamics and function of c-TXNPx. 相似文献
13.
C H Reynolds R Y Hsu B Matthews T A Pry K Dalziel 《Archives of biochemistry and biophysics》1978,189(2):309-316
The oxidative decarboxylation of l-malate catalyzed by malic enzyme has been studied by stopped-flow spectrophotometry and by initial rate measurements with large concentrations of NADP+, malate, and Mn2+. The results show that hybride transfer is fast, ms. The formation of enzyme-bound NADPH in an amount equivalent to about half of the enzyme active center concentration is followed by turnover at a rate which is initially faster than the steady-state rate, under conditions such that substrate inhibition by malate is observed in the steady state. The steady-state rate is reached after about 0.5 s. It is suggested that a conformational change in the abortive complex of enzyme, manganese, NADPH, and malate is responsible for the malate inhibition and for the slow approach to the true steady state. The relief of malate inhibition by increasing Mn2+ concentrations is described, and the results are described in relation to other evidence of nonidentical binding sites for, or negatively cooperative binding of, substrate and activator and possible half-of-the-sites reactivity. 相似文献
14.
Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds 总被引:3,自引:0,他引:3
M C Jockers-Scherübl R H Schirmer R L Krauth-Siegel 《European journal of biochemistry》1989,180(2):267-272
Trypanothione reductase of Trypanosoma cruzi is a key enzyme in the antioxidant metabolism of the parasite. Here we report on the enzymic and pharmacological properties of trypanothione reductase using glutathionylspermidine disulfide as a substrate. 1. Both pH optimum (7.5) and the ionic strength optimum (at 30 mM) are unusually narrow for this enzyme. 40 mM Hepes, 1 mM EDTA, pH 7.5 was chosen as a standard assay buffer because in this system the kcat/Km ratio had the highest values for both natural substrates, glutathionylspermidine disulfide (2.65 x 10(6) M-1 s-1) and trypanothione disulfide (4.63 x 10(6) M-1 s-1). 2. Using the standardized assay, trypanothione reductase and the phylogenetically related host enzyme, human glutathione reductase, were studied as targets of inhibitors. Both enzymes, in their NADPH-reduced forms, were irreversibly modified by the cytostatic agent, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Nifurtimox, the drug used in the treatment of Chagas' disease, is a stronger inhibitor of glutathione reductase (Ki = 40 microM) than of trypanothione reductase (IC50 = 200 microM). 3. Of the newly synthesized trypanocidal compounds [Henderson, G. B., Ulrich, P., Fairlamb, A. H., Rosenberg, I., Pereira, M., Sela, M. & Cerami, A. (1988) Proc. Natl Acad. Sci., 85, 5374-5378] a nitrofuran derivative, 2-(5-nitro-2-furanylmethylidene)-N,N'-[1,4-piperazinediylbis (1,3-propanediyl)]bishydrazinecarboximidamide tetrahydrobromide, was found to be a better inhibitor for trypanothione reductase (Ki = 0.5 microM) than for glutathione reductase (IC50 = 10 microM). A naphthoquinone derivative, 2,3-bis[3-(2-amidinohydrazono)-butyl]-1,4-naphthoquinone dihydrochloride, turned out to be both an inhibitor (IC50 = 1 microM) and an NADPH-oxidation-inducing substrate (Km = 14 microM). This effect was not observed with human glutathione reductase. Such compounds which lead to oxidative stress by more than one mechanism in the parasite are promising starting points for drug design based on the three-dimensional structures of glutathione and trypanothione reductases. 相似文献
15.
The karyotype of Trypanosoma cruzi Dm 28c: comparison with other T. cruzi strains and trypanosomatids 总被引:1,自引:0,他引:1
Chromosome-sized DNA molecules from Trypanosoma cruzi clone Dm 28c were analyzed and compared with other T. cruzi strains and monogenetic trypanosomatids by orthogonal field alteration gel electrophoresis. The results showed that T. cruzi Dm 28c displays at least 18 chromosomes ranging from 550 to more than 1500 kb and that in general the trypanosomatids have smaller chromosomes distributed in the size range from 300 to 1500 kb. With the exception of T. cruzi strain G49, there is no evidence of minichromosomes, suggesting they are not widely distributed among different isolates of the parasite. The hybridization of T. cruzi chromosomal Southern blots with probes for T. cruzi-specific genes showed that their location can change from one strain to another, supporting the idea of the plasticity of the parasite genome. Furthermore, the chromosome pattern is strictly conserved during the transformation of T. cruzi Dm 28c epimastigotes to metacyclic trypomastigotes, suggesting that extensive chromosomal rearrangements do not occur during at least part of the life cycle of the parasite. 相似文献
16.
Nowicki C Hunter GR Montemartini-Kalisz M Blankenfeldt W Hecht H Kalisz HM 《Biochimica et biophysica acta》2001,1546(2):268-281
The gene encoding tyrosine aminotransferase (TAT, EC 2.6.1.5) from the parasitic protozoan Trypanosoma cruzi was amplified from genomic DNA, cloned into the pET24a expression vector and functionally expressed as a C-terminally His-tagged protein in Escherichia coli BL21(DE3)pLysS. Purified recombinant TAT exhibited identical electrophoretic and enzymatic properties as the authentic enzyme from T. cruzi. Both recombinant and authentic T. cruzi TATs were highly resistant to limited tryptic cleavage and contained no disulfide bonds. Comprehensive analysis of its substrate specificity demonstrated TAT to be a broad substrate aminotransferase, with leucine, methionine as well as tyrosine, phenylalanine, tryptophan and alanine being utilized efficiently as amino donors. Valine, isoleucine and dicarboxylic amino acids served as poor substrates while polar aliphatic amino acids could not be transaminated. TAT also accepted several 2-oxoacids, including 2-oxoisocaproate and 2-oxomethiobutyrate, in addition to pyruvate, oxaloacetate and 2-oxoglutarate. The functionality of the expression system was confirmed by constructing two variants; one (Arg389) being a completely inactive enzyme; the other (Arg283) retaining its full activity, as predicted from the recently solved three-dimensional structure of T. cruzi TAT. Thus, only one of the two strictly conserved arginines which are essential for the enzymatic activity of subfamily Ialpha aspartate and aromatic aminotransferases is critical for T. cruzi's TAT activity. 相似文献
17.
Johansson AL Chakrabarty S Berthold CL Högbom M Warshel A Brzezinski P 《Biochimica et biophysica acta》2011,1807(9):1083-1094
Cytochrome c oxidase (CytcO) is a membrane-bound enzyme, which catalyzes the reduction of di-oxygen to water and uses a major part of the free energy released in this reaction to pump protons across the membrane. In the Rhodobacter sphaeroides aa? CytcO all protons that are pumped across the membrane, as well as one half of the protons that are used for O? reduction, are transferred through one specific intraprotein proton pathway, which holds a highly conserved Glu286 residue. Key questions that need to be addressed in order to understand the function of CytcO at a molecular level are related to the timing of proton transfers from Glu286 to a pump site and the catalytic site, respectively. Here, we have investigated the temperature dependencies of the H/D kinetic-isotope effects of intramolecular proton-transfer reactions in the wild-type CytcO as well as in two structural CytcO variants, one in which proton uptake from solution is delayed and one in which proton pumping is uncoupled from O? reduction. These processes were studied for two specific reaction steps linked to transmembrane proton pumping, one that involves only proton transfer (peroxy-ferryl, P→F, transition) and one in which the same sequence of proton transfers is also linked to electron transfer to the catalytic site (ferryl-oxidized, F→O, transition). An analysis of these reactions in the framework of theory indicates that that the simpler, P→F reaction is rate-limited by proton transfer from Glu286 to the catalytic site. When the same proton-transfer events are also linked to electron transfer to the catalytic site (F→O), the proton-transfer reactions might well be gated by a protein structural change, which presumably ensures that the proton-pumping stoichiometry is maintained also in the presence of a transmembrane electrochemical gradient. Furthermore, the present study indicates that a careful analysis of the temperature dependence of the isotope effect should help us in gaining mechanistic insights about CytcO. 相似文献
18.
The neuronal nitric oxide synthase (nNOS) basal and calmodulin- (CaM-) stimulated reduction of 2,6-dichloroindophenol (DCIP) and cytochrome c(3+) follow ping-pong mechanisms [Wolthers and Schimerlik (2001) Biochemistry 40, 4722-4737]. Primary deuterium [NADPH(D)] and solvent deuterium isotope effects on the kinetic parameters were studied to determine rate-limiting step(s) in the kinetic mechanisms for the two substrates. nNOS was found to abstract the pro-R (A-side) hydrogen from NADPH. Values for (D)V and (D)(V/K)(NADPH) were similar for the basal (1.3-1.7) and CaM-stimulated (1.5-2.1) reduction of DCIP, while (D)V (2.1-2.8) was higher than (D)(V/K)(NADPH) (1.1-1.5) for cytochrome c(3+) reduction with and without CaM. This suggests that the rate of the reductive half-reaction (NADPH oxidation) rather than that of the oxidative half-reaction (reduction of DCIP or cytochrome c(3+)) limits the overall reaction rate. A value for (D)(V/K)(NADPH) close to 1 indicates the intrinsic isotope effect on hydride transfer is suppressed by a slower step in the reductive half-reaction. The oxidative half-reaction is insensitive to NADPD isotope effects as both (D)(V/K)(DCIP) and (D)(V/K)(cytc) equal 1 within experimental error. Large solvent kinetic isotope effects (SKIE) observed for (V/K)(cytc) for basal (approximately 8) and CaM-stimulated (approximately 31) reduction of cytochrome c(3+) suggest that proton uptake from the solvent limits the rate of the oxidative half-reaction. This step does not severely limit the overall reaction rate as (D2O)V equaled 2 and (D2O)(V/K)(NADPH) was between 0.9 and 1.3 for basal and CaM-stimulated cytochrome c(3+) reduction. 相似文献
19.
T Yagi 《Biochimica et biophysica acta》1984,767(2):288-294
Reduction process of cytochrome c3 by hydrogenase (EC 1.12.2.1) under H2 was analyzed by means of spectrophotometry. When cytochrome c3 is in equilibrium with H2 under reduced pressure, spectral abnormality in the Soret region appeared most significantly in 1/4 reduction state, less significantly at 1/2 reduction state, and disappeared at 3/4 reduction state. The spectral changes during the enzymic reduction of cytochrome c3 in H2-saturated solution traced at several wavelengths also showed spectral abnormality in the Soret region at the early stage of reaction. The first-order rate constants for the successive reduction steps from all-ferric to all-ferrous form of cytochrome c3 was estimated to be k1 = 0.061 s-1, k2 = 0.063 s-1, k3 = 0.039 s-1 and k4 = 0.014 s-1 (cytochrome c3: 2 microM; hydrogenase: 2 nM, and at 20 degrees C, pH 7.0). Strong interaction is suggested between hemes 3 and 4 (for the refined structure and heme-numbering, see Higuchi, Y., Kusunoki, M., Matsuura, Y., Yasuoka, N. and Kakudo, M. (1984) J. Mol. Biol. 172, 109-139). The first electron from hydrogenase is supposed to be transferred to these hemes and delocalized between them, and the second electron, among hemes 3, 4 and 1. The characteristic behavior in the enzymic reduction of cytochrome c3 is different from that in non-enzymic reduction. 相似文献