首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro stimulation of human and rabbit erythrocyte membrane Ca2+-ATPase activity by physiological concentrations of thyroid hormone has recently been described. To extend these observations to a nucleated cell model, Ca2+-ATPase activity in a membrane preparation obtained from rabbit myocardium has been studied. Activity of 5'-nucleotidase in the preparation was increased 26-fold over that of myocardial homogenate, consistent with enrichment by sarcolemma. Mean basal enzyme activity in membranes from nine animals was 20.8 +/- 3.3 mumol Pi mg membrane protein-1 90 min-1, approximately 20-fold the activity described in rabbit red cell membranes. Exposure of heart membranes in vitro to L-thyroxine (T4) (10(-10)M) increased Ca2+-ATPase activity to 29.2 +/- 3.8 mumol Pi (P less than 0.001). Dose-response studies conducted with T4 showed that maximal stimulatory response was obtained at 10(-10) M). Hormonal stimulation was comparable for L-T4 and triiodo-L-thyronine (T3) (10(-10) M). Tetraiodothyroacetic acid was without biological activity, whereas triiodothyroacetic acid and D-T4, each at 10(-10) M, significantly decreased enzyme activity compared to control (basal) levels. The action of L-T4 on myocardial membrane Ca2+-ATPase activity was inhibited by trifluoperazine (100 microM) and the naphthalenesulfonamide W-7 (50-100 microM), compounds that block actions of calmodulin, the protein activator of membrane-associated Ca2+-ATPase. Radioimmunoassay revealed the presence of calmodulin (1.4 micrograms/mg membrane protein-1) in the myocardial membrane fraction and 0.35 micrograms/mg-1 in cytosol. Myocardial Ca2+-ATPase activity, apparently of sarcolemmal origin, is thus thyroid hormone stimulable. The hormonal responsiveness of this calcium pump-associated enzyme requires calmodulin.  相似文献   

2.
Human red cell membrane Ca2+-stimulatable, Mg2+-dependent adenosine triphosphatase (Ca2+-ATPase) activity and its response to thyroid hormone have been studied following exposure of membranes in vitro to specific long-chain fatty acids. Basal enzyme activity (no added thyroid hormone) was significantly decreased by additions of 10(-9)-10(-4) M-stearic (18:0) and oleic (18:1 cis-9) acids. Methyl oleate and elaidic (18:1 trans-9), palmitic (16:0) and lauric (12:0) acids at 10(-6) and 10(-4) M were not inhibitory, nor were arachidonic (20:4) and linolenic (18:3) acids. Myristic acid (14:0) was inhibitory only at 10(-4) M. Thus, chain length of 18 carbon atoms and anionic charge were the principal determinants of inhibitory activity. Introduction of a cis-9 double bond (oleic acid) did not alter the inhibitory activity of the 18-carbon moiety (stearic acid), but the trans-9 elaidic acid did not cause enzyme inhibition. While the predominant effect of fatty acids on erythrocyte Ca2+-ATPase in situ is inhibition of basal activity, elaidic, linoleic (18:2) and palmitoleic (16:1) acids at 10(-6) and 10(-4) M stimulated the enzyme. Methyl elaidate was not stimulatory. These structure-activity relationships differ from those described for fatty acids and purified red cell Ca2+-ATPase reconstituted in liposomes. Thyroid hormone stimulation of Ca2+-ATPase was significantly decreased by stearic and oleic acids (10(-9)-10(-4) M), but also by elaidic, linoleic, palmitoleic and myristic acids. Arachidonic, palmitic and lauric acids were ineffective, as were the methyl esters of oleic and elaidic acids. Thus, inhibition of the iodothyronine effect on Ca2+-ATPase by fatty acids has similar, but not identical, structure-activity relationships to those for basal enzyme activity. To examine mechanisms for these fatty acid effects, we studied the action of oleic and stearic acids on responsiveness of the enzyme to purified calmodulin, the Ca2+-binding activator protein for Ca2+-ATPase. Oleic and stearic acids (10(-9)-10(-4) M) progressively inhibited, but did not abolish, enzyme stimulation by calmodulin (10(-9) M). Double-reciprocal analysis of the effect of oleic acid on calmodulin stimulation indicated noncompetitive inhibition. Addition of calmodulin to membranes in the presence of equimolar oleic acid restored basal enzyme activity. Oleic acid also reduced 125I-calmodulin binding to membranes, but had no effect on the binding of [125I]T4 by ghosts. The mechanism of the decrease by long chain fatty acids of Ca2+-ATPase activity in situ in human red cell ghosts thus is calmodulin-dependent and involves reduction in membrane binding of calmodulin.  相似文献   

3.
Thyroid hormone (10(-11) to 10(-10) M) stimulates plasma membrane Ca2+-ATPase activity in vitro in various tissues, including the human red cell (RBC), by a calmodulin-requiring mechanism. Bepridil and cetiedil are Ca2+ antagonists with an intracellular (calmodulin-antagonist) site of action, as well as an effect on the calcium channel in excitable tissues. We have studied the actions of bepridil and cetiedil on Ca2+-ATPase in a channel-free membrane (RBC) to determine effectiveness of these agents as inhibitors of thyroid hormone action on the enzyme. Dose-response studies showed that thyroid hormone stimulation of Ca2+-ATPase activity in vitro was significantly inhibited by as little as 2 x 10(-5) M bepridil and cetiedil. IC50 values of bepridil and cetiedil for thyroid hormone response of the enzyme were 5 x 10(-5) and 2 x 10(-5) M, respectively, whereas IC50s of these agents for enzyme activity in the absence of thyroid hormone were both 10(-4) M. Progressive addition of purified rat testis calmodulin in vitro (10-150 ng calmodulin/mg membrane protein) restored hormone responsiveness in the presence of bepridil and cetiedil. Binding of labeled thyroid hormone by RBC membranes was unaffected by bepridil and cetiedil (up to 2 x 10(-4) M). Thus, bepridil and cetiedil are Ca2+ antagonists that reversibly inhibit thyroid hormone action on human RBC Ca2+-ATPase by a calmodulin-dependent mechanism. Thyroid hormone effect on Ca2+-ATPase is more susceptible to bepridil and cetiedil inhibition than is basal enzyme activity.  相似文献   

4.
Membrane Ca(2+)-ATPase activity was stimulated in vitro separately by T4 (10(-10) M) and by epinephrine (10(-6) M). In the presence of a fixed concentration of T4, additions of 10(-8) and 10(-6) M epinephrine reduced the T4 effect on the enzyme. beta-Adrenergic blockade with propranolol (10(-6) M) prevented stimulation by epinephrine of Ca(2+)-ATPase activity, but did not prevent the suppressive action of epinephrine on T4-stimulable Ca(2+)-ATPase. In contrast, alpha 1-adrenergic blockade with unlabelled prazosin restored the effect of T4 on Ca(2+)-ATPase activity in the presence of epinephrine. Like propranolol, prazosin prevented enhancement of enzyme activity by epinephrine in the absence of thyroid hormone. Neither prazosin nor propranolol had any effect on the stimulation by T4 of red cell Ca(2+)-ATPase in the absence of epinephrine. Analysis of radiolabelled prazosin binding to human red cell membranes revealed the presence of a single class of high-affinity binding sites (Kd, 1.2 x 10(-8) M; Bmax, 847 fmol/mg membrane protein). Thus, the human erythrocyte membrane contains alpha 1-adrenergic receptor sites that are capable of regulating Ca(2+)-ATPase activity.  相似文献   

5.
Human red blood cell membrane Ca2+-ATPase activity is stimulated in vitro by physiological concentrations (10(-10) M) of L-thyroxine (L-T4) and 3,5,3'-triiodo-L-thyronine (L-T3). This human cell system has been utilized to examine a series of iodothyronine and iodotyrosine analogues for structure-activity relationships. Analogue purity was verified by high pressure liquid chromatography. Analogues were studied at a concentration of 10(-10) M and the stimulatory effect of each analogue was compared with that of L-T4 in this system. Essential to Ca2+-ATPase stimulation were occupation of the 3 and 5 phenyl positions by iodide, bromide, or methyl groups, the L-configuration of the alanine side chain, side chain length equal to that of alanine, and a perpendicular (skewed) conformation of the two rings. The 4'-hydroxyl group is not essential to Ca2+-ATPase stimulation in this model system. T3 was 76% as active as T4 in stimulating Ca2+-ATPase activity. The stimulatory effect of 3,5-dimethyl-3'-isopropyl-L-thyronine and 3,5,3',5'-tetrabromo-L-thyronine approximated that of L-T4. Selected tyrosine analogues also stimulated the enzyme. The bioactivities of hormone analogues in this human model of extra-nuclear thyroid hormone action differ in several ways from results obtained previously in other animal model systems in vitro and in vivo.  相似文献   

6.
The effect of thyroid hormone on the high affinity Ca2+-ATPase activity in rat liver plasma membrane was studied. The high affinity Ca2+-ATPase activity in plasma membrane was activated by 10(-7)-10(-5) M of Ca2+ and was inhibited by 70 microM trifluoperazine. Thyroidectomy of rats was associated with an increase in the activity of high affinity Ca2+-ATPase. The increased enzyme activity was normalized by T4 administration to the animals. On the other hand, Na+-K+-ATPase activity in the membrane was decreased by thyroidectomy and the decreased enzyme activity was normalized by T4 administration. The results suggest that thyroid hormone inhibits the Ca2+ extrusion system by inhibiting calmodulin-independent high affinity Ca2+-ATPase in liver plasma membrane.  相似文献   

7.
Physiological concentrations (10(-10) M) of L-thyroxine and triiodo-L-thyronine were found in vitro to enhance Ca2+-ATPase activity in reticulocyte-enriched red cell membranes from female rabbits and to inhibit this enzyme in the male reticulocyte. Cross-incubation experiments with reticulocyte-enriched red cells and plasma from the opposite sex demonstrated that this sex-specific membrane response to thyroid hormone was transferable by plasma. Similar experiments with intact reticulocytes exposed to physiological concentrations (10(-11) M) of testosterone and 17 beta-estradiol indicated that the plasma factors were the sex steroids. That is, incubation in vitro with testosterone converted female-source reticulocytes to male-type responsiveness to thyroid hormone (inhibition of Ca2+-ATPase activity); incubation with estradiol converted male-source reticulocyte-enriched red cells to female-type responsiveness (stimulation by iodothyronines of membrane Ca2+-ATPase activity). Similar results were obtained when reticulocyte ghosts were incubated with testosterone and 17 beta-estradiol prior to determination of membrane enzyme activity. Etiocholanolone (5 beta-androstan-3 alpha-ol-17-one) and testosterone were equipotent, but 5 alpha-dihydrotestosterone had little activity in this system. Estrone and estradiol were equipotent, but estriol had no permissive effect on the stimulation by iodothyronine of reticulocyte membrane Ca2+-ATPase activity. Expression of thyroid hormone action in vitro on Ca2+-ATPase activity in the rabbit reticulocyte is determined at the membrane level by testosterone and estrogen. The structure-activity relationships of the sex steroids for this membrane action are different than those reported for nuclear actions of the steroids.  相似文献   

8.
Human red blood cell membrane Ca2+-ATPase activity is stimulated in vitro by physiological concentrations of thyroid hormone. Quercetin, a flavonoid that inhibits several membrane-linked ATPases, suppressed thyroid hormone action on red cell Ca2+-ATPase activity and also interfered with binding of the hormone by red cell membranes. These effects of quercetin were dose-dependent over a range of concentrations (1-50 microM). In contrast, in the absence of thyroid hormone, quercetin at low concentrations stimulated Ca2+-ATPase activity and at 50 microM inhibited the enzyme. The effects of quercetin at low concentrations (1-10 microM), namely, stimulation of Ca2+-ATPase and inhibition of membrane-binding of thyroid hormone, mimic those of thyroid hormone and are consistent with the thyronine-like structure of quercetin. At high concentrations, quercetin is generally inhibitory of Ca2+-ATPase activity. Chalcone, fisetin, hesperetin and tangeretin are other flavonoids shown to reduce susceptibility of membrane Ca2+-ATPase to hormonal stimulation.  相似文献   

9.
The mycotoxin, cyclopiazonic acid (CPA), inhibits the Ca2+-stimulated ATPase (EC 3.6.1.38) and Ca2+ transport activity of sarcoplasmic reticulum (Goeger, D. E., Riley, R. T., Dorner, J. W., and Cole, R. J. (1988) Biochem. Pharmacol. 37, 978-981). We found that at low ATP concentrations (0.5-2 microM) the inhibition of ATPase activity was essentially complete at a CPA concentration of 6-8 nmol/mg protein, indicating stoichiometric reaction of CPA with the Ca2+-ATPase. Cyclopiazonic acid caused similar inhibition of the Ca2+-stimulated ATP hydrolysis in intact sarcoplasmic reticulum and in a purified preparation of Ca2+-ATPase. Cyclopiazonic acid also inhibited the Ca2+-dependent acetylphosphate, p-nitrophenylphosphate and carbamylphosphate hydrolysis by sarcoplasmic reticulum. ATP protected the enzyme in a competitive manner against inhibition by CPA, while a 10(5)-fold change in free Ca2+ concentration had only moderate effect on the extent of inhibition. CPA did not influence the crystallization of Ca2+-ATPase by vanadate or the reaction of fluorescein-5'-isothiocyanate with the Ca2+-ATPase, but it completely blocked at concentrations as low as 1-2 mol of CPA/mol of ATPase the fluorescence changes induced by Ca2+ and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) in FITC-labeled sarcoplasmic reticulum and inhibited the cleavage of Ca2+-ATPase by trypsin at the T2 cleavage site in the presence of EGTA. These observations suggest that CPA interferes with the ATP-induced conformational changes related to Ca2+ transport. The effect of CPA on the sarcoplasmic reticulum Ca2+-ATPase appears to be fairly specific, since the kidney and brain Na+,K+-ATPase (EC 3.6.1.37), the gastric H+,K+-ATPase (EC 3.6.1.36), the mitochondrial F1-ATPase (EC 3.6.1.34), the Ca2+-ATPase of erythrocytes, and the Mg2+-activated ATPase of T-tubules and surface membranes of rat skeletal muscle were not inhibited by CPA, even at concentrations as high as 1000 nmol/mg protein.  相似文献   

10.
The role of regucalcin, which is a regulatory protein in intracellular signaling, in the regulation of Ca(2+)-ATPase activity in the mitochondria of brain tissues was investigated. The addition of regucalcin (10(-10) to 10(-8) M), which is a physiologic concentration in rat brain tissues, into the enzyme reaction mixture containing 25 microM calcium chloride caused a significant increase in Ca(2+)-ATPase activity, while it did not significantly change in Mg(2+)-ATPase activity. The effect of regucalcin (10(-9) M) in increasing mitochondrial Ca(2+)-ATPase activity was completely inhibited in the presence of ruthenium red (10(-7) M) or lanthanum chloride (10(-7) M), both of which are inhibitors of mitochondrial uniporter activity. Whether the effect of regucalcin is modulated in the presence of calmodulin or dibutyryl cyclic AMP (DcAMP) was examined. The effect of regucalcin (10(-9) M) in increasing Ca(2+)-ATPase activity was not significantly enhanced in the presence of calmodulin (2.5 microg/ml) which significantly increased the enzyme activity. DcAMP (10(-6) to 10(-4) M) did not have a significant effect on Ca(2+)-ATPase activity. The effect of regucalcin (10(-9) M) in increasing Ca(2+)-ATPase activity was not seen in the presence of DcAMP (10(-4) M). Regucalcin levels were significantly increased in the brain tissues or the mitochondria obtained from regucalcin transgenic (RC TG) rats. The mitochondrial Ca(2+)-ATPase activity was significantly increased in RC TG rats as compared with that of wild-type rats. This study demonstrates that regucalcin has a role in the regulation of Ca(2+)-ATPase activity in the brain mitochondria of rats.  相似文献   

11.
L-Thyroxine (T4) and 3,3',5-L-triiodothyronine (T3) at 10(-10) M stimulated phospholipid- and Ca2+-dependent protein kinase activity in rabbit red cell cytosol in vitro by 151 and 176%, respectively. Kinase of 30-fold greater specific activity, developed with 0.4 mM NaCl from cytosol applied to DEAE-cellulose, was also stimulated up to 2-fold by thyroid hormone. Hormone enhancement of kinase activity occurred after 60 min of incubation at 37 degrees C prior to enzyme assay. Thyroid hormone analogues triiodothyroacetic acid, 3,5-dimethyl-3'-isopropyl-L-thyronine, D-T3, D-T4, and 3,3',5'-L-triiodothyronine (reverse T3) were inactive. These results support a role for thyroid hormone endogenously in regulation of phospholipid-dependent protein kinase activity.  相似文献   

12.
Islet cell plasma membranes contain a calcium-stimulated and magnesium-dependent ATPase (Ca2+ + Mg2+)-ATPase) which requires calmodulin for maximum enzyme activity (Kotagal, N., Patke, C., Landt, M., McDonald, J., Colca, J., Lacy, P., and McDaniel, M. (1982) FEBS Lett. 137, 249-252). Investigations indicated that exogenously added calmodulin increases the velocity and decreases the Km for Ca2+ of the high affinity (Ca2+ + Mg2+)-ATPase. These studies routinely employed the chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to maintain Ca2+ concentrations in the submicromolar range. During the course of these investigations, it was found unexpectedly that increasing the concentrations of EGTA (0.1-4 mM) and total calcium in the media, while maintaining constant free Ca2+ levels, increased the velocity of the high affinity (Ca2+ + Mg2+)-ATPase. The free calcium concentrations under these conditions were verified by a calcium-sensitive electrode. The (Ca2+ + Mg2+)-ATPase maximally activated by 2-4 mM EGTA was not further stimulated by calmodulin, whereas camodulin stimulation increased as the concentration of EGTA in the media was decreased. A similar enhancement by Ca-EGTA was observed on active calcium transport by the plasma membrane-enriched fraction. Moreover, Ca-EGTA had a negligible effect on both active calcium transport as well as Ca2+-stimulated ATPase activity by the islet cell endoplasmic reticulum, processes which are not stimulated by calmodulin. The results indicate that stimulation by Ca-EGTA may be used to differentiate calcium transport systems by these subcellular organelles. Furthermore, the concentration of EGTA routinely employed to maintain free Ca2+ levels may itself obscure effects of calmodulin and other physiological agents on calcium-dependent activities.  相似文献   

13.
Gastric microsomes do not contain any significant Ca2+-stimulated ATPase activity. Trypsinization of pig gastric microsomes in presence of ATP results in significant (2-3 fold) increase in the basal (with Mg2+ as the only cation) ATPase activity, with virtual elimination of the K+-stimulated component. Such treatment causes unmasking of latent Mg2+-dependent Ca2+-stimulation ATPase. Other divalent cations such as Sr2+, Ba2+, Zn2+, and Mn2+ were found ineffective as a substitute for Ca2+. Moreover, those divalent cations acted as inhibitors of the Ca2+-stimulated ATPase activity. The pH optimum of the enzyme is around 6.8. The enzyme has a Km of 70 microM for ATP and the Ka values for Mg2+ and Ca2+ are about 4 x 10(-4) and 10(-7) M, respectively. Studies with inhibitors suggest the involvement of sulfhydryl and primary amino groups in the operation of the enzyme. Possible roles of the enzyme in gastric H+ transport have been discussed.  相似文献   

14.
Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 X 10(-8) M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5 X 10(-8) M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+. Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+. Preincubation of enzyme with 15 microM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 X 10(-7) M propranolol and 5 X 10(-8) M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 X 10(-5) M coenzyme A in combination with 5 X 10(-8) M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.  相似文献   

15.
1. A high-affinity (Ca2+ + Mg2+)-ATPase and a low-affinity Mg(2+)-ATPase were identified in the 105,000 g fraction from epimastigote forms of Trypanosoma cruzi, the agent of Chagas' disease (Tulahuen strain). 2. Activities were conserved after enzyme solubilization with deoxycholate. 3. The Ca(2+)-stimulated ATPase activity was (a) lower than that of the Mg(2+)-ATPase; (b) inhibited by p-chloromercurobenzoate and orthovanadate and (c) insensitive to oligomycin. 4. Optimal stimulation by Ca2+ was observed at pH 6.5-6.8 in the presence of 1 mM MgCl2 and 0.1 M KCl. 5. The Mg(2+)-ATPase was insensitive to p-chloromercurobenzoate and orthovanadate and did not require KCl for activity. 6. Kinetic analysis of the (Ca2+ + Mg2+)-ATPase yielded a half-maximal stimulating concentration of 1.1 microM for Ca2+ and a Km of 66 microM for ATP. 7. The (Ca2+ + Mg2+)-ATPase clearly differed from the Ca(2+)- or Mg(2+)-ATPases previously characterized in the same strain of T. cruzi (Frasch et al., 1978; Comp. Biochem. Physiol. 60B, 271-275).  相似文献   

16.
Ca2+-stimulated, Mg2+-dependent ATPase in bovine thyroid plasma membranes   总被引:1,自引:0,他引:1  
An isolated plasma membrane fraction from bovine thyroid glands contained a Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ((Ca2+ + Mg2+)-ATPase) activity which was purified in parallel to (Na+ + K+)-ATPase and adenylate cyclase. The (Ca2+ + Mg2+)-ATPase activity was maximally stimulated by approx. 200 microM added calcium in the presence of approx. 200 microM EGTA (69.7 +/- 5.2 nmol/mg protein per min). In EGTA-washed membranes, the enzyme was stimulated by calmodulin and inhibited by trifluoperazine.  相似文献   

17.
G Cros  A Molla  S Katz 《Cell calcium》1984,5(4):365-375
The recent suggestion that calmodulin (CaM) could mediate calcium inhibition of cardiac adenylate cyclase (AC) has been reassessed. Using a purified sarcolemmal preparation (SL), the influence of different concentrations of free Ca2+ (obtained using Ca2+-EGTA solutions) was studied on dog heart AC. From 10(-9) M to 10(-3) M Ca2+ reduced basal activity, as well as epinephrine (10(-4) M)- and trypsin (1.0 microgram/mL)-stimulated activities with, in the three cases, an identical IC50 of 10(-8) M. The amount of endogenous CaM in the SL, measured using a radioimmunoassay technique, was found to be 7.5 ng/mg protein. The resulting concentration of CaM in the final AC incubation medium was lower than 50 pM, indicating the lack of a significant role for endogenous CaM in the inhibition observed. The addition of exogenous CaM to the AC assay at a concentration sufficient to stimulate other CaM-dependent systems did not modify the Ca2+ inhibitory curves for basal, epinephrine (10(-4) M)-stimulated, or trypsin (1 microgram/mL)-stimulated activities. These results indicate that CaM does not play a significant role in the Ca2+ inhibition of cardiac AC and that trypsin stimulation of cardiac AC is not mediated through a CaM-dependent process.  相似文献   

18.
P J Davis  F B Davis  S D Blas 《Life sciences》1982,30(7-8):675-682
The stimulation in vitro of human red blood cell Ca2+-ATPase activity by thyroxine (T4) and triiodothyronine (T3) in physiological concentrations is shown to depend upon binding of iodothyronines to red cell membranes. Calmodulin enhances the activity of thyroid hormone in this model system but there is no direct interaction of calmodulin and hormone.  相似文献   

19.
Preparations of rabbit small intestine smooth muscle cell sarcolemma are capable of hydrolyzing ATP in the presence of millimolar concentrations of Mg2+ and Ca2+ and possess the activity of Mg2+,Ca2+-ATPase having a high affinity for Ca2+ (Km = 5.8 X 10(-6) M). The optimal conditions for the Mg2+,Ca2+-ATPase reaction were established. It was demonstrated that sarcolemmal preparations hydrolyze ATP, GTP, ITP and UTP almost at the same rates. The enzyme contains SH-groups that are unequally exposed to the water phase and are inhibited by 50% by p-chloromercurybenzoate and by 90% by dithionitrobenzoate. The Mg2+,Ca2+-ATPase activity is highly sensitive to oxytocin: at the concentration of 10(-7) MU/ml, the hormone completely inhibits the enzyme without affecting its Mg2+-, Ca2+- and Na+,K+-ATPase activities.  相似文献   

20.
The effect of thyroid hormones (T4, T3 and reverse T3) on rat renal Na+,K+-ATPase activity was investigated by a cytochemical technique. T3 caused stimulation of Na+,K+-ATPase activity in the renal medulla but not in the renal cortex. There was a peak in enzyme activity after cultured renal segments had been exposed to T3 for 11 min and this time of maximal stimulation did not vary with the concentration of T3. A rectilinear response in Na+,K+-ATPase activity was observed over T3 concentration range 10 pmol l-1 to 100 nmol l-1; at higher T3 concentrations, Na+,K+-ATPase activity was inhibited. The enzyme response was totally blocked by specific T3 antiserum. Addition of T4 and reverse T3 (100 fmol l-1 -1 mmol l-1) failed to stimulate Na+,K+-ATPase activity in any part of the kidney. Plasma (neat and diluted 1:10) stimulated the enzyme in parallel with the dose response curve and the stimulatory effect was abolished by prior addition of specific T3 antiserum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号