首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to clarify whether or not arachidonic acid metabolic disorders are caused by a substrate inavailability and whether such disorders might contribute to circulatory disturbances in the diabetic myocardium. Norepinephrine induced a decrease in the conductivity of both coronary arterial bed and myocardial microcirculation in alloxan-diabetic dogs. It was markedly (p < 0.05) attenuated both by indomethacin and acetylsalicylic acid pretreatments indicating an imbalance among the vasoactive prostanoids in diabetes. TXA2 release from the diabetic coronary rings was found to be elevated and could be normalized after the blockade of vascular adrenoceptors by phentolamine (p < 0.05). PGIZ synthesis was also enhanced by adrenergic blockade in the diabetic arterial rings. After pretreatment with l4C arachidonic acid, in order to measure substrate availability, the arachidonic acid metabolic rate was less in the diabetic coronary arteries than in healthy vessels (p < 0.05). Ten µmol/1 norepinephrine decreased arachidonic acid metabolism in the presence of prelabelled substrate in the diabetic animals, compared to an increase observed in metabolically healthy dogs. Therefore diabetes appears to diminish arachidonic acid metabolism and uptake independent of adrenoceptors and to induce an imbalance between vasoconstrictor and vasodilator cyclooxygenase products, resulting in elevated TXA2 release controlled by adrenergic mechanisms which may contribute to an impairment in myocardial microcirculation.Abbreviations 6-oxo-PGF1 6-oxo prostaglandin F1 - HPLC High Pressure Liquid Chromatograph - LAD Left Anterior Descending (coronary artery) - PGI2 Prostacyclin - TXA2 Thromboxane  相似文献   

2.
A new analog of prostacyclin, 6,9-Thiaprostacyclin was infused intravenously in pentobarbital anesthetized cats in order to determine its hemodynamic and anti-platelet aggregating properties. At an infusion rate of 0.01 μmoles/kg/min, PGI2-S moderately decreased arterial blood pressure without altering heart rate of superior mesenteric artery flow or platelet aggregation responses to ADP. However, at 0.05 μmoles/kg/min, PGI2-S significantly reduced arterial blood pressure and significantly increased heart rate, and superior mesenteric artery flow. Moreover, at 0.05 μmoles/kg/min, PGI2-S inhibited ADP platelet aggregation by 80%. PGI2-S may be a useful agent in circulatory shock.  相似文献   

3.
The effect of prostaglandin I2 (prostacyclin) on renal and intrarenal hemodynamics and function was studied in mongrel dogs to elucidate the role of this novel prostaglandin in renal physiology. Starting at a dose of 10?8 g/kg/min, PGI2 decreased renal vascular resistance and redistributed the blood flow away from the outer cortex (zone 1) and towards the juxtamedullary cortex (zone 4). At 3 × 10?8 g/kg/min, the renal vascular resistance decreased even further, but at this dose the mean arterial blood pressure also declined 13% indicating recirculation of this prostaglandin. PGI2 infusion at a vasodilatory dose resulted in natriuresis and kaliuresis. With a decline in filtration fraction, these changes were most likely secondary to the hemodynamic effects of this prostaglandin. Unlike PGE2, PGI2 had no direct effect on free water clearance indicating lack of activity at the collecting duct. PGI2 may be the important renal prostaglandin involved in modulating renal vascular resistance and intrarenal hemodynamics as well as influencing systemic blood pressure.  相似文献   

4.
Prostacyclin /PGI2/ administered intra-arterially or intravenously to patients with peripheral vascular disease exerted a hyperglycemic effect. In normoglycemic patients receiving PGI2 at a dose of 5 ng/kg/min these effects were barely detectable, but they became unmasked by a rapid glucose injection. In diabetic patients the same PGI2 dose led to distinct elevation in blood glucose. Prostacyclin at a dose of 10 ng/kg/min raised blood glucose levels both at rest and after stimulation with glucose, and opposed effectively hypoglycemic action of tolbutamide in non-diabetic patients. PGI2 repressed glucose-induced insulin release in some normoglycemic patients but in others it either increased it or did not affect it. While hyperglycemic effects are reversible when PGI2 infusion is stopped, and do not interfere with the usual therapeutic administration of prostacyclin for a few days they, nevertheless, might constitute a risk in a patient with poorly controlled diabetes.  相似文献   

5.
In isolated canine atrium, perfused with blood from a donor dog, the infusions of both prostaglandins (PG)I2 and E2 (0.1–1 μg/min) into the sinus node arterial cannula neither altered the sinus rate and developed tension nor the positive chronotropic and inotropic responses elicited by either electrical stimulation or by injected norepinephrine. Infusion of arachidonic acid (10–100 μg/min), a precursor of PGs, or indomethacin (15–20 μg/min), an inhibitor of PG synthesis, into the sinus node arterial cannula also failed to alter the increase in sinus rate or developed tension produced by either adrenergic stimulus in the isolated atria. When arachidonic acid, 100–300 μg/kg or PGI2, 1 μg/kg, were injected into the jugular vein of the donor dog, they produced a fall in systemic blood pressure; this effect of arachidonic acid but not of PGI2 was abolished by indomethacin, 1 mg/kg. During administration of either arachidonic acid or indomethacin to the donor dog, the positive chronotripic and inotropic responses to adrenergic stimuli in the isolated atria also remained unaltered. These data indicate that PGs do not modulate adrenergic transmission in the blood perfused canine atrium.  相似文献   

6.
The vasodilatation of sulfur dioxide (SO2) derivatives on the rat thoracic aortic rings and its cell signal transduction pathway were studied. The levels of cAMP, cGMP, PGI2, TXA2 and activities of PKA and adenylyl cyclase (AC) in the rings exposed to SO2 derivatives were determined. The results indicated that SO2 derivatives could dose-dependently relax the isolated rat aorta rings with or without endothelium precontracted by NE, no difference was found between the rings with and without endothelium; Levels of cAMP, PGI2, AC activity and PKA activity in the aortic rings were significantly increased by the derivatives in a dose-related way; No change of cGMP and TXA2 levels in rings was observed; cAMP/cGMP and PGI2/TXA2 ratios were increased significantly by the SO2 derivatives. These results led to the conclusions that SO2 derivatives might cause the endothelium-independent vasorelaxation effect, and the vasorelaxation was mediated in partly by the signal transduction pathway of PGI2-AC-cAMP-PKA.  相似文献   

7.
In patients with peripheral vascular disease and in healthy rabbits, infusion of PGI2 but not of 6-keto PGF induced a rise in blood glucose level and a pathological deviation in glucose tolerance test. In experiments , the increased concentrations of glucose produced dose-dependent inhibition of PGI2 release from isolated rat aortic rings. The link between PGI2 and carbohydrate metabolism is discussed.  相似文献   

8.
The metabolism of endogenous PGI2 (released by angiotensin II or bradykinin) and exogenous PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was studied in five different vascular beds of the anaesthetized cat. Plasma concentrations of 6-keto-PGF (the product of spontaneous hydrolysis of PGI2) and 6,15-diketo-13,14-dihydro-PGF (the metabolite formed from PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase) were determined in the efferent vessels of the respective vascular beds by specific radioimmunoassays.No major metabolism of PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was detected in the head and the hindlimbs of the cat. In the lung exogenous (circulating) PGI2 was not metabolized, whereas PGI2 synthetized in the lung itself was converted to 6,15-diketo-13,14-dihydor-PGF. No significant amounts of 6,15-diketo-13,14-dihydro-PGF-immunoreactivity were detected in hepatic venous blood after infusion of PGI2 into the portal vein. However as also no 6-keto-PGF was found, the liver seems to efficiently extract PGI2 from the circulation. The cat kidney had the highest capacity of all vascular beds investigated to release endogenous and exogenous PGI2 as 6-15-diketo-13,14-dihydro-PGF. In other organs (vascular beds) investigated PGI2 is either metabolized less efficiently by the 15-hydroxy-PG-dehydrogenase or further transformed to other metabolites.  相似文献   

9.
To assess the implications of vascular eicosanoids system in the hypertension of Dahl salt-sensitive (Dahl S) strain, we investigated the production of vascular vasodepressor and vasoconstrictor eicosanoids in Dahl S rats. 14-week-old Dahl S rats on a 0.11% NaCl diet (normotension) or a 0.3% NaCl diet (borderline hypertension) had a significantly lowered generation of vascular prostacyclin (PGI2), compared with Dahl salt-resistant (Dahl R) rats. The impairment of vascular PGI2 in Dahl S rats was restored to the normal level of Dahl R rats with the elevation of blood pressure induced by a high salt diet (4% NaCl). The production of vascular PGI2 was closely related to the height of blood pressure. The deterioration of vascular PGI2 was also found in 4-week-old Dahl S rats with normotension. Conversely, vascular thromboxane A2 (TXA2) was significantly enhanced in 14-week-old Dahl S rats in all of the feeding groups. Thus, it seems possible that the proved alterations of the vasodepressor and vasoconstrictor eicosanoids partially contribute to the genesis of salt hypertension. Although the exact mechanisms remain obscure, the adaptation of vascular PGI2 on a high salt diet may be suitable to compete with the high blood pressure and to protect against the vascular damage.  相似文献   

10.
Intact rings and homogenates of aorta from spontaneously hypertensive rats (SHR) contain enhanced capacity over normal rats (NR) to convert arachidonic acid into PGI2. The PGI2 synthetic system in SHR is stimulated to a greater extent than NR by norepinephrine. Indomethacin blocks this stimulation. PGE2 and PGF were detected in much smaller amounts in homogenates (undetected in rings) but their formation was not enhanced by the hypertensive tissue. The identity of PGI2 was based on 1) direct pharmacological assay on the rat blood pressure. In this system identical vasodepressor responses to PGI2 are observed after intracarotid and intrajugular administration 2) indirectly as 6-keto PGF isolated after incubation of aortic homogenates with tritiated arachidonic acid and 3) indirectly by GC-MS assay of PGE2, PGF and 6-keto PGF formed during incubation of aortic homogenates with excess unlabeled arachidonic acid. These results provide additional support to our recent hypothesis that PGI2, of aortic origin, might actively participate in the regulation of systemic blood pressure. Its enhanced formation by intact hypertensive vascular tissue reflects an increase in the number of enzyme molecules immediately available to the substrate. This could probably be an adaptive response to the elevated levels of catecholamines in the circulation.  相似文献   

11.
Intrarenal arterial (i.a.) infusions of prostacyclin (PGI2) at 30–300 ng/min to anaesthetized dogs reduced renal vascular resistance (RVR) and filtration fraction (FF), increased mean renal blood flow (MRBF) but did not alter mean arterial pressure (MAP) or glomerular filtration rate (GFR). The urinary excretion of sodium (UNaV), potassium (UKV) and chloride ions (UClV) were increased through inhibition of net tubular ion reabsorption. PGI2 (3000 ng/min, i.a.) reduced MAP and increased heart rate. Intravenous (i.v.) infusions of PGI2 (3000 ng/min) reduced MAP, GFR, FF, urine volume and ion excretion, with elevation of heart rate. The measured variables were unaltered by 6-oxo-PGF (10,000 ng/min i.a.). Treatment of the dogs witht he PG synthetase inhibitor meclofenamic acid (2.5 mg/kg i.v.), did not antagonise the elevation of MRBF to PGI2 (300 ng/min i.a.). Thus the renal effects of PGI2 were due to a direct action rather than through conversion to 6-oxo-PGF or through stimulation of endogenous renal PG biosynthesis and release.  相似文献   

12.
The effect of captopril, furosemide, indomethacine and intake of sodium on the production of PGI2-like material was studied in the rat aorta. Release of PGI2-like material from these vessels was estimated by its ability to inhibit ADP-induced vessels was estimated by its ability to inhibit ADP-induced platelet aggregation. Pretreatment with indomethacin (15 mg/kg/day) reduced the capacity of the aorta to release PGI2-like material. Pretreatment with captopril (10 mg/kg/day) had no effect. Intravenous furosemide (60 μg/ml plasma volume) increased the capacity of the aorta to inhibit by 28% (p<.025). The inhibitory capacity of aorta removed from rats on a low sodium diet did not differ from those on a high sodium diet. We conclude that the action of furosemide in reducing vascular tone may be related to stimulation of PGI2 synthesis in blood vessels whereas the effect of captopril and sodiumin in reducing vascular tone may involve a mechanism unrelated to PGI2 synthesis or may involve the synthesis of a prostaglandin other than PGI2.  相似文献   

13.
Isolated coronary arteries from diabetic dogs presented different contractile response to U-46619 to prostacyclin (PGI2) and to arachidonic acid (AA) than those of normal dogs. The stimulatory effect of the synthetic endoperoxide analogue U-46619, was significantly higher in the diabetic condition than in preparations from normal animals. On the other hand, while PGI2 evoked a dose-dependent relaxation of normal coronary arteries, diabetic vessels were not relaxed by low concentration of PGI2 whereas higher ones produced a distinct constrictor effect. Additionally, inhibitors of prostaglandins and thromboxane (TX) biosynthesis such as corticosterone, indomethacin, acetylsalicylic acid, imidazole and L-8027, abolished the stimulatory effect of PGI2 in coronary arteries from diabetic dogs. AA relaxed coronaries from normal dogs and constricted those from diabetic animals, this action being inhibited by imidazol and L-8027.The present results suggests that: a) coronary vessels from diabetic dogs are more reactive to an endoperoxide analogue than normal preparations and b) PGI2 and AA probably contract diabetic coronary arteries via the participation of a TX like material. It is then plausible that this effect could be tentatively ascribed to the production of a prostaglandin constricting substance including als the probable generation of a TXA2-like agonist.  相似文献   

14.
The role of the ‘prostacyclin-thromboxane system’ in the regulation of arterial blood pressure was investigated in rats receiving diets which contained different amounts of eixosapentaenoic (EPA) and linolenic acid (LNA). Forty rats were divided into five groups of 8 animals, each group receiving 25 energy (en) % as fat. All diets contained equal amounts of linoleic acid (5 en%) and oleic acid (5 en%). In the control group I, the remaining 15 en% of fat were given as saturated fat. Two groups of animals received cod liver oil as a source for EPA in amounts of 2.5 (group II)_and 5 en% (group III) while the two remaining groups were given diets supplemented with linseed oil as a source for LNA in amounts of 2.5 (group IV) and 5 en% (group V), respectively. After six weeks of feeding period the animals were sacrificed and portions of their isolated aorta incubated in Tris buffer (pH 9.3) for determination of prostacyclin (PGI2)-like activity. Arterial blood pressure was uncharged in group I animals, but significantly increased in all rats receiving dietary EPA or LNA supplements. This rise is arterial blood pressure was associated with a marked suppression of the appearance of PGI2-like activity in the incubation buffer while platelet thromboxane release during blood clotting was unchanged. Our results show that dietary adminis- tration of EPA and LNA increases arterial blood pressure in the rat and that this effect is associated with a suppressed generation of vasodilator prostacyclin by vascular tissue.  相似文献   

15.
Coronary arteries (circumflex or left anterior descending) of anesthetized dogs were partially obstructed to approximately 5% of the normal lumen size by fitting a plastic cylinder around the vessel. Under these conditions, blood flow in the artery was not maintained but, instead, gradually declined over a few minutes until the vessel was completely blocked. Shaking the plastic obstructor restored blood flow temporarily, however, flow gradually declined again to zero. Sometimes flow was spontaneously restored by immediate increases that occurred at irregular intervals while, on other occasions, blood flow had to be restored by shaking the obstructor every time the rate declined to near zero. Intravenous infusion of prostacyclin (PGI2) at 15 to 150 ng/kg/min reversed and prevented the blockage of the coronary arteries. The efficacy of PGI2 in preventing blockage correlated with inhibition of ADP-induced platelet aggregation in platelet rich plasma prepared from blood samples withdrawn from the dogs during PGI2 infusion. Other coronary vasodilators, nitroglycerin and PGE2, that have no antiaggregatory effects, failed to prevent blockage whereas PGE1 and indomethacin, which do block aggregation, also prevented blockage of the vessels. PGI2 or its precursor, PGH2, dripped topically on the obstructed site prevented the blockage of the artery. This local effect of PGI2 could be obtained with amounts too small to cause systemic inhibition of platelet aggregation. The results show that PGI2 prevents blockage of partially obstructed coronary arteries and this effect correlates with inhibition of platelet aggregation. Furthermore, the data suggest that locally produced PGI2 may have a local antiaggregatory effect without inhibiting platelet aggregation in the general circulation.  相似文献   

16.
The metabolism of endogenous PGI2 (released by angiotensin II or bradykinin) and exogenous PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was studied in five different vascular beds of the anaesthetized cat. Plasma concentrations of 6-keto-PGF (the product of spontaneous hydrolysis of PGI2) and 6,15-diketo-13,14-dihydro-PGF (the metabolite formed from PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase) were determined in the efferent vessels of the respective vascular beds by specific radioimmunoassays.No major metabolism of PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was detected in the head and the hindlimbs of the cat. In the lung exogenous (circulating) PGI2 was not metabolized, whereas PGI2 synthetized in the lung itself was converted to 6,15-diketo-13,14-dihydor-PGF. No significant amounts of 6,15-diketo-13,14-dihydro-PGF-immunoreactivity were detected in hepatic venous blood after infusion of PGI2 into the portal vein. However as also no 6-keto-PGF was found, the liver seems to efficiently extract PGI2 from the circulation. The cat kidney had the highest capacity of all vascular beds investigated to release endogenous and exogenous PGI2 as 6-15-diketo-13,14-dihydro-PGF. In other organs (vascular beds) investigated PGI2 is either metabolized less efficiently by the 15-hydroxy-PG-dehydrogenase or further transformed to other metabolites.  相似文献   

17.
Isolated perfused cat lungs secreted spontaneously a PGI2-like substance that relaxed a strip of bovine coronary artery. The presence of PGI2 was confirmed by the identification of 6-oxo-PGFα by GC-MS. Both bioassay and mass fragmentography showed that PGI2 was released at a rate of 4 – 12 ng/ml. Generation of PGI2 by the perfused cat lungs was stimulated by angiotensin II (3 – 10 ng/ml). The above results along with our in vivo experiments point to the lung as an important source of endogenous PGI2 in the body.  相似文献   

18.
This study examines the hypothesis that acute thermal injury decreases renal and splanchnic blood flow which correlates with altered endogenous vasodilator eicosanoid release. Anesthetized male Wistar rats were subjected to sham or a non-resuscitated 30% total body surface area burn. At 1, 2, 4, 8, and 24 h post-burn mean arterial pressure as well as superior mesenteric and renal artery in vivo blood flow were measured. The superior mesenteric and renal arteries were cannulated and perfused in vitro with their end organs with Krebs buffer (pH 7.4, 37°C). Renal and splanchnic 6-keto-PGF (PGI2), PGE2, and thromboxane B2 (TXB2) release were measured by EIA at 15 min of perfusion. Renal and superior mesenteric artery blood flow decreased by 40% or more at 1 and 2 h post-burn despite mean arterial pressure remaining unchanged. The major eicosanoids released were PGI2 from the splanchnic bed and PGI2 and PGE2 from the kidney. Splanchnic PGI2 and TXB2 release and renal TXB2 increased 2–3 fold at 1 h post-burn but returned to the sham level at 2 h post-burn. By 24 h post-burn the vasodilator eicosanoids were increased in both the splanchnic and renal vascular beds. These data show that decreased renal and splanchnic blood flow was associated with increased endogenous release of the potent vasoconstrictor TXB2. By 2 h post-burn, renal and splanchnic blood flow began returning toward the sham level as endogenous release of TXB2 from both organs fell to sham levels. These data suggest that increased endogenous release of TXB2 may contribute to the short-term decrease in renal and splanchnic blood flow in the immediate post-burn period and thus may contribute to ischemia of both vascular beds.  相似文献   

19.
Our previous publication has stressed the benefits of losartan, an angiotensin II receptor blocker, on the permeability of blood-brain barrier (BBB) and blood pressure during L-NAME-induced hypertension. This study reports the impacts of anti-hypertensive treatment by losartan on the brain endothelial barrier function and the arterial blood pressure, during acute hypertension episode, in experimentally diabetic hypertensive rats. Systolic blood pressure measurements were taken with tail cuff method before and during administration of L-NAME (0.5 mg/ml). We induced diabetes by using alloxan (50 mg/kg, i.p). Losartan (3 mg/kg, i.v) was given to rats following the L-NAME treatment. Acute hypertensive vascular injury was induced by epinephrine (40 microg/kg). The BBB disruption was quantified according to the extravasation of the Evans blue (EB) dye. L-NAME induced a significant increase in arterial blood pressure on day 14 in normoglycemic and hyperglycemic rats (p < 0.05). Losartan significantly reduced the increased blood pressure in hypertensive and diabetic hypertensive rats (p < 0.01). Epinephrine-induced acute hypertension in diabetic hypertensive rats increased the content of EB dye dramatically in cerebellum and diencephalon (p < 0.01) and slightly in both cerebral cortex (p < 0.05). Losartan treatment reduced the increased BBB permeability to EB dye in the brain regions of diabetic hypertensive rats treated with epinephrine (p < 0.05). This study indicates that, in diabetic hypertensive rats, epinephrine administration leads to an increase in microvascular-EB-albumin efflux to brain, however losartan treatment significantly attenuates this protein's transport to brain tissue.  相似文献   

20.
Prostacyclin (PGI2) dose-dependently increases the adenosine 3′,5′-cyclic monophosphate (cyclic AMP) levels in canine femoral, carotid, and canine and bovine coronary arteries. The prostacyclin-stimulation is enhanced by phosphodiesterase inhibitors, and is readily measurable after 60 sec incubation. The prostaglandin endoperoxide PGH2, but not PGH1, also elevates cAMP levels in femoral arteries. Inhibition of arterial prostacyclin synthetase with 28 μM 9,11-azoprosta-5,13-dienoic acid (azo analog I) blocks the PGH2-stimulation of cAMP accumulation. Azo analog I does not attenuate a direct PGI2 stimulation, indicating that the PGH2 dependent elevation of cAMP is due to conversion of PGH2 to PGI2 by the artery. PGI2 and PGE1 increase cyclic AMP levels and relax dog femoral and bovine coronary arteries, while PGE2, which actually contracts bovine coronary arteries, has no effect on arterial cyclic AMP levels. The significance of the PGI2-stimulation of arterial cyclic AMP is not known, but it is probably related to relaxation of arterial strips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号