首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial detoxification of waste rubber material by wood-rotting fungi   总被引:2,自引:0,他引:2  
The extensive use of rubber products, mainly tires, and the difficulties to recycle those products, has resulted in world wide environmental problems. Microbial devulcanisation is a promising way to increase the recycling of rubber materials. One obstacle is that several microorganisms tested for devulcanisation are sensitive to rubber additives. A way to overcome this might be to detoxify the rubber material with fungi prior to the devulcanisation. In this study, 15 species of white-rot and brown-rot fungi have been screened with regard to their capacity to degrade an aromatic model compound in the presence of ground waste tire rubber. The most effective fungus, Resinicium bicolor, was used for detoxification of rubber material. Increase in growth of the desulfurising bacterium Thiobacillus ferrooxidans in presence of the rubber treated with Resinicium bicolor compared to untreated rubber demonstrated that detoxification with fungi is possible.  相似文献   

2.
This study is evaluated by measuring the weight loss, and the ability of white- and brown-rot fungi and termites to attack untreated and boron-treated blockboard manufactured using untreated fir (Abies bornmulleriana M.) strips sandwiched between Ekaba (Tetraberlinia bifoliolata Harms.) veneers at final assembly. The veneers were treated with either boric acid or disodium octoborate tetrahydrate, or mixtures of these chemicals, and blockboard specimens were subjected to fungal decay resistance tests performed according to the Japanese Industrial Standard (JIS) A-9201 method using the brown-rot fungus Fomitopsis palustris (Berkeley et Curtis) Murrill and the white-rot fungus, Trametes versicolor (L. ex Fr.) Quel. Blockboard specimens were also tested against the subterranean termite Coptotermes formosanus Shiraki to determine termite resistance. Blockboard specimens with boron-treated veneers demonstrated increased durability against decay fungi and termite attack. However, sealing of untreated fir strips before decay resistance tests helped reduce significantly the weight losses in blockboard with either untreated or boron-treated veneers. Although blockboard is usually used in indoor applications, incorporation of boron-based biocides may be required for increasing resistance to fungal decay and termite attack and giving fire retardancy.  相似文献   

3.
This study evaluated the relative ability of various combinations of copper sulfate with either boric acid or calcium-precipitating agent, N′-N-(1, 8-naphthalyl) hydroxylamine (NHA-Na), to inhibit fungal degradation and attack by Formosan subterranean termites (Coptotermes formosanus Shiraki). Wood specimens were treated with either 1%, 0.5%, or 0.1% concentrations of copper sulfate, boric acid, NHA-Na, copper sulfate + boric acid, or copper sulfate + NHA-Na mixtures. Treated specimens were subjected to laboratory decay-resistance tests by using petri dishes inoculated with the Basidiomycetes fungi Tyromyces palustris and Trametes versicolor for 12 weeks. Treated wood specimens were also subjected to termite-resistance tests under laboratory conditions. Increased efficacy of copper sulfate against the brown-rot fungus T. palustris was observed when either boric acid or NHA-Na was added. The most effective treatments against the fungi tested were NHA-Na only treatments at 1% and 0.5% concentration levels. Boric acid treatments were not able to protect wood against decay after leaching because of excessive leaching of boron. Similar results were obtained in termite-resistance tests in comparison with decay-resistance tests. These results indicate that the efficacy of the treatments in preventing fungal and termite attack is a function of the type of preservative.  相似文献   

4.
Medium density fiberboard (MDF) production worldwide is increasing due to the development of new manufacturing technologies. As a result, MDF products are increasingly utilized in traditional wood applications that require fungal and insect resistance. This study evaluated the ability of white and brown rot fungi and termites to decompose MDF consisting of different wood species by measuring weight loss. Furnish in the boards was prepared from heart and sapwood portions of pine (Pinus nigra Arnold var. pallasiana), beech (Fagus orientalis Lipsky), and European oak (Quercus robur L.) species. Fungal decay resistance tests were performed according to ASTM D 2017-81 standard method using two brown-rot fungi, Gloeophyllum trabeum (Pers. ex Fr.) Murr. (Mad 617), Postia placenta (Fries) M. Larsen et Lombard (Mad 698), and one white-rot fungus, Trametes versicolor (L. ex Ft.) Pilat (Mad 697). MDF and wood specimens were also bioassayed against the eastern subterranean termite, Reticulitermes flavipes (Kollar) in order to determine termite resistance of the specimens. MDF specimens containing oak and mixed furnish demonstrated increased durability against decay fungi. Only pine, oak, and mixed MDF specimens met the 25% or less weight loss limit to be classified resistant according to ASTM D 2017-81 standard method. Overall, MDF specimens made from oak showed better performance than oak solid wood specimens. Accelerated aging according to ASTM D 1037-96a standard method before fungal bioassay decreased fungal resistance of the specimens. In contrast to the fungal bioassay, MDF specimens made from beech and mixed furnish showed decreased weight losses from termite attack after 4 weeks. However, none of the MDF specimens were resistant to termite attack. In severe conditions, the MDFs may require the incorporation of chemical biocides prior to board production for increasing the resistance of MDF to termite attack.  相似文献   

5.
The foraging behavior and survivorship of termites are modified by the presence of wood-inhabiting fungi. Nonetheless, it is not clear if these interactions are beneficial, negative, or neutral for termites. We conducted a meta-analytical review to determine if the presence of wood-inhabiting fungi affects the foraging behavior and survivorship of termites. Overall, the presence of wood-inhabiting fungi in a resource used by termites was positive, increasing resource consumption by 120%, and aggregation behavior by 81%. The presence of fungi also increased termite trail-following by approximately 200% and increased survival by 136%. The results varied, however, according to the type of fungi evaluated. Decay fungi and sap-stain fungi elicited positive responses in termites, whereas molds did not affect the consumption of cellulose by termites. Amongst the decay fungi group, white-rot fungi caused the strongest and most positive response in all termite behaviors evaluated, although brown-rot fungi is known to be preferred by termites. The results of our study, therefore, suggest that wood-inhabiting fungi are potential facilitators of the foraging behavior and survivorship of termites. These results have great implications for termite biocontrol, as well as for knowledge of the ecological aspects of termite–fungi interactions.  相似文献   

6.
Natural decay resistance of teak wood grown in home-garden forestry and the factors influencing decay resistance were determined in comparison with that of a typical forest plantation. Accelerated laboratory tests were conducted on 1800 wood samples drawn from 15 trees of three planted sites. Analysis of variance based on a univariate mixed model showed that planted site, fungal species, and their interaction terms were important sources of variation in decay resistance. With increasing decay resistance from centre to periphery of the heartwood, radial position was a critical factor and the interaction effect of fungal species × radial position was significant in influencing the durability. No significant differences were found in decay resistance either between the opposite radii or due to the various possible interaction terms of radii with the site, fungal species and radial position. There were significant differences in decay resistance against brown-rot fungi between wet and dry sites of home-garden teak although differences against white-rot fungi were non-significant among the three planted sites. Polyporus palustris was the more aggressive brown-rot fungus than Gloeophyllum trabeum. The higher susceptibility of wet site home-garden teak to brown-rot decay was associated with a paler colour of the wood and lower extractive content.  相似文献   

7.
Biocides must be developed for controlling mould establishment on cellulose-based building materials. Accordingly, biocides intended for indoor applications must be non-toxic, non-volatile, odourless, hypoallergenic, and able to provide long-term protection under conditions of high humidity. Multi-component biocide systems were tested in American Wood-Preservers’ Association soil block tests for inhibition of brown-rot and white-rot decay fungi and American Society for Testing and Materials standard tests for inhibition of mould fungi and termites. Multi-component systems combining a borate base supplemented with either 0.1% azole or 0.5% thujaplicin, performed well against the two brown-rot fungi Postia placenta and Gloeophyllum trabeum; the white-rot fungus Coriolus versicolor; the three mould fungi Aspergillus niger, Penicillium chrysogenum, and Trichoderma viride; and the subterranean termite Reticulitermes flavipes (Kollar). It was concluded that for interior applications borate-based multi-component biocide systems can protect wood from decay fungi, mould fungi, and termites, and that a system containing thiabendazole provided protection at a lower retention than the other biocides in this study. Synergy was observed between the borate base and voriconazole in inhibition of mould.  相似文献   

8.
Nanotechnology has the potential to affect the field of wood preservation through the creation of new and unique metal biocides with improved properties. This study evaluated leachability and efficacy of southern yellow pine wood treated with copper, zinc, or boron nanoparticles against mould fungi, decay fungi, and Eastern subterranean termites. Results showed that nanocopper with and without surfactant, nanozinc, and nanozinc plus silver with surfactant resisted leaching compared with metal oxide controls. Nearly all nanoboron and boric acid was released from the treated wood specimens during leaching. Mould fungi were moderately inhibited by nanozinc oxide with surfactant, but the other nanometal preparations did not significantly inhibit mould fungi. Mass loss from Gloeophyllum trabeum was significantly inhibited by all copper preparations, while Antrodia sp. was not inhibited by nanometal treatments. Nanometals imparted high resistance in southern yellow pine to the white-rot fungus, Trametes versicolor. Unleached specimens treated with nanoboron or nanozinc plus surfactant caused 100% and 31% mortality, respectively. All specimens treated with nanozinc or nanozinc plus silver inhibited termite feeding, but the copper treatments were less effective against termites. Nanozinc possessed the most favorable properties: leach resistance, termite mortality, and inhibition of termite feeding and decay by the white-rot fungus.  相似文献   

9.
The objectives of the study were to evaluate the effectiveness of phenolic resin in protecting oil palm stem (OPS) plywood against both subterranean termites (Coptotermes curvignathus) and white rot fungi (Pycnoporous sanguineus). Specially cooked, Low molecular weight phenol formaldehyde (LMW PF) resin was used to treat the OPS veneer whilst commercial urea formaldehyde (UF) resin was used to bond the phenolic-treated veneer. OPS plywood were produced using two types of lay-up (100% outer veneer type and 100% inner veneer type) with adhesive spread rate of 200 g/m2. The results show that treatment of OPS veneer with LMW PF has significantly enhanced the resistance of OPS plywood against both termites and white rot fungi. In the termites resistance test, the percentage of weight loss for untreated samples were 19.2% (outer veneer) and 23.9% (inner veneer), while for phenolic treated samples were only 10.7% and 15.8%, respectively. The phenolic treatment was able to enhance the resistance towards termites by 38% and towards white rot fungi by 62%. The study has shown LMW PF resin can be used to protect OPS plywood from termites and white rot fungi.  相似文献   

10.
A strip of tread compound cut from a truck tire was degraded only slightly when it was used as the sole growth substrate for a strain of Nocardia. On the contrary, its degradation was markedly enhanced by addition of a strip cut from a latex glove which the organism readily utilized as a growth substrate. When a glove strip was added, the biomass concentration in the experimental flask became more than 10-fold higher than the control without a glove strip and the colonization of the tire strip was significantly enhanced.After 8 weeks' cultivation, about 28% of the tire strip was disintegrated into very small black particles (mostly less than 30 m in diameter) and the weight of the remaining unchanged portion of the strip was about 49% of the initial weight.Four kinds of truck tire treads were attacked in differing degrees by the organism under the same conditions. The treads containing more than 70 phr (parts per hundred of rubber) of natural rubber were considerably attacked, while those with a natural rubber content of less than 55 phr were attacked only slightly. The microbial activity against the rubber in the side wall of a truck tire was relatively high, but the inner liner was hardly attacked and the bead rubber not at all.  相似文献   

11.
The effect of copper (II) ions on the growth of three brown-rot fungi, six white-rot fungi and one blue-stain fungus in solid medium was evaluated. The fungi were grown in malt extract agar with different concentrations of copper added, and the radial growth rate was determined. At the end of the incubation period, the mycelial biomass and the media pH were determined. The white-rot and blue-stain fungus grew up to 3 mM and 6 mM copper, respectively and the brown-rot fungi were the only ones that grew up to 10 mM, with higher growth rates than those shown by the other fungi. In general, the brown-rot fungi produced greater acidification in the culture media than the white-rot fungi and blue-stain fungus, and the acidification increased when the amount of copper was increased. The biomass production for the different species, in the absence or presence of copper, was not related to the radial growth rate, and the fungal species that produced the greatest biomass amounts did not correspond to those that presented the highest growth rates. The brown-rot fungi Wolfiporia cocos and Laetiporus sulfureus and blue-stain fungus Ophiostoma sp. demonstrated greater tolerance to high copper concentrations in solid medium than the white-rot fungi, determined as radial growth rate. On the other hand, the highest biomass producers in solid medium with copper added were the white-rot fungi Ganoderma australe and Trametes versicolor and the brown-rot fungus Gloeophyllum trabeum.  相似文献   

12.
The objective of this study was to use FT-IR analysis to investigate the chemical composition of aged and un-aged bamboo specimens, with and without node sections, decayed by brown-rot fungi. Specimens were exposed to two brown-rot fungi, Coniophora puteana and Poria placenta, for 8 weeks after which decay was assessed by weight loss and FT-IR spectra analysis. Depending on the bamboo section examined, the aging process reduced decay resistance of specimens. Weight loss (measured as a percentage) decreased from the top to the bottom portion of bamboo culms. The presence of nodes in the specimens increased weight loss caused by P. placenta attack, and caused only a slight increase in weight loss from C. puteana attack. Significant chemical changes in bamboo were observed after fungal degradation, as revealed by FT-IR analyses. Consistent with the degradation mechanism of brown-rot fungi, lignin was essentially un-degraded or modified. Both brown-rot fungi caused a sharp decrease in the carbonyl absorption area. Surprisingly, cellulose peaks of degraded specimens were nearly similar to the peaks of control specimens. Aging treatments and biodegradation affected the crystalline structure of bamboo specimens. Poria placenta degraded wood components faster and changed the crystallinity more than C. puteana did, in accordance with the weight losses due to decay.  相似文献   

13.
In this work, the resistance of black pine wood (Pinus nigra L.) vacuum-treated with zinc oxide, zinc borate and copper oxide nanoparticles against mold and decay fungi and the subterranean termites was evaluated. Some of the nanocompounds tested were forced with acrylic emulsions to avoid leaching. Results showed that mold fungi were slightly inhibited by nanozinc borate, while the other nanometal preparations did not inhibit mold fungi. Mass loss from fungal attack by Trametes versicolor was significantly inhibited by the zinc-based preparations, while the brown-rot fungus, Tyromyces palustris was not inhibited by the nanometal treatments. Notably, nanozinc borate plus acrylic emulsion imparted very high resistance in pine wood to the white-rot fungus, T. versicolor with a mass loss of 1.8%. Following leaching, all pine specimens treated with nanozinc borate, with or without acrylic emulsion, strongly inhibited termite feeding, i.e. mass losses varying at 5.2–5.4%. In contrast, the copper-based treatments were much less effective against the subterranean termites, Coptotermes formosanus. In general, nanozinc borate possessed favorable properties, that is, inhibition of termite feeding and decay by T. versicolor.  相似文献   

14.
In this study, we tested tetraethoxysilane and methyltriethoxysilane as modifying silicon-based compounds for their potential to limit boron leachability from modified wood and to increase biological durability of the wood against fungi and termites. Both the silane compounds were used in silane state where acidified ethanol was added and stirred at ambient temperature for 30 min. We used two different processes for preservative treatments: double treatment and single treatment. In double treatment, the specimens from sugi wood were first treated with boric acid at 1% concentration and subsequently treated with the silanes. In single treatment, boric acid was mixed with the silane compounds in the silane state yielding 1% boric acid concentration. Subsequent to the treatments, wood specimens were subjected to laboratory leaching tests, and leachates were analyzed for boron content with an inductively coupled plasma (ICP) spectrometry. ICP analyses showed that silane treatments were able to limit boron leaching from treated wood by about 40% in all cases for each silane compound. Wood specimens were then subjected to laboratory termite and decay resistance tests using the subterranean termites, Coptotermes formosanus, and the wood decaying fungi, Fomitopsis palustris and Trametes versicolor. Termite and fungal decay resistance tests revealed that resistance of modified wood with the silane and boron compounds increased when compared to untreated and boron-only treated wood specimens. More in-depth studies on the mechanisms of interactions between the silicon compounds, boron elements and wood components are in progress.  相似文献   

15.
Decay and termite resistance of wood treated with tar oil obtained from a commercial pyrolysis process of macadamia nut shells was evaluated. Vacuum-treated pinewood specimens were subjected to two brown- and two white-rot fungi based on the soil-block test method specified by the American Wood Protection Association after a 10-day-leaching process. Treated specimens were also subjected to the subterranean termite attack according to Japanese Industrial Standards (JIS) for 3 weeks under laboratory conditions. In the study, growth inhibition of selected fungi with the tar oil was also tested in vitro. Treated wood specimens at a retention level of 460 kg m−3 showed good protection against all the fungi tested. Mass losses in leached specimens were less than those observed in unleached specimens. Similar results were seen when the specimens were subjected to termite attack. Inhibition tests showed that higher concentrations of the tar oil are critical for inhibition of the brown-rot fungi compared to the concentrations required to impede the white-rot and sap-staining fungi tested.  相似文献   

16.
Agricultural lignocellulosic fiber (rice straw)-waste tire particle composite boards were manufactured for use as insulation boards in construction, using the same method as that used in the wood-based panel industry. The manufacturing parameters were: a specific gravity of 0.8 and a rice straw content (10/90, 20/80 and 30/70 by wt.% of rice straw/waste tire particle). A commercial polyurethane adhesive for rubber was used as the composite binder. The water proof, water absorption and thickness swelling properties of the composite boards were better than those of wood particleboard. Furthermore, the flexibility and flexural properties of the composite boards were superior to those of other wood-based panel products. The composite boards also demonstrated good acoustical insulation, electrical insulation, anti-caustic and anti-rot properties. These boards can be used to prevent impact damage, are easily modifiable and are inexpensive. They are able to be used as a substitute for insulation boards and other flexural materials in construction.  相似文献   

17.
The importance of copper–ethanolamine-based wood preservatives is increasing. These preservatives usually consist of copper as a fungicide, ethanolamine as a fixative, and secondary fungicides (boron, triazoles) and other additives (water repellents, fixatives, wax emulsions, etc.). Questions arise as to how each of these ingredients interacts with wood-decay fungi, and whether there are any synergistic effects between the components. In order to elucidate these questions, Norway spruce wood specimens were impregnated with five different aqueous solutions consisting of one single component only and of complete formulation of five different concentrations. These specimens were exposed to two brown-rot fungi, Antrodia vaillantii and Gloeophyllum trabeum, as well as to the white-rot fungus Trametes versicolor for 8 weeks according to mini block procedure. In parallel, petri dishes with nutrient medium containing different quantities of ingredients and of complete wood preservative were inoculated with the same fungal species, and their growth was compared with growth on media without chemicals. The results showed that both experimental methods give similar results. In general, there was no synergistic effect determined. Ethanolamine did not decrease fungicidal properties of the system, while on the other hand octanoic acid has a positive effect on the growth of brown-rot fungi. The minimal effective concentration of tested copper–ethanolamine preservative was determined by the minimum effective concentration of the most fungi-toxic ingredient.  相似文献   

18.
The resistance to fungal attack of wood plastic composites (WPCs) containing 40% polypropylene and 60% either pine, maple or oak, wt%/wt%, was examined. WPCs specimens were made using the hot press system. Resistance to decay was evaluated using soil block and agar tests. Test specimens were exposed to either white-rot fungi, Trametes versicolor or Phanerochaete chrysosporium, or the brown-rot fungi Gloeophyllum trabeum or Postia placenta for six or 12 weeks. Moisture content and weight loss were used to assess the extent of decay of WPCs. Rates of decay in WPCs exposed in soil-block tests were greater than those exposed in the agar. WPCs containing either maple or oak were more susceptible to fungal attack then those containing pine.  相似文献   

19.
Bioincising is a biotechnological process that aims at the improvement of wood preservative uptake in wood species with a low permeability, such as Norway spruce (Picea abies (L.) Karst). The process is based on a short-term pre-treatment with white-rot fungus Physisporinus vitreus. During incubation the membranes of bordered and half bordered pits are supposed to be degraded by fungal activity resulting in a better treatability of the wood structure for wood preservatives. In the present study, first of all the resistance of bioincised Norway spruce heartwood and untreated controls against blue-stain and wood-decay fungi (white- and brown-rot) was determined. Then, bioincised and untreated specimens were dipped or vacuum impregnated with six wood preservatives and substance uptake was assessed gravimetrically. Additionally, the penetration of 3-iodo-2-propynyl butylcarbamate (IPBC) into the wood was analyzed by high-pressure liquid chromatography (HPLC). Finally, wood resistance was assessed according to the European standards EN 152 and EN 113. Results showed no difference between bioincised wood without preservatives and the untreated wood against blue-stain discolouration. However, a significant (P < 0.05) increase in susceptibility against wood decay was recorded. In the bioincised wood samples a significantly higher uptake of all the different preservatives was determined and the HPLC-method revealed that IPBC penetrated deeper into bioincised wood than into control samples. The improved uptake of preservatives into bioincised wood resulted in a significantly higher resistance against white- and brown-rot fungi. However, only a slight protection against wood discolouration by blue-stain fungi was recorded. The results of this study show for the first time that the biotechnological process with P. vitreus can be used to improve wood durability by increasing the uptake and penetration of wood preservatives.  相似文献   

20.
Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Fomitopsis palustris. However the filtrates from sugi wood processed at 270 degrees C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号