首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liver is a unique organ with the potential to regenerate from injury. Hepatic stem cells contribute to liver regeneration when surviving hepatocytes in injured liver are unable to proliferate. To investigate the mechanism of liver regeneration in vitro, we established hepatic stem cell lines named HY1, HY2 and HY3, derived from a healthy liver of adult rat. HY cells showed an expression pattern similar to oval cells, and efficiently induced hepatic differentiation following sequential treatment with type I collagen, transforming growth factor-beta1 (TGF-beta1), and hepatocyte growth factor (HGF) or oncostatin M (OSM). These results suggested that HY cells are liver stem cells representing an excellent tool for in vitro studies on liver regeneration.  相似文献   

2.
The capacity of stem cells to differentiate into specific cell types makes them very promising in tissue regeneration and repair. However, realizing this promise requires novel methods for guiding lineage-specific differentiation of stem cells. In this study, hepatocyte growth factor (HGF), an important morphogen in liver development, was co-printed with collagen I (Col) to create arrays of protein spots on glass. Human adipose stem cells (ASCs) were cultured on top of the HGF/Col spots for 2 weeks. The effects of surface-immobilized HGF on hepatic differentiation of ASCs were analyzed using RT-PCR, ELISA and immunocytochemistry. Stimulation of stem cells with HGF from the bottom-up caused an upregulation in synthesis of α-fetoprotein and albumin, as determined by immunocytochemistry and ELISA. RT-PCR results showed that the mRNA levels for albumin, α-fetoprotein and α1-antitrypsin were 10- to 20-fold higher in stem cells cultured on the HGF/Col arrays compared to stem cells on Col only spots. Our results show that surfaces containing HGF co-printed with ECM proteins may be used to differentiate mesenchymal stem cells such as ASCs into hepatocyte-like cells. These results underscore the utility of growth factor-containing culture surfaces for stem cell differentiation.  相似文献   

3.
如果肝脏严重受损致使肝细胞大部分坏死,或由于某些原因 ( 肝毒性物质、致癌物质的作用 ) 抑制残存肝细胞增殖时,肝内前体/干细胞———肝卵圆细胞便被激活并分化生成肝细胞和胆管细胞等以参与肝修复 . 基于此理论,人们建立了啮齿类动物肝卵圆细胞诱导实验模型 . 但显然上述模型不适用于人类,所以有必要开发一种适用于人类的、高效的肝卵圆细胞的新诱导模型 . 选用小鼠胚胎干细胞,转成拟胚体分化 3 天后分组,诱导组添加肝细胞生长因子 (HGF) 、表皮生长因子 (EGF) 作定向诱导分化 . 其间用免疫细胞化学 (ICC) 检测肝卵圆细胞标志物 A6 等的表达,用流式细胞仪筛选肝卵圆细胞并行 RT-PCR 、透射电镜检测 . 所筛选的肝卵圆细胞进一步体外培养并进行 ICC 和 RT-PCR ,检测其分化生成成熟的肝细胞和胆管细胞的能力 . 研究证实胚胎干细胞体外定向诱导生成肝实质细胞的过程中,存在着有双向分化能力的肝卵圆细胞这个中间分化阶段 . 诱导组肝卵圆细胞分化率均显著地高于对照组,最高时可达 6.11% 左右 . HGF 和 EGF 能显著性诱导胚胎干细胞源性卵圆细胞的生成 . 流式细胞仪筛选 Sca-1+/CD34+ 细胞占总细胞数的 4.59% ,其中 A6 阳性肝卵圆细胞占 90.81% 左右 . 使用流式细胞仪可获得高富集的 A6+/Sca-1+/CD34+ 肝卵圆细胞 . 提供了一种可适用于人类的肝卵圆细胞的新诱导模型 .  相似文献   

4.
5.
Hepatic stem cell niche plays an important role in hepatic oval cell-mediated liver regeneration. As a component of hepatic stem cell niche, the role of hepatic stellate cells (HSCs) in oval cell proliferation needs further studies. In the present study, we isolated HSCs from rats at indicated time point after partial hepatectomy (PH) in 2-acetylaminofluorene/PH oval cell proliferation model. Conditional medium (CM) from HSCs were collected to detect their effects on proliferation and the mitogen-activated protein kinase pathway activation of two oval cell lines. We found that CM collected from HSCs at early phase of liver regeneration (4 and 9?days group) contained high levels of hepatocyte growth factor (HGF) and stimulated oval cell proliferation via extracellular signal-regulated kinase and p38 pathway. CM collected from HSCs at terminal phase of liver regeneration (12 and 15?days group) contained high levels of transforming growth factor (TGF)-β1, which suppressed DNA synthesis of oval cells. The shift between these two distinct effects depended on the balance between HGF and TGF-β1 secreted by HSCs. Our study demonstrated that HSCs acted as a positive regulator at the early phase and a negative regulator at the terminal phase of the oval cell-mediated liver regeneration. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Hepatic stem cell niche plays an important role in hepatic oval cell‐mediated liver regeneration. As a component of hepatic stem cell niche, the role of hepatic stellate cells (HSCs) in oval cell proliferation needs further studies. In the present study, we isolated HSCs from rats at indicated time point after partial hepatectomy (PH) in 2‐acetylaminofluorene/PH oval cell proliferation model. Conditional medium (CM) from HSCs were collected to detect their effects on proliferation and the mitogen‐activated protein kinase pathway activation of two oval cell lines. We found that CM collected from HSCs at early phase of liver regeneration (4 and 9 days group) contained high levels of hepatocyte growth factor (HGF) and stimulated oval cell proliferation via extracellular signal‐regulated kinase and p38 pathway. CM collected from HSCs at terminal phase of liver regeneration (12 and 15 days group) contained high levels of transforming growth factor (TGF)‐β1, which suppressed DNA synthesis of oval cells. The shift between these two distinct effects depended on the balance between HGF and TGF‐β1 secreted by HSCs. Our study demonstrated that HSCs acted as a positive regulator at the early phase and a negative regulator at the terminal phase of the oval cell‐mediated liver regeneration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
To clarify the effect of hepatocyte growth factor (HGF) on proliferation of hepatic oval cells, we transferred HGF gene into liver of the Solt-Farber rat model. Male Fisher 344 rats were infected with a recombinant adenovirus carrying the cDNA for HGF (pAxCAHGF) from tail vein. HGF mRNA showed its peak at 4 days, and diminished thereafter. The total and proliferating cell nuclear antigen-positive hepatic oval cells were significantly elevated in HGF-transferred rats, in which stem cell factor and c-kit mRNA increased at each time point. Our results suggest that in vivo transfer of the HGF gene into liver accelerates proliferation of hepatic oval cells in the Solt-Farber model in rats.  相似文献   

9.
Liver development is regulated by soluble factors as well as cell-cell contacts. We previously reported that oncostatin M (OSM) induced hepatic maturation in a primary culture of embryonic day 14 liver cells. While OSM expression in the liver starts in mid gestation and decreases in postnatal stages, hepatocyte growth factor (HGF) is mainly expressed in the liver in the first few days after birth. In this study, we compared the effect of OSM and HGF on the differentiation of fetal hepatic cells in vitro. Like OSM, HGF in the presence of dexamethasone induced expression of glucose-6-phosphatase, tyrosine amino transferase and carbamoyl-phosphate synthase, and accumulation of glycogen in fetal hepatic cells, although to a lesser extent than OSM. Interestingly, while both OSM and HGF up-regulated production of albumin, secretion of albumin occurred only in response to OSM. In addition, although hepatic maturation induced by OSM depends on STAT3, HGF failed to activate STAT3 and HGF-induced differentiation was independent of STAT3. These results indicate that OSM and HGF induce hepatic maturation through different signaling pathways.  相似文献   

10.
11.
The extracellular matrix (ECM) in contact with the cells and the soluble growth factors (GFs) binding to their cell surface receptors are the two main signals that directly regulate cell motility. Human keratinocytes and dermal fibroblasts are two primary cell types in skin that must undergo migration for skin wounds to heal. In this cell migration, ECMs play an "active" role by providing the cells with both focal adhesions and a migration-initiating signal, even in the absence of GFs. In contrast, GFs cannot initiate cell migration in the absence of a pro-migratory ECM. Rather, GFs play a "passive" role by enhancing the ECM-initiated motility and giving the moving cells directionality. Inside the cells, the initiation signal of the ECM and the optimization signals of the GFs are propagated by both overlapping and discrete signaling networks. However, activation of no single signaling pathway by itself is sufficient to replace the role of ECMs or GFs. This review focuses on our current understanding of both the individual and the combined functions of ECMs and GFs in the control of skin cell motility. An abbreviation of the terminologies used in this article is provided.  相似文献   

12.
Embryonic stem cells (ES cells), bone marrow-derived mesenchymal stem cells, umbilical cord blood-derived mesenchymal stem cells, and hepatic stem cells in liver have been known as a useful source that can induce to differentiate into hepatocytes. In this study, we examined whether human adipose tissue-derived stromal cells (hADSC) can differentiate into hepatic lineage in vitro. hADSC, that were induced to differentiate into hepatocyte-like cells by the treatment of HGF and OSM, had morphology similar to hepatocytes. Addition of DMSO enhanced differentiation into hepatocytes. RT-PCR and immunocytochemical analysis showed that hADSC express albumin and alpha-fetoprotein during differentiation. Differentiated hADSC showed LDL uptake and production of urea. Additionally, transplanted hADSC to CCl4-injured SCID mouse model were able to be differentiated into hepatocytes and they expressed albumin in vivo. Mesenchymal stem cells isolated from human adipose tissue are immunocompatible and are easily isolated. Therefore, hADSC may become an alternative source to hepatocyte regeneration or liver cell transplantation.  相似文献   

13.
14.
Biliary atresia (BA) is a rare and serious liver disease in newborn infants. Previously, we reported that non-parenchymal cell (NPC) fractions from cirrhotic liver of BA may contain hepatic stem/progenitor cells in primary culture of NPC fractions. In this study, NPC fractions were subjected to primary or passage culture and found that clusters of hepatocyte-like cells appear even without adding hepatocyte growth factor (HGF) to the culture medium, but not in their passage culture used as a control. Based on these findings, conditioned media (CMs) were collected and soluble factors in the CMs were analyzed in order to elucidate the mechanism of the appearance of hepatocyte-like cells or their clusters. A large amount of active HGF consisting of α and β chains was detected in CMs derived from primary culture, but not in CMs from passage culture, as determined by western blot analysis, bone morphogenetic protein (BMP)-4, oncostatin M (OSM), and transforming growth factor (TGF)-β1 were not detected in any of the CMs. The number of hepatocyte-like cells in primary culture tended to decrease following treatment with the HGF receptor c-Met inhibitor, SU11274 in a dose-dependent manner. Furthermore, the clusters of hepatocyte-like cells tended to increase in size and number when freshly isolated NPC fractions were cultured in the presence of 10% of CMs collected after 3–4 wk of primary culture. In conclusion, these findings indicate that CMs derived from primary culture of NPC fractions of BA liver contain a large amount of active HGF, which may activate hepatic stem/progenitor cells and promote the appearance of hepatocyte-like cells or their clusters through HGF/c-Met signaling. The present study would lead to cell therapy using the patient’s own cells for the treatment of BA.  相似文献   

15.
16.
Mesenchymal stem cells (MSCs) derived from bone marrow have been shown to differentiate into hepatocytes, which would be an ideal resource for transplantation or artificial liver devices. Here we investigated the efficiency of co-culture system consisting of rat MSCs and adult liver cells to induce differentiation of MSCs into hepatocyte-like cells. Marked MSCs were either co-cultured with freshly isolated liver cells or treated with hepatocyte growth factor (HGF) for 21 days. In co-culture systems, MSCs formed spheroids of round-shaped cells while keeping normal proliferation and viability, strongly expressed albumin, alpha-fetoprotein, and cytokeratin-18 in mRNA and protein level from day 3 to 21. As a control, MSCs treated with HGF showed weak gene expressions in day 14 and had a few cells of protein staining in day 21. These results indicate that the co-culture microenvironment plays a decisive role for the hepatic differentiation of MSCs, and it is more efficient than HGF treatment. Insights gained from this study will be helpful to design optimal culture systems for the hepatic differentiation of human MSCs and the hepatic function maintenance of hepatocytes in vitro.  相似文献   

17.
Hepatocytes derived from human embryonic stem cells (hESCs) are a potential cell source for regenerative medicine. However, the definitive factors that are responsible for hepatic differentiation of hESCs remain unclear. We aimed to evaluate the effects of various extracellular matrixes and growth factors on endodermal differentiation and to optimize the culture conditions to induce hepatic differentiation of hESCs. The transgene vector that contained enhanced green fluorescent protein (EGFP) under the control of human alpha-fetoprotein (AFP) enhancer/promoter was transfected into hESC lines. The transgenic hESCs were cultured on extracellular matrixes (collagen type I, laminin, and Matrigel) in the presence or absence of growth factors including hepatocyte growth factor (HGF), bone morphogenetic protein 4, fibroblast growth factor 4, all-trans-retinoic acid, and activin A. The expression of AFP-EGFP was measured by flow cytometry. The culture on Matrigel-coated dishes with 100 ng/ml activin A showed 19.5% of EGFP-positive proportions. Moreover, the sequential addition of 100 ng/ml activin A and 20 ng/ml HGF resulted in 21.7% and produced a higher yield of EGFP-positive cells than the group stimulated by activin A alone. RT-PCR and immunocytochemical staining revealed these EGFP-positive cells to differentiate into mesendoderm-like cells by use of activin A and then into hepatic endoderm cells by use of HGF. Two other hESC lines also differentiated into endoderm on the hepatic lineage by our method. In conclusion, we therefore found this protocol to effectively differentiate multiple hESC lines to early hepatocytes using activin A and HGF on Matrigel.  相似文献   

18.
Li B  Zheng YW  Sano Y  Taniguchi H 《PloS one》2011,6(2):e17092
Mesenchymal-epithelial transition events are related to embryonic development, tissue construction, and wound healing. Stem cells are involved in all of these processes, at least in part. However, the direct evidence of mesenchymal-epithelial transition associated with stem cells is unclear. To determine whether mesenchymal-epithelial transition occurs in liver development and/or the differentiation process of hepatic stem cells in vitro, we analyzed a variety of murine liver tissues from embryonic day 11.5 to adults and the colonies derived from hepatic stem/progenitor cells isolated with flow cytometry. The results of gene expression, immunohistochemistry and Western blot showed that as liver develops, the expression of epithelial markers such as Cytokeratin18 and E-cadherin increase, while expression of mesenchymal markers such as vimentin and N-cadherin decreased. On the other hand, in freshly isolated hepatic stem cells, the majority of cells (65.0%) co-express epithelial and mesenchymal markers; this proportion is significantly higher than observed in hematopoietic cells, non-hematopoietic cells and non-stem cell fractions. Likewise, in stem cell-derived colonies cultured over time, upregulation of epithelial genes (Cytokeratin-18 and E-cadherin) occurred simultaneously with downregulation of mesenchymal genes (vimentin and Snail1). Furthermore, in the fetal liver, vimentin-positive cells in the non-hematopoietic fraction had distinct proliferative activity and expressed early the hepatic lineage marker alpha-fetoprotein. CONCLUSION: Hepatic stem cells co-express mesenchymal and epithelial markers; the mesenchymal-epithelial transition occurred in both liver development and differentiation of hepatic stem/progenitor cells in vitro. Besides as a mesenchymal marker, vimentin is a novel indicator for cell proliferative activity and undifferentiated status in liver cells.  相似文献   

19.
Alagille syndrome (AGS, MIM 118450) is an autosomal dominant inherited disease. Paucity of interlobular bile ducts is one of the major abnormalities. To explore the molecular mechanism by which mutation in the human Jagged 1 gene (JAG1, MIM 601920) causes liver defects, we investigated the gene regulation of JAG1 to hepatocyte growth factor gene (HGF). By transfecting wild-type and mutant JAG1 into COS-7 cells in vitro, we found that HGF is a target gene of JAG1 downstream. Wild-type JAG1 is inhibitory for HGF expression and mutant JAG1s relieve the inhibition. Several domain disruptions in mutant JAG1 protein reveal a reduced inhibition to HGF expression at different levels. JAG1 mutations actually result in HGF overexpression. Furthermore, JAG1 controls HGF expression by a dosage-dependent regulation and Notch2 signaling seems to mediate JAG1 function. Given that HGF plays a critical role in differentiation of hepatic stem cells, overexpression of HGF acts on off-balanced cell fate determination in AGS patients. Hepatic stem cells may differentiate towards more hepatocytes but less biliary cells, thus causing the paucity of interlobular bile ducts in liver development of AGS. Our novel findings demonstrated that dosage-dependent regulation by mutations of JAG1 is a fundamental mechanism for liver abnormality in AGS.  相似文献   

20.
Hepatocyte growth factor (HGF) is a potent mitogen for a variety of cells including hepatocytes. While rat oval cells are supposed to be one of hepatic stem cells, biological effects of HGF on oval cells and their relevant signal transduction pathways remain to be determined. We sought to investigate them on OC/CDE22 rat oval cells, which are established from the liver of rats fed a choline-deficient/DL-ethionine-supplemented diet. The oval cells were cultured on fibronectin-coated dishes and stimulated with recombinant HGF, transforming growth factor-alpha (TGF-alpha), and thrombopoietin (TPO) under the serum-free medium condition. HGF treatment enhanced [3H]thymidine incorporation into oval cells in a dose-dependent manner. On the contrary, treatment with TGF-alpha or TPO had no significant effects on [3H]thymidine incorporation into the oval cells. c-Met protein was phosphorylated at the tyrosine residues after the HGF treatment. AKT, extracellular signal-regulated kinase 1/2 (ERK1/2), and p70(s6k) were simultaneously activated after the HGF stimulation, peaking at 30min after the treatment. The activation of AKT, p70(s6k), and ERK1/2 induced by HGF was abolished by pre-treatment with LY294002, a phosphoinositide 3-OH kinase (PI3K) inhibitor, and U0126, a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, respectively. When the cells were pre-treated with LY294002 prior to the HGF stimulation, the proliferative action of HGF was completely abrogated, implying that the PI3K/AKT signaling pathway is responsible for the biological effect of HGF. These in vitro data indicate that HGF exerts a proliferative action on hepatic oval cells via activation of the PI3K/AKT signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号