共查询到20条相似文献,搜索用时 21 毫秒
1.
p25rum1 promotes proteolysis of the mitotic B-cyclin p56cdc13 during G1 of the fission yeast cell cycle. 总被引:2,自引:1,他引:2 下载免费PDF全文
The fission yeast Schizosaccharomyces pombe CDK inhibitor p25rum1 plays a major role in regulating cell cycle progression during G1. Here we show that p25rum1 associates with the CDK p34cdc2/p56cdc13 during G1 in normally cycling cells and is required for the rapid proteolysis of p56cdc13. In vitro binding data indicate that p25rum1 has specificity for the B-cyclin p56cdc13 component of the CDK and can bind the cyclin even in the absence of the cyclin destruction box. At the G1-S-phase transition, p25rum1 levels decrease and p56cd13 levels increase. We also show that on release from a G1 block, the rapid disappearance of p25rum1 requires the activity of the CDK p34cdc2/cig1p and that this same CDK phosphorylates p25rum1 in vitro. We propose that the binding of p25rum1 to p56cdc13 promotes cyclin proteolysis during G1, with p25rum1 possibly acting as an adaptor protein, promoting transfer of p56cdc13 to the proteolytic machinery. At the G1-S-phase transition, p25rum1 becomes targeted for proteolysis by a mechanism which may involve p34cdc2/cig1p phosphorylation. As a consequence, at this point in the cell cycle p56cdc13 proteolysis is inhibited, leading to a rise of p56cdc13 levels in preparation for mitosis. 相似文献
2.
In all eukaryotes, entry into mitosis from G2 phase is initiated by a complex of the cdc2 kinase and a B-type cyclin. It has now been shown that, in fission yeast, B-type cyclins also activate cdc2 in G1, thus governing cell-cycle commitment, as well as the onset of S phase. In this article, Karim Labib and Sergio Moreno review the evidence that ruml inhibits the kinase activity of cdc2 associated with B-type cyclins and is an important regulator o f G1 progression in fission yeast. 相似文献
3.
B-type cyclins regulate G1 progression in fission yeast in opposition to the p25rum1 cdk inhibitor. 总被引:3,自引:3,他引:3 下载免费PDF全文
The onset of S phase in fission yeast is regulated at Start, the point of commitment to the mitotic cell cycle. The p34cdc2 kinase is essential for G1 progression past Start, but until now its regulation has been poorly understood. Here we show that the cig2/cyc17 B-type cyclin has an important role in G1 progression, and demonstrate that p34cdc2 kinase activity is periodically associated with cig2 in G1. Cells lacking cig2 are defective in G1 progression, and this is particularly clear in small cells that must regulate Start with respect to cell size. We also find that the cig1 B-type cyclin can promote G1 progression. Whilst p25rum1 can inhibit cig2/cdc2 activity in vitro, and may transiently inhibit this complex in vivo, cig1 is regulated independently of p25rum1. Since cig1/cdc2 kinase activity peaks in mitotic cells, and decreases after mitosis with similar kinetics to cdc13-associated kinase activity, we suggest that cig2 is likely to be the principal fission yeast G1 cyclin. cig2 protein levels accumulate in G1 cells, and we propose that p25rum1 may transiently inhibit cig2-associated p34cdc2 activity until the critical cell size required for Start is reached. 相似文献
4.
Regulation of the G1 phase of the mammalian cell cycle 总被引:24,自引:0,他引:24
In any multi-cellular organism,the balance between cell division and cell death maintains a constant cell number.Both cell division cycle and cell death are highly regulated events.Whether the cell will proceed through the cycle or not,depends upon whether the conditions required at the checkpoints during the cycle and fulfilled.In higher eucaryotic cells,such as mammalian cells,signals that arrest the cycle usually act at a G1 checkpoint.Cells that pass this restriction point are committed to complete the cycle.Regulation of the G1 phase of the cell cycle is extremely complex and involves many different families of proteins such as retinoblastoma family,cyclin dependent kinases,cyclins,and cyclin kinase inhibitors. 相似文献
5.
AS160 (TBC1D4) has been implicated in multiple biological processes. However, the role and the mechanism of action of AS160 in the regulation of cell proliferation remain unclear. In this study, we demonstrated that AS160 knockdown led to blunted cell proliferation in multiple cell types, including fibroblasts and cancer cells. The results of cell cycle analysis showed that these cells were arrested in the G1 phase. Intriguingly, this inhibition of cell proliferation and the cell cycle arrest caused by AS160 depletion were glucose independent. Moreover, AS160 silencing led to a marked upregulation of the expression of the cyclin-dependent kinase inhibitor p21. Furthermore, whereas AS160 overexpression resulted in p21 downregulation and rescued the arrested cell cycle in AS160-depeleted cells, p21 silencing rescued the inhibited cell cycle and proliferation in the cells. Thus, our results demonstrated that AS160 regulates glucose-independent eukaryotic cell proliferation through p21-dependent control of the cell cycle, and thereby revealed a molecular mechanism of AS160 modulation of cell cycle and proliferation that is of general physiological significance. 相似文献
6.
7.
《Cell cycle (Georgetown, Tex.)》2013,12(18):3339-3340
Comment on: Joaquin M, et al. EMBO J 2012; 31:2952-64. 相似文献
8.
Hara T Kamura T Kotoshiba S Takahashi H Fujiwara K Onoyama I Shirakawa M Mizushima N Nakayama KI 《Molecular and cellular biology》2005,25(21):9292-9303
KPC2 (Kip1 ubiquitylation-promoting complex 2) together with KPC1 forms the ubiquitin ligase KPC, which regulates degradation of the cyclin-dependent kinase inhibitor p27 at the G(1) phase of the cell cycle. KPC2 contains a ubiquitin-like (UBL) domain, two ubiquitin-associated (UBA) domains, and a heat shock chaperonin-binding (STI1) domain. We now show that KPC2 interacts with KPC1 through its UBL domain, with the 26S proteasome through its UBL and NH(2)-terminal UBA domains, and with polyubiquitylated proteins through its UBA domains. The association of KPC2 with KPC1 was found to stabilize KPC1 in a manner dependent on the STI1 domain of KPC2. KPC2 mutants that lacked either the NH(2)-terminal or the COOH-terminal UBA domain supported the polyubiquitylation of p27 in vitro, whereas a KPC2 derivative lacking the STI1 domain was greatly impaired in this regard. Depletion of KPC2 by RNA interference resulted in inhibition of p27 degradation at the G(1) phase, and introduction of KPC2 derivatives into the KPC2-depleted cells revealed that the NH(2)-terminal UBA domain of KPC2 is essential for p27 degradation. These observations suggest that KPC2 cooperatively regulates p27 degradation with KPC1 and that the STI1 domain as well as the UBL and UBA domains of KPC2 are indispensable for its function. 相似文献
9.
10.
Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1 总被引:16,自引:0,他引:16
Nakayama KI Hatakeyama S Nakayama K 《Biochemical and biophysical research communications》2001,282(4):853-860
The transition from G1 phase to S phase of the mammalian cell cycle is controlled by many positive and negative regulators, among which cyclin E and p27Kip1, respectively, undergo the most marked changes in concentration at this transition. The abundance of both cyclin E and p27Kip1 is regulated predominantly by posttranslational mechanisms, in particular by proteolysis mediated by the ubiquitin-proteasome pathway. Cyclin E and p27Kip1 each bind to and undergo polyubiquitination by the same ubiquitin ligase, known as SCF(Skp2). The degradation of cyclin E and p27Kip1 is greatly impaired in Skp2-deficient mice, resulting in intracellular accumulation of these proteins. In this article, recent progress in characterization of the molecular mechanisms that control the proteolysis of cyclin E and p27Kip1 is reviewed. 相似文献
11.
Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. 总被引:26,自引:4,他引:26 下载免费PDF全文
In higher eukaryotes, the cyclin-dependent kinases (CDKs) are negatively regulated by phosphorylation on threonine 14 (T14) and tyrosine 15 (Y15). In fission yeast, the Wee1 and mitosis inhibitory kinase 1 (Mik1) protein kinases phosphorylate Y15 in Cdc2. WEE1Hu is the only known protein kinase that can carry out this inhibitory phosphorylation on Y15 in higher eukaryotes. In the present study, we examined the endogenous products of WEE1Hu in human cells and found that the original WEE1Hu cDNA lacked 214 amino acids at the N-terminus. The predicted full-length protein has weak, but significant, similarity over its entire length with Mik1. Thus, we suggest that 'WEE1Hu' is a Mik1-related protein rather than a Wee1 homologue. When isolated in immunoprecipitates, the endogenous WEE1Hu phosphorylated several cyclin-associated CDKs on Y15. WEE1Hu activity increased during S and G2 phases in parallel with the level of protein. Its activity decreased at M phase when WEE1Hu became transiently hyperphosphorylated. In addition, a decrease in WEE1Hu protein level was observed at M/G1 phase. Apparently, the hyperphosphorylation and degradation in combination caused inactivation of WEE1Hu at M phase and the following G1 phase. These results suggest that the activity of WEE1Hu is regulated by phosphorylation and proteolytic degradation, and that WEE1Hu plays a role in inhibiting mitosis before M phase by phosphorylating cyclin B1-Cdc2. 相似文献
12.
13.
14.
Resting cells and the G1 phase of the cell cycle 总被引:4,自引:0,他引:4
R Baserga 《Journal of cellular physiology》1978,95(3):377-382
15.
Degradation of the mammalian cyclin-dependent kinase (CDK) inhibitor p27 is required for the cellular transition from quiescence to the proliferative state. The ubiquitination and subsequent degradation of p27 depend on its phosphorylation by cyclin-CDK complexes. However, the ubiquitin-protein ligase necessary for p27 ubiquitination has not been identified. Here we show that the F-box protein SKP2 specifically recognizes p27 in a phosphorylation-dependent manner that is characteristic of an F-box-protein-substrate interaction. Furthermore, both in vivo and in vitro, SKP2 is a rate-limiting component of the machinery that ubiquitinates and degrades phosphorylated p27. Thus, p27 degradation is subject to dual control by the accumulation of both SKP2 and cyclins following mitogenic stimulation. 相似文献
16.
17.
《Cell cycle (Georgetown, Tex.)》2013,12(13):2038-2046
Tissue homeostasis requires precise control of cell proliferation and arrest in response to environmental cues. In situation such as wound healing, injured cells are stimulated to divide, but as soon as confluence is reached proliferation must be blocked. Such reversible cell cycle exit occurs in G1, requires pRb family members, and is driven by p27Kip1-dependent Cdk inactivation. This implies that, while dividing, cells should simultaneously prepare the exit once mitosis is accomplished. For a long time, the decision to cycle or not was presumed to occur in G1, prior to the restriction point, beyond which the cells were bound to divide even in the absence of mitogens, before finally arresting after mitosis. However, more recent reports suggested that the commitment to cycle in response to serum occurs already in G2 phase and requires the Ras-dependent induction of cyclin D1, which promotes following G1/S transition. To test whether this hypothesis applies to arrest induced by contact inhibition, we used an in vitro wounding model where quiescent human dermal fibroblasts, stimulated to proliferate by mechanical injury, synchronously exit cell cycle after mitosis due to renewed confluence. We show that this exit is preceded by p27-dependent inhibition of cyclin A-Cdk1/2, cyclin D1 downregulation and reduced pre-mitotic pRb pocket protein phosphorylation. Over-expression of cyclin D1 but not p27 depletion reversed this phenotype and compromised confluence-driven cell cycle exit. Thus, a balance between cyclin D1 and p27 may provide sensitive responses to variations in proliferative cues operating throughout the cell cycle. 相似文献
18.
G L Russo M T Vandenberg I J Yu Y S Bae B R Franza D R Marshak 《The Journal of biological chemistry》1992,267(28):20317-20325
The activity of p34cdc2 kinase is regulated in the phases of vertebrate cell cycle by mechanisms of phosphorylation and dephosphorylation. In this paper, we demonstrate that casein kinase II (CKII) phosphorylates p34cdc2 in vivo and in vitro at Ser39 during the G1 phase of HeLa cell division cycle. Human p34cdc2 shows a typical phosphorylation sequence motif site for CKII at Ser39 (ES39EEE). In our experiments, either p34cdc2 expressed and purified from bacteria or p34cdc2 immunoprecipitated from HeLa cells enriched in G1 by elutriation were substrates for in vitro phosphorylation by CKII. Phosphoamino acid analysis, N-chlorosuccinimide mapping, and two-dimensional tryptic mapping of p34cdc2 phosphorylated in vitro were performed to determine the phosphorylation site. A synthetic peptide spanning residues 33-50 of human p34cdc2, including the CKII site, was used to map the site. In addition, phosphorylation at Ser39 also occurs in vivo, since p34cdc2 is phosphorylated during G1 on serine, and its two-dimensional tryptic map shows two phosphopeptides that comigrate exactly with the synthetic peptides used as standard. 相似文献
19.
Specific G1-S phase cell cycle block by beryllium as demonstrated by cytofluorometric analysis. 下载免费PDF全文
Inhibition of cell division by beryllium (Be2+) has been examined in synchronized cultures of a liver-derived cell line (BL9L cells) using cytofluorometric cell cycle analysis. Results show that a selective dose-related block of the G1-pre-S transition is produced, with other periods of the cell cycle appearing relatively insensitive. 相似文献
20.
Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. 总被引:146,自引:0,他引:146
Three mouse cyclin-like (CYL) genes were isolated, two of which are regulated by colony-stimulating factor 1 (CSF-1) during the G1 phase of the macrophage cell cycle. CSF-1 deprivation during G1 leads to rapid degradation of CYL proteins (p36CYL) and correlates with failure to initiate DNA synthesis. However, after entering S phase, macrophages no longer require CSF-1 and can complete cell division without expressing CYL genes. During G1, p36CYL is phosphorylated and associates with a polypeptide antigenically related to p34cdc2. The timing of p36CYL expression, its rapid turnover in the absence of CSF-1, and its phosphorylation and transient binding to a cdc2-related polypeptide suggest that CYL genes may function during S phase commitment. 相似文献