首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Rhynchocinetidae (‘hinge‐beak’ shrimps) is a family of marine caridean decapods with considerable variation in sexual dimorphism, male weaponry, mating tactics, and sexual systems. Thus, this group is an excellent model with which to analyse the evolution of these important characteristics, which are of interest not only in shrimps specifically but also in animal taxa in general. Yet, there exists no phylogenetic hypothesis, either molecular or morphological, for this taxon against which to test either the evolution of behavioural traits within the Rhynchocinetidae or its genealogical relationships with other caridean taxa. In this study, we tested (1) hypotheses on the phylogenetic relationships of rhynchocinetid shrimps, and (2) the efficacy of different (one‐, two‐, and three‐phase) methods to generate a reliable phylogeny. Total genomic DNA was extracted from tissue samples taken from 17 species of Rhynchocinetidae and five other species currently or previously assigned to the same superfamily (Nematocarcinoidea); six species from other superfamilies were used as outgroups. Sequences from two nuclear genes (H3 and Enolase) and one mitochondrial gene (12S) were used to construct phylogenies. One‐phase phylogenetic analyses (SATé‐II) and classical two‐ and three‐phase phylogenetic analyses were employed, using both maximum likelihood and Bayesian inference methods. Both a two‐gene data set (H3 and Enolase) and a three‐gene data set (H3, Enolase, 12S) were utilized to explore the relationships amongst the targeted species. These analyses showed that the superfamily Nematocarcinoidea, as currently accepted, is polyphyletic. Furthermore, the two major clades recognized by the SATé‐II analysis are clearly concordant with the genera Rhynchocinetes and Cinetorhynchus, which are currently recognized in the morphological‐based classification (implicit phylogeny) as composing the family Rhynchocinetidae. The SATé‐II method is considered superior to the other phylogenetic analyses employed, which failed to recognize these two major clades. Studies using more genes and a more complete species data set are needed to test yet unresolved inter‐ and intrafamilial systematic and evolutionary questions about this remarkable clade of caridean shrimps. © 2014 The Linnean Society of London  相似文献   

2.
A taxonomic study of two brown algal species, Elachista nigra Takamatsu and Elachista orbicularis (Ohta) Skinner (Elachistaceae), was performed on the basis of morphological observations of field‐collected and laboratory cultured specimens from Japan (including their type localities) and molecular phylogenetic analyses. The two species had been distinguished by developmental patterns of paraphysis‐ and plurizoidangium‐bearing erect filaments, such filaments of E. nigra developing from wide erect filaments and those of E. orbicularis developing directly from basal prostrate filaments. However, many specimens investigated in the present study showed forms intermediate between these two patterns. Molecular phylogenetic analyses (including five additional elachistacean species) based on the internal transcribed spacer (ITS)2 region of the nuclear ribosomal RNA (nrRNA) gene showed a close relationship between all samples of E. nigra and E. orbicularis, and that the developmental patterns of paraphysis‐ and plurizoidangium‐bearing erect filaments were homoplasious. On the basis of these morphological and molecular data, E. orbicularis was reduced to synonymy with E. nigra. The ITS2 sequences of E. nigra were significantly different between samples from the Sea of Japan and those from the Pacific Ocean with several insertion/deletion and substitution mutations.  相似文献   

3.
4.
High level of morphological as well as chemical variability exists within the genus Ocimum, and its taxonomy and phylogenetic relationships are still doubtful. For evaluating interspecific genetic relationships among the Ocimum species, genotyping with intersimple sequence repeat (ISSR) markers and sequence analyses of noncoding psbA‐trnH intergenic region belonging to chloroplast DNA were carried out. Although ISSR markers are highly efficient and reproducible, they have not been used extensively in phylogenetic studies. The use of the plastidial barcode candidate was expected to provide more variable and informative insight into evolutionary rates, and was thus employed as a phylogenetic marker to assess interspecific relationships. This study revealed that the ISSR markers were more efficient than psbA‐trnH sequences in resolving the current status of Ocimum L. genus. Distance‐ and character‐based methodological approaches applied on the molecular data with biparental and maternal inheritance were used for deducing the phylogenetic relationships among Ocimum species. Average polymorphic information content (0.344) and resolving power (6.285) depicted through ISSR markers proved to be efficient in discriminating the studied species of Ocimum. The primers used in this study revealed 99.585% polymorphism across the species demonstrating the polymorphic nature of ISSR markers.  相似文献   

5.
6.
Abstract

Members of the fungal genus Microbotryum are well‐known parasites on eudicotyledonous plant hosts. However, recent studies focused exclusively on Microbotryum species being parasites in the anthers of Caryophyllaceae in which strong host‐specificity was confirmed by molecular analyses. Consequently, species numbers have risen considerably as multi‐host parasites were split up in so‐called cryptic species. We subjected three non‐caryophyllaceous Microbotryum groups to molecular phylogenetic analyses to see whether we would confirm multi‐host morphospecies or if host‐specific cryptic species in these selected groups could be revealed as well (i.e. a group of non‐caryophyllaceous anther smuts, parasites on different Fallopia species, and parasites on Polygonum bistorta and Polygonum vi‐viparum). We applied a multiple analysis strategy to correct for varying alignment effects on a two‐locus dataset (ITS and LSU rDNA). The results obtained by the different approaches are uniform; high host‐specificity exists in the non‐ caryophyllaceous anther smuts, but overlapping host ranges occur in the parasites of Fallopia species. Results for the parasites of Polygonum are similar, with Microbotryum bistortarum being separated into three lineages and M. marginale forming a lineage on P. bistorta which apparently is conspecific with M. bistortarum p.p. Our study shows that phylogenetic patterns within Microbotryum are much more complicated than deduced from morphological observations alone. Even though Microbotryum species are highly host‐specific, it is impossible to identify species based solely on host taxa affiliation. Species status is reinstated for the anther smut on Salvia pratensis.  相似文献   

7.
Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty‐six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB‐rbcL and trnL‐F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum‐parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three‐colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well‐supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.  相似文献   

8.
9.
In the absence of independent observational data, ecologists and paleoecologists use proxies for the Eltonian niches of species (i.e., the resource or dietary axes of the niche). Some dietary proxies exploit the fact that mammalian teeth experience wear during mastication, due to both tooth‐on‐tooth and food‐on‐tooth interactions. The distribution and types of wear detectible at micro‐ and macroscales are highly correlated with the resource preferences of individuals and, in turn, species. Because methods that quantify the distribution of tooth wear (i.e., analytical tooth wear methods) do so by direct observation of facets and marks on the teeth of individual animals, dietary inferences derived from them are thought to be independent of the clade to which individuals belong. However, an assumption of clade or phylogenetic independence when making species‐level dietary inferences may be misleading if phylogenetic niche conservatism is widespread among mammals. Herein, we test for phylogenetic signal in data from numerous analytical tooth wear studies, incorporating macrowear (i.e., mesowear) and microwear (i.e., low‐magnification microwear and dental microwear texture analysis). Using two measures of phylogenetic signal, heritability (H2) and Pagel's λ, we find that analytical tooth wear data are not independent of phylogeny and failing to account for such nonindependence leads to overestimation of discriminability among species with different dietary preferences. We suggest that morphological traits inherited from ancestral clades (e.g., tooth shape) influence the ways in which the teeth wear during mastication and constrain the foods individuals of a species can effectively exploit. We do not suggest that tooth wear is simply phylogeny in disguise; the tooth wear of individuals and species likely varies within some range that is set by morphological constraints. We therefore recommend the use of phylogenetic comparative methods in studies of mammalian tooth wear, whenever possible.  相似文献   

10.
Molecular phylogenetics of an aquatic plant lineage, Potamogetonaceae   总被引:1,自引:0,他引:1  
Like most aquatic plants, the pondweeds (Potamogetonaceae) are among the most phenotypically reduced and plastic of all angiosperms. As such, hypotheses of structural homology present difficulties for morphological phylogenetic reconstruction. We used non‐coding nuclear and plastid DNA data to address Potamogetonaceae relationships and accompanying issues in character evolution and biogeography. Genera currently assigned to Potamogetonaceae, plus Zannichellia, formed a strongly supported monophyletic group. Potamogeton and Stuckenia (Potamogeton subg. Coleogeton) were both resolved as monophyletic. Within Potamogeton proper, two major clades followed the traditional split between broad‐ and narrow‐leaved species, with the latter condition optimized as basal. Heterophylly (submerged plus floating leaves) has evolved several times, and the ancestral distribution for Potamogeton appears to be Northern Hemispheric. Our phylogenetic results have provided a useful genetic framework from which to interpret morphological, cytological and biogeographical evolution. © The Willi Hennig Society 2006.  相似文献   

11.
12.
Intra‐ and interspecific morphological variation due to both phenotypic plasticity and evolutionary convergence hinder the work of taxonomists and lead to over‐ and underestimates of species richness. Nevertheless, most species on Earth are recognized solely based on morphological characters. We used molecular phylogenetic and morphometric techniques to examine two freshwater mussel species. One is common and widespread, while the other is imperiled and endemic to the Interior Highlands of the USA. Phylogenetic and molecular clock analyses revealed that divergence of Arcidens confragosus and Arkansia wheeleri is small and relatively recent. Divergence in these and other taxa is probably due to isolation of streams in the Interior Highlands. Morphometric analyses showed distinct shell shapes using traditional morphometrics, but not through geometric morphometrics. Outlined shell shapes are indistinguishable; geometric morphometrics could not capture a three‐dimensional component. Our analyses support the validity of these two species as congeners, with the nomen Arcidens (Simpson 1900) having priority. Because shell morphologies are both heritable and environmentally determined, our study emphasizes the importance of considering both molecular and morphometric analyses for identification of freshwater molluscs of conservation concern. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 535–545.  相似文献   

13.
14.
With approximately 25 endemic species, the genus Pyrus (pears) is highly diverse in the Caucasus ecoregion. The majority of Caucasian pears inhabit xerophytic open woodlands or similar habitats, to which they display morphological adaptations, such as narrow leaves. The other species, both Caucasian and non‐Caucasian taxa, mainly inhabit mesophytic forests and display broad leaves. Using a representative taxon sampling of Pyrus from the Caucasus, Europe and Asia, we reconstruct phylogenetic relationships in the genus based on multiple plastid regions. We also estimate the divergence times of major clades in Pyrus, reconstruct the evolution of leaf shapes, and discuss the emergence of xeromorphic leaf traits. Our results confirm the monophyly of Pyrus and the existence of two major clades: (a) an E Asian clade with a crown group age of 15.7 (24.02–8.37 95% HPD) My, and (b) a W Eurasian clade that comprises species from Europe, SW Asia and the Caucasus and that displays a slightly younger crown group of 12.38 (19.02–6.41 95% HPD) My. The existing infrageneric classification of Pyrus was found partially incongruent with the inferred phylogenetic trees. Several currently accepted species were not recovered as monophyletic, indicating that current species limits require re‐evaluation. Ancestral character state reconstructions revealed several independent transitions from broad‐ to narrow‐shaped leaves in Pyrus, probably via intermediate‐shaped leaves.  相似文献   

15.
A phylogenetic reconstruction of the Neotropical electric fish genus Hypopygus based on 47 parsimony‐informative morphological characters is presented. A series of synapomorphies support the hypothesis of monophyly of Hypopygus, and partially resolve species‐level relationships within the genus. Hypopygus species are recognized here as miniaturized fishes based on two criteria; first, a derived condition of diminutive body size, and; second, the presence of a suite of reductive morphological characters, including partial or total losses, simplifications, and reductions of the anal‐fin rays, scales, cranial bones, and laterosensory canal system. Reductive characters associated with miniaturization comprise 45% of the total number of characters in the phylogenetic reconstruction of the genus. Miniaturization and reductive morphological evolution in Hypopygus are discussed here in the phylogenetic context. A taxonomic revision of Hypopygus is presented, in which five new species are described, two species previously assigned to the genus are redescribed, and a single known species of Stegostenopos is redescribed and included in Hypopygus as a junior synonym. Distribution maps and a key for all eight valid species of Hypopygus are provided, based on the examination of 5014 catalogued museum specimens. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1096–1156.  相似文献   

16.
The genus Xiphinema constitutes a large group of about 260 species of plant‐ectoparasitic nematodes. The group is polyphagous and distributed almost worldwide. Some of the species of this genus damage agricultural crops by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Xiphinema is complicated by phenotypic plasticity leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in Spain from 2009 to 2012, from which we identified 20 populations of Xiphinema species morphologically close to the virus‐vector nematode species Xiphinema diversicaudatum, three apomictic populations tentatively identified as species from the complex Xiphinema aceri‐pyrenaicum group, and one population morphologically different from all others that is characterized by a female tail elongate to conical and absence of uterine differentiation. We developed comparative multivariate analyses for these related species by using morphological and morphometrical features together with molecular data from nuclear ribosomal DNA genes [D2‐D3 expansion segments of large ribosomal subunit 28S, internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of multivariate, molecular, and phylogenetic analysis confirmed the morphological hypotheses and allowed the delimitation and discrimination of two new species in the genus described herein as Xiphinema baetica sp. nov. and Xiphinema turdetanensis sp. nov. , and ten known species: Xiphinema adenohystherum, Xiphinema belmontense, Xiphinema cohni, Xiphinema coxi europaeum, Xiphinema gersoni, Xiphinema hispidum, Xiphinema italiae, Xiphinema lupini, Xiphinema nuragicum, and Xiphinema turcicum. Multivariate analyses based on quantitative and qualitative characters and phylogenetic relationships of Xiphinema spp. based on the three molecular ribosomal markers resulted in a partial consensus of these species grouping as nematode populations were maintained for the majority of morphospecies groups (e.g. morphospecies groups 5 and 6), but not in some others (e.g. position of Xiphinema granatum), demonstrating the usefulness of these analyses for helping in the diagnosis and identification of Xiphinema spp. The clade topology of phylogenetic trees of D2‐D3 and partial 18S regions in this study were congruent in supporting the polyphyletic status of some characters, such as the female tail shape and the degree of development of the genital system in species with both genital branches equally developed. This is the most complete phylogenetic study for Xiphinema non‐americanum‐group species. Agreement between phylogenetic trees and some morphological characters (uterine spines, pseudo‐Z organ, and tail shape) was tested by reconstruction of their histories on rDNA‐based trees using parsimony and Bayesian approaches. Thus, integrative taxonomy, based on the combination of multivariate, molecular analyses with morphology, constitutes a new insight into the identification of Xiphinema species. © 2013 The Linnean Society of London  相似文献   

17.
Plant clades may exhibit little or wide morphological variation as a result of (1) the retention of ancestral characteristics or phylogenetic signal, (2) character displacement, or (3) random phenotypic drift or convergence. Understanding the taxonomy and systematics of many plant lineages has been challenging due to continuous intra‐ and interspecific morphological variation. To assess which evolutionary hypothesis could explain the morphological diversity in the genus Geonoma (Arecaceae), we performed a Mantel test between phylogenetic and morphological distances of 54 taxa, and tested for phylogenetic signal using Blomberg's K‐statistic on continuous variables, and a randomization of character states. To obtain a phylogenetic (patristic) distance matrix for Geonoma, we constructed a molecular phylogeny of tribe Geonomateae using three nuclear DNA regions. A positive relationship between the patristic and a 26‐discrete‐character distance matrix (R2 = 0.55, P < 0.001) supported the phylogenetic signal hypothesis. The randomization test showed that signal was present in 16 characters. No relationship was evident using a 17‐quantitative‐variable distance matrix (R2 = 0.07, P = 0.13), supporting the random drift hypothesis or convergence, and all 17 K‐values were close to 0, suggesting less phylogenetic signal than under the Brownian model. If most morphological variables traditionally used to classify Geonoma evolved randomly or convergently, it might explain Geonoma's challenging taxonomy. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 528–539.  相似文献   

18.
The deep sea has a high biodiversity and a characteristic bathyal fauna. Earlier evidence suggested that at least some shallow‐water species invaded the ecosystem followed by radiation leading to endemic deep‐sea lineages with a genetic and/or morphological similarity to their shallow‐water counterparts. The nematode Halomonhystera disjuncta has been reported from shallow‐water habitats and the deep sea [Håkon Mosby mud volcano (HMMV)], but the morphological features and the phylogenetic relationships between deep‐sea and shallow‐water representatives remain largely unknown. Furthermore, nothing is known about the genetic structure of the H. disjuncta population within the HMMV. This study is the first integrative approach in which the morphological and phylogenetic relationships between a deep‐sea and shallow‐water free‐living nematode species are investigated. To elucidate the phylogenetic relationships, we analysed the mitochondrial gene Cytochrome oxidase c subunit I (COI) and three nuclear ribosomal genes (Internal Transcribed Spacer region, 18S and the D2D3 region of 28S). Our results show that deep‐sea nematodes comprise an endemic lineage compared to the shallow‐water representatives with different morphometric features. COI genetic divergence between the deep‐sea and shallow‐water specimens ranges between 19.1% and 25.2%. Taking these findings into account, we conclude that the deep‐sea form is a new species. amova revealed no genetic structure across the HMMV, suggesting that nematodes are able to disperse efficiently in the mud volcano.  相似文献   

19.
Antitropical distribution is a biogeographical pattern characterized by natural occurrences of the same species or members of the same clade in the middle‐ or middle‐to‐high‐latitudinal habitats of both hemispheres, either on land or in marine environments, without appearing in the intervening tropical environments. For most of the noted examples of Permian antitropical distribution, particularly in marine invertebrates, the causes of disjunctions have been mainly linked to either dispersal or vicariance models. Little attention has been paid to other possible mechanisms. This study investigated the antitropicality of some Permian neospiriferine brachiopods through detailed taxonomic revision, comparison of palaeobiogeographical distribution, and a phylogenetic analysis. Several species, previously assigned to Kaninospirifer, are here reassigned to other genera, especially to Fasciculatia in the northern hemisphere and to Quadrospira in the southern hemisphere during the Permian. Both Kaninospirifer and Fasciculatia appear to have been restricted to north‐western Pangea and north‐eastern Asia during the Permian, but there is no robust evidence to suggest their presence in the southern hemisphere to which Imperiospira and Quadrospira were confined. In spite of the distributional separation between the two pairs of neospiriferine genera in the Permian palaeobiogeographical regime, they share considerable numbers of morphological characters, such as a large shell, subdued fasciculation, and reduction of ventral adminicula. Notwithstanding these morphological similarities, our phylogenetic reconstruction of the neospiriferines does not support a close relationship between these genera. This therefore must indicate that these similar morphological features were independently acquired, probably with these taxa living in spatially separate but ecologically compatible environmental conditions in the mid‐latitudinal area of each hemisphere during the Permian. We regard this as an example of convergent evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号