首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
The wood anatomy of 15 representative species belonging to 12 genera of nine tribes of the subfamily Crotonoideae (Euphorbiaceae) are comprehensively described with focus on systematic implications. In addition, ecological and evolutionary aspects are evaluated. An identification key to the species based on wood anatomical features is presented. The wood microstructure of the tribes was found to be considerably heterogeneous reflecting an unnatural classification of the subfamily. However, the results confirm the generic relationship within subtribe Aleuritinae and tribe Ricinodendreae. Vernicia and Givotia may be recognized based on wood anatomical and morphological characters. The tribes Micrandreae and Adenoclineae have considerable similarity in wood anatomy. The wood structure of the monogeneric tribes Trigonostemoneae and Geloneae idicate a close relationship with the tribe Crotoneae.  相似文献   

2.
3.
Maihuenia and Pereskia, constitute Pereskioideae, the subfamily of Cactaceae with the greatest number of relictual features, but the two genera differ strongly in habit and ecological adaptations. Plants of Maihuenia occur in extremely xeric regions of Patagonia and are small cushion plants with reduced, terete leaves and soft, slightly succulent trunks. Plants of Pereskia occur only in mesic or slightly arid regions and are leafy trees with hard, woody trunks and thin, broad leaves. Maihuenias have many more anatomical adaptations to arid conditions than do pereskias: maihuenias lack sclerenchyma in their phloem and cortex (M. poeppigii also lacks xylem sclerenchyma and can contract during drought); their wood consists of vessels, axial parenchyma, and wide-band tracheids and can store water as well as minimize embolism damage; one species channelizes water flow by producing intraxylary bark; and at least some stem-based photosynthesis occurs because maihuenias have small patches of persistent stem epidermis that bears stomata and overlies a small amount of aerenchymatous chlorenchyma. Pereskias lack all these features. Although closely related, maihuenias have fewer relictual features than do pereskias, and plants of Pereskia probably are more similar to the ancestral cacti. Received 8 March 1999/ Accepted in revised form 29 May 1999  相似文献   

4.
The wood anatomy of all four woody genera of the tribe Heteromorpheae (Apiaceae, subfamily Apioideae) has been described and compared, based on 40 wood samples (representing nine species of Anginon, one species of Glia, three species of Heteromorpha and two species of Polemannia). The four genera were found to be relatively similar in their wood anatomy. Helical thickenings on the vessel walls occur in all species investigated and appear to represent an ancestral character state and a symplesiomorphy for the tribes Bupleurieae and Heteromorpheae. Each of four genera has a diagnostically different combination of character states relating to the diameter of vessels, size of intervessel pits, length of fibres, presence and arrangement of banded axial parenchyma, size of rays and ray cells, and presence of septate fibres and crystals in the ray cells. The occurrence of marginal axial parenchyma in Anginon and Glia may be an additional synapomorphy for these taxa. Variation in the wood anatomy of 31 samples from nine species of Anginon is not correlated with habitat (Fynbos or Succulent Karoo Biomes), but instead appears to reflect adaptations to seasonal aridity found in both ecosystems. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 569–583.  相似文献   

5.
6.
Our main goals were to identify diagnostic characters at the species, genus, and subfamily levels, find anatomical features with potential for future morphological and molecular (combined) phylogenetic analyses, and to reconstruct the evolution of wood anatomical characters in two subfamilies of Primulaceae in a molecular phylogenetic framework. We investigated twenty-seven species from the woody Myrsinoideae (4 genera) and Theophrastoideae (2 genera) using scanning electron, light, and epifluorescence microscopy. Samples were prepared using standard protocols. Based on the wood anatomical characters, we were able to identify synapomorphies and to detect evolutionary trends of interest for the genera and subfamilies. Both subfamilies share the presence of diffuse porosity, simple perforation plates, septate fibres, and scanty paratracheal axial parenchyma. Theophrastoideae species have rays?>?10 cells wide and short (<?350 µm) vessel elements, and Myrsinoideae have breakdown areas in rays and longer vessel elements. Ardisia and Stylogyne have scalariform intervessel pits, Myrsine exhibit breakdown areas in rays, and two Cybianthus species from subgenus Weilgetia have distinguishing features (e.g., scalariform perforation plate in C. nemoralis and the absence of rays in C. densiflorus). Overall, when combining characters, we were able to segregate the Neotropical Primulaceae subfamilies and genera from each other and from the subfamily Maesoideae based on wood anatomy.  相似文献   

7.
The present paper provides a comprehensive wood anatomical survey of sixteen Indian species belonging to six genera, viz. Breynia, Flueggea, Glochidion, Leptopus, Margaritaria and Phyllanthus, of Phyllantheae (Phyllanthaceae). Systematic relationships were evaluated within the Phyllantheae with special emphasis on wood anatomical distinctiveness and recognition of genera within the super‐genus Phyllanthus s.l. Except for Leptopus, the wood microstructure of all genera was found to be largely homogeneous. The results confirm the generic identity of Glochidion, Phyllanthus and Breynia s.l. (including Sauropus) within Phyllanthus s.l. and supports the segregation of Leptopus from Phyllantheae. Further, the results did not favour the placement of P. columnaris and P. polyphyllus in same subsection ‘Polyphylli’ of Emblica sect. Emblica. Ecological and evolutionary aspects of the wood anatomy within the tribe are also discussed.  相似文献   

8.
Salicaceae have been enlarged to include a majority of the species formerly placed in the polyphyletic tropical Flacourtiaceae. Several studies have reported a peculiar and infrequently formed multilayered structure of tension wood in four of the tropical genera. Tension wood is a tissue produced by trees to restore their vertical orientation and most studies have focused on trees developing tension wood by means of cellulose‐rich, gelatinous fibres, as in Populus and Salix (Salicaceae s.s.). This study aims to determine if the multilayered structure of tension wood is an anatomical characteristic common in other Salicaceae and, if so, how its distribution correlates to phylogenetic relationships. Therefore, we studied the tension wood of 14 genera of Salicaceae and two genera of Achariaceae, one genus of Goupiaceae and one genus of Lacistemataceae, families closely related to Salicaceae or formerly placed in Flacourtiaceae. Opposite wood and tension wood were compared with light microscopy and three‐dimensional laser scanning confocal microscopy. The results indicate that a multilayered structure of tension wood is common in the family except in Salix, Populus and one of their closest relatives, Idesia polycarpa. We suggest that tension wood may be a useful anatomical character in understanding phylogenetic relationships in Salicaceae. Further investigation is still needed on the tension wood of several other putatively close relatives of Salix and Populus, in particular Bennettiodendron, Macrohasseltia and Itoa.  相似文献   

9.
We used sequences from both internal transcribed spacers (ITS) and a small portion of the 5.8S gene of nuclear ribosomal DNA (nrDNA) for phylogenetic reconstruction of 19 genera of Maloideae and four potential outgroups from the Rosaceae. Parsimony analyses indicate that Maloideae are not monophyletic; Vauquelinia, which is traditionally placed in Spiraeoideae, and two genera of the Maloideae, Eriobotrya and Rhaphiolepis, form a well-supported clade that is the sister to the remainder of the subfamily. Although our ITS phylogenetic hypothesis is highly resolved, there is considerable homoplasy, and support, as indicated by bootstrap values and decay indices, is relatively weak for all groups except four: Eriobotrya-Rhaphiolepis-Vauquelinia, Crataegus-Mespilus, Amelanchier-Peraphyllum-Malacomeles, and Cydonia-Pseudocydonia. Our DNA sequence data do not support a broad interpretation of Sorbus. Intergeneric hybridization, which is prevalent in Maloideae, occurs between genera that are far removed from one another on our most-parsimonious trees. We infer an overall phylogeny from separate analyses of ITS DNA sequences and recently published morphological and wood anatomical studies of Maloideae and from analyses after pooling these data sets. The four most strongly supported clades of the ITS phylogeny appear in the phylogeny based on pooled data.  相似文献   

10.
11.
The aims of this study were to determine the wood chemical composition of 25 species of Cactaceae and to relate the composition to their anatomical diversity. The hypothesis was that wood chemical components differ in relationship to their wood features. The results showed significant differences in wood chemical compounds across species and genera (< 0.05). Pereskia had the highest percentage of lignin, whereas species of Coryphantha had the lowest; extractive compounds in water were highest for Echinocereus, Mammillaria, and Opuntia. Principal component analysis showed that lignin proportion separated the fibrous, dimorphic, and non‐fibrous groups; additionally, the differences within each type of wood occurred because of the lignification of the vascular tissue and the type of wall thickening. Compared with other groups of species, the Cactaceae species with fibrous and dimorphic wood had a higher lignin percentage than did gymnosperms and Acer species. Lignin may confer special rigidity to tracheary elements to withstand desiccation without damage during adverse climatic conditions.  相似文献   

12.
In tropical Africa, evidence of widely distributed genera transcending biomes or habitat boundaries has been reported. The evolutionary processes that allowed these lineages to disperse and adapt into new environments are far from being resolved. To better understand these processes, we propose an integrated approach, based on the eco‐physio‐morphological traits of two sister species with adjacent distributions along a rainfall gradient. We used wood anatomical traits, plant hydraulics (vulnerability to cavitation, wood volumetric water content, and hydraulic capacitance), and growth data from the natural habitat, in a common garden, to compare species with known phylogeny, very similar morphologically, but occupying contrasting habitats: Erythrophleum ivorense (wet forest) and Erythrophleum suaveolens (moist forest and forest gallery). We identified some slight differences in wood anatomical traits between the two species associated with strong differences in hydraulics, growth, and overall species distribution. The moist forest species, E. suaveolens, had narrower vessels and intervessel pits, and higher vessel cell‐wall reinforcement than E. ivorense. These traits allow a high resistance to cavitation and a continuous internal water supply of the xylem during water shortage, allowing a higher fitness during drought periods, but limiting growth. Our results confirm a trade‐off between drought tolerance and growth, controlled by subtle adaptations in wood traits, as a key mechanism leading to the niche partitioning between the two Erythrophleum species. The generality of this trade‐off and its importance in the diversification of the African tree flora remains to be tested. Our integrated eco‐physio‐morpho approach could be the way forward.  相似文献   

13.
This project undertakes the first molecular-based phylogenetic study of subfamily Epidendroideae (Orchidaceae). Approximately 1200 nucleotides (from the 3' half of the chloroplast gene ndhF for 34 orchid taxa and a lilioid monocot, Clivia miniata (Amaryllidaceae), were subjected to phylogenetic analysis using parsimony and maximum likelihood methods. Oryza sativa (Poaceae), a nonlilioid monocot, was designated as outgroup. Trees from both parsimony and maximum likelihood methods suggest that subfamily Epidendroideae is monophyletic, with Listera (Neottieae) as sister. Although subtribal relationships are typically well resolved and have strong branch support, intertribal relationships are generally poorly resolved. Perhaps this general lack of resolution among tribes reflects a rapid species radiation that coincided with anatomical, physiological, and anatomical adaptations that initiated large-scale epiphytism in the ancestral Epidendroideae. Six taxa in this study exhibit deletions that are not evenly divisible by three and result in extensive sequence frameshifts. For example, one deletion is 227 bp in length and is flanked by the short direct repeat sequence; TCAATAGGAATTTCTTTT. Multiple deletions and frameshifts suggest that ndhF may be a pseudogene, in at least some orchid taxa.  相似文献   

14.
This study, which includes 51 species and six genera of subfamily Abietoideae (Pinaceae), assesses the systematic significance of the wood structure in this group. In particular, the presence of normal and traumatic resin canals, the ray structure and the axial parenchyma constitute phylogenetically informative features. Comparative wood anatomy of Abietoideae clearly supports the monophyly of the genera Abies–Cedrus–Keteleeria–Nothotsuga–Pseudolarix–Tsuga, all of which have axial parenchyma with nodular transverse end walls in the regions of growth ring boundaries, crystals in the ray parenchyma and pitted horizontal and nodular end walls of ray parenchyma cells. Axial resin canals support a subdivision of the subfamily into two groups: Abies, Cedrus, Pseudolarix and Tsuga, without axial resin canals, and Keteleeria and Nothotsuga, with axial resin canals and a specific arrangement of traumatic axial resin canals. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 184–196.  相似文献   

15.
Twenty-three genera of Amaranthaceae occur in the New World. Two endemic genera occur in the Hawaiian Islands. Among the genera of the subfamily Amaranthoideae, Celosia, Cyathula and Achyranthes have their main distributions in the Old World; the two last-named genera are represented in the Americas only by widespread weeds. All the New World genera of the subfamily Gomphrenoideae are mainly or entirely restricted to this region. Characters of androecium and gynoecium are fundamental in the recognition of genera within the family. Androecia of different genera may be structurally and phylogenetically more similar than would appear from a cursory examination. It is suggested that the type of staminal tubes found in Pseudogomphrena and Froelichia can be derived from that in Alternanthera and Froelichiella by reduction of filament length and a fusion of pseudostaminodia with the filaments. The staminal tube in Gomphrena could result from a further decrease in distance between pseudostaminodia of the Pseudogomphrena type, and a deeper forking of the pseudostaminodia; each so-called apical filament lobe in Gomphrena would then be homologous with half a pseudostaminodium in Pseudogomphrena. Much of the variation in the androecia of these and other genera, as well as within genera such as Pfaffia, can be explained as the combined results of coalescence and splitting-up tendencies. Splitting up of staminal tubes may not necessarily take place along the borders of phylogenetically original filaments and pseudostaminodia. The Amaranthus-type of pollen is found in the majority of genera of the subfamily Amaranthoideae, but also in the Chenopodiaceae. A group of genera within the subfamily Gomphrenoideae also has pollen very similar to, or identical with, this type. Most genera of the subfamily Gomphrenoideae have pollen of the Gomphrena-type. Pseudoplantago has unilocular (at anthesis) anthers, a characteristic of the subfamily Gomphrenoideae, but floral structure as well as pollen morphology connect the genus to a group of genera within the Amaranthoideae, subtribe Achyranthinae. The combination of subcuboidal shape and opercula with radially arranged hooked protuberances, makes the pollen of Pseudoplantago unique among the angiosperms studied so far. Floral morphology and palynological characteristics indicate a close relationship between Pfaffia and Alternanthera. Both genera, as currently accepted, are relatively homogeneous from pollen morphological points of view. There are no correlations between pollen morphology and the variation in the androecium in Pfaffia, nor would pollen structure support recognition of Hebanthe as a distinct genus. Woehleria and Irenella may be derived from, or be of the same origin as, Dicraurus and Iresine. All four genera are placed in the subfamily Gomphrenoideae because of the bisporangiate anthers, but their pollen structure is very close to, or identical with, that of the Amaranthus-type. Pseudogomphrena combines characteristics of Gomphrena and Pfaffia.  相似文献   

16.
Previous analyses ofAsteropeia andPhysena have not compared the wood anatomy of these genera to those of Caryophyllales s.l. Molecular evidence shows that the two genera from a clade that is a sister group of the core Caryophyllales. Synapomorphies of theAsteropeia-Physena clade include small circular alternate pits on vessels, presence of vasicentric tracheids plus fiber-tracheids, presence of abaxial-confluent plus diffuse axial parenchyma, and presence of predominantly uniseriate rays. These features are analyzed with respect to habit and ecology of the two genera. Solitary vessels, present in both genera, are related to the presence of vasicentric tracheids. Autapomorphies in the two genera seem related to adaptations byPhysena as a shrub of moderately dry habitats (e.g., narrower vessel elements, abundant vasicentric tracheids, square to erect cells in rays) as compared to alternate character expressions that seem related to the arboreal habit and humid forest ecology ofAsteropeia. The functional significance of vasicentric tracheids and fiber-tracheids in dicotyledons is briefly reviewed in the light of wood anatomy of the two genera.  相似文献   

17.
Detailed wood anatomical data for 32 species from all nine genera of the tribe Podalyrieae are presented, together with numerical analyses and the mapping of character states onto the latest available molecular phylogeny. It was found that trees (Cadia, Calpurnia and Virgilia) have vessels in small isolated groups, whilst fynbos shrubs (the remaining genera: Amphithalea, Cyclopia, Liparia, Podalyria, Stirtonanthus and Xiphotheca) commonly show highly grouped narrow vessels (frequently in a dendritic pattern), and helical thickening on the vessel walls. Comparisons of the main character state changes with the molecular phylogeny of the tribe show that the wood structure of trees probably represents the basic condition in the tribe; character states present in shrubs appear to have arisen a few times and very likely represent adaptations to seasonal water stress. In general, the wood anatomy is congruent with current subtribal and generic delimitations. Fire-survival strategy is reflected in the rays, with seeders having mostly procumbent cells whilst sprouters have square and upright cells. The close similarity in wood anatomy between Cadia and Calpurnia is in agreement with the transfer of Cadia to the Podalyrieae. A remarkable diversity of crystals was found, including prismatic, acicular and navicular crystals, the last two of which may occur singly or in sheaf-like aggregates.  相似文献   

18.
A survey of the patterns of endothecial wall thickenings in 106 representative species from 20 genera in the Pothoideae and Monsteroideae was made using cleared anthers, sections and macerations. The wide variety of wall thickenings that is present is based on an annular-helical pattern. Variations in thickenings are related to differences in cell shape, cell orientation, intergradation between helical and annular patterns, pitch of helices, presence of branched thickenings, and various types of discontinuities in thickenings. Notable exceptions to the annular-helical pattern include Culcasia, which lacks a differentiated endothecial layer with thickenings, and Acorus, which has a peculiar stellate pattern that is unique in the family. No single pattern consistently characterizes either subfamily, although continuous helices are common in the Monsteroideae, and rare in the endothecium of Pothoideae (except Anadendrum). Monsteroideae frequently exhibit a series of slanted separate thickenings on anticlinal walls, which is absent from Pothoideae except in Heteropsis. The slanted pattern is considered a variation on a rectangular helix, involving discontinuities of thickenings on the periclinal walls. Some monsteroid genera show considerably more interspecific variation (Rhaphidophora) than others (Monstera). Endothecial thickenings constitute an anatomical character that is useful in the systematic study of Araceae; present results support other anatomical studies in identifying Culcasia and Acorus as highly divergent genera in the Pothoideae.  相似文献   

19.
Pollen morphology of the Thymelaeaceae in relation to its taxonomy   总被引:1,自引:0,他引:1  
 Pollen morphology of the four subfamilies of Thymelaeaceae sensu Domke (1934) was examined using LM, SEM and TEM. The variation of the exine architecture allows to distinguish four pollen types and three subtypes. Distribution of pollen types proves to be widely correlated with the occurrence of characters from wood anatomy and flower morphology. If pollen types are connected with subfamilies sensu Domke (1934), Gonystyloideae, Thymelaeoideae and Synandrodaphnoideae are stenopalynous, whereas Aquilarioideae are eurypalynous. Based on pollen morphology as well as on other characters it is evident that Aquilarioideae are not monophyletic. Its genera Aquilaria and Gyrinops are more closely related to Thymelaeoideae and Synandrodaphnoideae than to other genera of Aquilarioideae sensu Domke (1934). The remaining genera of Aquilarioideae Deltaria, Solmsia and Lethedon are most similar to Gonystyloideae and therefore are included in this subfamily, as it was suggested by Airy Shaw (1979). Furthermore, palynological and other characters favour the transfer of Octolepis from Aquilarioideae to Gonystyloideae. The re-circumscribed Aquilarioideae together with Thymelaeoideae and Synandrodaphnoideae are shown to form a monophyletic group. Received August 8, 2001 Accepted December 7, 2001  相似文献   

20.
The coding region of the matK gene was sequenced to infer the phylogeny of the family Magnoliaceae. Phylogenetic analyses of 21 matK sequences representing ten genera of Magnoliaceae and three outgroups suggest relationships among both subfamilies and genera. Monophyly of the subfamily Liriodendroideae (the genus Liriodendron) and the subfamily Magnolioideae is strongly supported, respectively. Within the subfamily Magnolioideae, three clades are formed: (1) the genus Magnlietia, (2) the subgenus Magnolia, and (3) the subgenus Yulania, with the genera Michelia, Paramichelia, Tsoongiodendron, Alcimandra, Kmeria, Parakmeria and Manglietiastrum. However, the genus Magnolia is shown to be a polyphyletic group, and the genus Michelia a paraphyletic group. Relatively low sequence divergences are detected among genera of the the subfamily Magnolioideae, ranging from 0.14% to 1.70%, especially in the tribe Micheliinae (0.14–0.98%). Molecular evidence from matK sequence data suggests that the phylogenetic positions and the delimitation of the eight genera Magnolia, Michelia, Tsoongiodendron, Paramichelia, Alcimandra, Kmeria, Parakmeria and Manglietiastrum need to be reconsidered. Received: 2 January 2000 / Accepted: 12 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号