首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Galletto R  Bujalowski W 《Biochemistry》2002,41(28):8907-8920
The kinetic mechanism of binding of ATP and ADP fluorescent analogues to the E. coli replicative factor DnaC protein has been studied using the fluorescence stopped-flow technique. The experiments have been performed under pseudo-first-order conditions with respect to the nucleotide cofactor or the DnaC concentration. Three relaxation processes are observed at a large excess of the nucleotide, while only two relaxation processes are detected in the excess of the protein. Such behavior of the kinetic system is a diagnostic indication of the presence of the protein conformational equilibrium prior to the ligand binding. The obtained data indicate that the minimum mechanism that describes the observed kinetics includes the conformational transition of the DnaC protein, prior to nucleotide binding, followed by the two-step, sequential association of the cofactor to only one of the protein conformations, as defined by In the examined solution conditions, the conformation of the DnaC protein is shifted toward the state (DnaC)(2) that binds the nucleotide. The lack of any cofactor binding to the (DnaC)(1) state points to the existence of a stringent locking mechanism of the nucleotide binding-site in the protein. Binding of ATP and ADP analogues obeys the same mechanism, with similar rate constants, indicating that ATP and ADP analogues bind to the same protein conformation. The (C)(1) intermediate dominates the distribution of the DnaC protein population in the presence of cofactors. The formation of (C)(1) is accompanied by a low nucleotide fluorescence increase, indicating a hydrophilic environment around the ribose of bound cofactors. Transition to (C)(2) places the ribose region in a highly hydrophobic environment with relative molar fluorescence intensity approximately 8-fold higher than that of the free cofactor. The significance of these results for the functioning of the DnaC protein is discussed.  相似文献   

2.
Quantitative studies of interactions between the Escherichia coli replication factor DnaC protein and the DnaB helicase have been performed using sedimentation velocity and fluorescence energy transfer techniques. The applied novel analysis of the sedimentation data allows us to construct thermodynamic rigorous binding isotherms without any assumption as to the relationship between the observed molecular property of the complexes formed, the average sedimentation coefficient, or the degree of binding. Experiments have been performed with the fluorescein-modified DnaB helicase, which allows an exclusive monitoring of the DnaB-DnaC complex formation. The DnaC binding to the unmodified helicase has been characterized in competition experiments. The data establish that, in the presence of the ATP analog AMP-PNP, or ADP, a maximum of six DnaC monomers bind cooperatively to the DnaB hexamer. The positive cooperative interactions are limited to the two neighboring DnaC molecules. Analyses using a statistical thermodynamic hexagon model indicate that, under the solution conditions examined, the affinity is characterized by the intrinsic binding constant K=1.4(+/-0.5)x10(5)M(-1) and cooperativity parameter sigma=21+/-5. These data suggest strongly that the DnaC-DnaB complex exists in vivo as a mixture of complexes with a different number of bound DnaC molecules, although the complex with six DnaC molecules bound dominates the distribution. The DnaC nucleotide-binding site is not involved in the stabilization of the complex. Moreover, the hydrolysis of NTP bound to the helicase or the DnaC is not required for the release of the DnaC protein from the complex. The single-stranded DNA (ssDNA) bound to the helicase does not affect the DnaC protein binding. However, in the presence of the DNA, there is a significant difference in the energetics and structure of the ternary complex, DnaC-DnaB-ssDNA, formed in the presence of AMP-PNP as compared to ADP. The topology of the ternary complex DnaC-DnaB-ssDNA has been determined using the fluorescence energy transfer method. In solution, the DnaC protein-binding site is located on the large 33 kDa domain of the DnaB helicase. The significance of the results in the functioning of the DnaB helicase-DnaC protein complex is discussed.  相似文献   

3.
The structure of the nucleotide-binding site of the Escherichia coli replication factor DnaC protein and the effect of the nucleotide cofactor on the protein structure have been examined using ultraviolet, steady-state, and time-dependent fluorescence spectroscopy. Emission spectra and quenching studies of the fluorescent nucleotide analogs, 3′-O-(N-methylantraniloyl)-5′-triphosphate (MANT-ATP) and 3′-O-(N-methylantraniloyl)-5′-diphosphate (MANT-ADP), bound to the DnaC protein indicate that the nucleotide-binding site forms a hydrophobic cleft on the surface of the protein. Fluorescence decays of free and bound MANT-ATP and MANT-ADP indicate that cofactors exist in two different conformations both, free and bound to the protein. However, the two conformations of the bound nucleotides differ in their solvent accessibilities. Moreover, there are significant differences in the solvent accessibility between ATP and ADP complexes. Specific binding of magnesium to the protein controls the structure of the binding site, particularly, in the case of the ATP complex, leading to additional opening of the binding site cleft. Both tyrosine and tryptophan residues are located on the surface of the protein. The tryptophans are clustered at a large distance from the nucleotide-binding site. However, in spite of a large spatial separation, binding of both cofactors induces significant and different changes in the structure of the environment of tryptophans, indicating long-range structural effects through the DnaC molecule. Moreover, only ATP induces changes in the distribution of the tyrosine residues on the surface of the protein. The data reveal that the nucleotide-DnaC protein complex is a sophisticated allosteric system, responding differently to the ATP and ADP binding.  相似文献   

4.
Global conformational and oligomeric states of the Escherichia coli replicative factor DnaC protein in the absence and presence of magnesium and nucleotide cofactors, ATP and ADP, and their fluorescent analogues, MANT-ATP and MANT-ADP, have been examined using analytical sedimentation velocity and time-dependent fluorescence anisotropy techniques. In solution, the DnaC protein exists exclusively as a monomer over a large protein concentration range. The value of s(degrees) (20, w)= 2.45 +/- 0.07 S indicates that the protein molecule has an elongated shape. When modeled as a prolate ellipsoid of revolution, the hydrated DnaC protein has an axial ratio of 4.0 +/- 0.6 with long axis a = 112 A and the short axis b = 28 A, respectively. The presence of magnesium or nucleotide cofactors, ATP or ADP, does not affect the global conformation of the protein and its monomeric state. These data indicate that recently found cooperative interactions between the DnaC molecules, in the complex with the DnaB helicase, are induced by the binding to the helicase, i.e., they are not the intrinsic property of the DnaC protein. Fluorescence anisotropy decays of the DnaC-MANT-ATP and DnaC-MANT-ADP complexes indicate that the protein has a rigid global structure on the nanosecond time scale, little affected by the nucleotide cofactors. Nevertheless, the complex with ATP has a more flexible structure, while the complex with ADP is more rigid, with the protein molecule assuming a more elongated shape. Magnesium exerts control only on the complex with the ATP analogue. In the absence of magnesium, the ATP analogue is firmly held in the binding site. In the presence of Mg(2+), this fixed location is released and the analogue is allowed to assume a flexible conformational state. The significance of the results for the functioning of the DnaC protein is discussed.  相似文献   

5.
S S Wong  P A Frey 《Biochemistry》1977,16(2):298-305
The fluorescence emission spectrum for reduced diphosphopyridine nucleotide (DPNH) in Escherichia coli uridine diphosphate galactose 4-epimerase-DPNH complexes has a maximum at 435 nm, which is about twice as intense when the excitation is at 280 nm as at 340 nm. The fluorescence excitation spectrum monitored at 460 nm has two maxima, one at 340-345 nm and another about twice as intense at 280 nm. The polarization of DPNH fluorescence by these complexes is 0.43-0.44 compared with 0.46 for DPNH immobilized in propylene glycol at -20 degrees C. The small degree of fluorescence depolarization is due to rotational relaxation of the protein, relaxation time 205 ns. The excited-state lifetimes in epimerase-DPNH-nucleotide complexes are 3.5-4.2 ns. The fluorescence data show that the dihydropyridine ring in these complexes is highly immobilized and exhibits no detectable independent motion relative to rotational motions of the protein. The inhibition constants for uridine monophosphate (UMP) and 2,2,6,6-tetramethyl-4-piperidinyl-1-oxyl uridyl pyrophosphate acting as competitive reversible inhibitors of epimerase-DPN+ are 1.2 and 0.2 mM, respectively, at 27 degrees C in 0.1 M sodium bicinate buffer at pH 8.5. A collection of Ki and Km values for uridine nucleotide inhibitors and substrates indicates that the principle substrate binding interactions involve the nucleotide moieties of substrates. Dissociation constants for uridine nucleotides dissociating from epimerase-DPNH-nucleotide complexes, measured by ultraviolet absorption and fluorescence techniques, are 12 muM for UMP, 14 muM for UDP-hexopyranoses, 4 muM for UDP-pentopyranoses, 27 muM for p-bromoacetamidophenyl uridyl pyrophosphate, 0.14 muM for UDP-4-ketohexopyranose intermediate, and 0.36 muM for UDP-4-ketopentopyranose intermediate at 27 degrees C in 0.1 M sodium bicinate buffer at pH 8.5. Analysis of these data shows conclusively that the major part of the binding free energy for UDP-4-ketopyranose intermediates binding to epimerase-DPNH is attributable to the uridylpyrophosphoryl components and that the glycosyl-binding free energies are much smaller. The data show that the action of this enzyme does not require tight binding between the active site and glycosyl groups of either substrates or intermediates, although there is favorable binding of the uridylpyrophosphoryl components, particularly by epimerase-DPNH. It is postulated that nonstereospecific action results from and depends upon relatively weak, nonspecific active site binding of glycosyl groups in substrates and intermediates and that the uridylpyrophosphoryl groups serve as binding anchors in the epimerization process.  相似文献   

6.
The kinetics of human polymerase beta (pol beta) binding to the single-stranded DNA, in the (pol beta)(16) and (pol beta)(5) binding modes, that differ in the number of occluded nucleotide residues in the protein-DNA complexes, have been examined, using the fluorescence stopped-flow technique. This is the first determination of the mechanism of ssDNA recognition by human pol beta. Binding of the enzyme to the ssDNA containing fluorescein in the place of one of the nucleotides is characterized by a strong DNA fluorescence increase, providing the required signal to quantitatively examine the complex mechanism of ssDNA recognition. The experiments were performed with the ssDNA 20-mer, which engages the polymerase in the (pol beta)(16) binding mode and encompasses the total DNA-binding site of the enzyme, and with the 10-mer, which exclusively forms the (pol beta)(5) binding mode engaging only the 8-kDa domain of the enzyme. The obtained data and analyses indicate that the (pol beta)(16) formation occurs by a minimum four-step, sequential mechanism: (reaction: see text). Formation of the (pol beta)(5) binding mode proceeds with the same mechanism; however, both binding modes differ in the energetics of the partial reactions and the structure of the intermediates. Quantitative amplitude analysis, using the matrix projection operator approach, allowed us to determine molar fluorescence intensities of all intermediates relative to the fluorescence of the free DNA. The results indicate that (pol beta)(16) binding mode formation, which is initiated by the association of the 8-kDa domain with the DNA, is followed by subsequent intermediates stabilized by DNA binding to the 31-kDa domain. Comparison with the (pol beta)(5) binding mode formation indicates that transitions of the enzyme-DNA complex in both modes are induced at the interface of the 8-kDa domain and the DNA. The sequential nature of the mechanism indicates the lack of a conformational preequilibrium of the enzyme prior to ssDNA binding.  相似文献   

7.
The kinetic mechanism of binding nucleotide cofactors to the Escherichia coli primary replicative helicase DnaB protein has been studied, using the fluorescence stopped-flow technique. The experiments have been performed with fluorescent ATP and ADP analogues bearing the modification on the ribose, MANT-AMP-PNP and MANT-ADP, and on the base, epsilonAMP-PNP and epsilonADP. Association of the DnaB helicase with nucleotide cofactors is characterized by four relaxation times that indicate that the binding occurs by a minimum of four-steps. The simplest mechanism which can describe the data is a four-step sequential process where the bimolecular binding step is followed by three isomerization steps. This mechanism is described by the following equation: [equation in text]. The binding mechanism is independent of the location of the nucleotide cofactor modification and is an intrinsic property of the DnaB helicase-nucleotide system. Quantitative amplitude analyses, using the matrix projection operator technique, allowed us to determine specific fluorescence changes accompanying the formation of all intermediates relative to the fluorescence of the free nucleotide. It shows that the major conformational change of the DnaB helicase-nucleotide complex occurs in the formation of the (H-N)(1). Moreover, the value of the bimolecular rate constant, k(1), is 3-4 orders of magnitude lower than the value expected for the diffusion-controlled reaction. These results indicate that the determined first step includes formation of the collision and an additional transition of the enzyme-nucleotide complex. The obtained results provide evidence of profoundly different conformational states of the ribose and base regions of the nucleotide-binding site in different intermediates. The sequential nature of the mechanism of the nucleotide binding to the DnaB helicase indicates the lack of the existence of a kinetically significant conformational equilibrium of the helicase protomer and the DnaB hexamer prior to the binding. The significance of these results for the functioning of the DnaB helicase is discussed.  相似文献   

8.
The fluorescence of TNP-nucleotides bound to sarcoplasmic reticulum ATPase is enhanced upon formation of phosphorylated enzyme intermediate either with ATP in the presence of Ca2+ or, to a greater extent, with Pi in the absence of Ca2+. Binding of the TNP-nucleotides does not occur if the ATPase is labeled at the active site with fluorescein isothiocyanate. Addition of ADP to the TNP-nucleotide X enzyme complex phosphorylated with Pi causes dissociation of TNP-nucleotide and a proportional reduction in fluorescence. These and other kinetic observations indicate that the TNP-nucleotide exchanges with ADP following enzyme phosphorylation with ATP or occupies the ADP portion of the catalytic site following enzyme phosphorylation with Pi. This interaction with the phosphorylated site results in fluorescence enhancement of the TNP-nucleotide. Comparison of the TNP-nucleotide fluorescence features in different solvents with that of the TNP-nucleotide bound to sarcoplasmic reticulum ATPase indicates that, following phosphorylation, the binding domain excludes solvent molecules and confers restricted mobility to the TNP-nucleotide. Solvent exclusion and substrate immobilization accompany, to a greater extent, phosphorylation of the active site with Pi in the absence of Ca2+. TNP-nucleotides bound to the catalytic sites were also found to be acceptors of resonance energy transfer from enzyme tryptophan in the extramembranous domain of the ATPase which also contains the catalytic site.  相似文献   

9.
Galletto R  Rajendran S  Bujalowski W 《Biochemistry》2000,39(42):12959-12969
Quantitative analyses of the interactions of nucleotide cofactors with the Escherichia coli replicative factor DnaC protein have been performed using thermodynamically rigorous fluorescence titration techniques. This approach allowed us to obtain stoichiometries of the formed complexes and interaction parameters, without any assumptions about the relationship between the observed signal and the degree of binding. The stoichiometry of the DnaC-nucleotide complex has been determined in direct binding experiments with fluorescent nucleotide analogues, MANT-ATP and MANT-ADP. The stoichiometry of the DnaC complexes with unmodified ATP and ADP has been determined using the macromolecular competition titration method (MCT). The obtained results established that at saturation the DnaC protein binds a single nucleotide molecule per protein monomer. Analyses of the binding of fluorescent analogues and unmodified nucleotides to the DnaC protein show that ATP and ADP have the same affinities for the nucleotide-binding site, albeit the corresponding complexes have different structures, specifically affected by the presence of magnesium cations in solution. Although the presence of the gamma-phosphate does not affect the affinity, the structure of the triphosphate group is critical. While the affinity of ATP-gamma-S is the same as the affinity of ATP, the affinities of AMP-PNP and AMP-PCP are approximately 2 and approximately 4 orders lower than that of ATP, respectively. Moreover, the ribose plays a significant role in forming a stable complex. The binding constants of dATP and dADP are approximately 2 orders of magnitude lower than those for ribose nucleotides. The nucleotide-binding site of the DnaC protein is highly base specific. The intrinsic affinity of adenosine triphosphates and diphosphates is at least 3-4 orders of magnitude higher than for any of the other examined nucleotides. The obtained data indicate that the recognition mechanism of the nucleotide by the structural elements of the binding site is complex with the base providing the specificity and the ribose, as well as the second phosphate group contributing to the affinity. The significance of the results for the functioning of the DnaC protein is discussed.  相似文献   

10.
6,7-Dimethyllumazine derivatives, substituted at the 8-position with aldityls or monohydroxyalkyl groups, have been examined for their binding ability to lumazine apo-protein from two strains of Photobacterium phosphoreum using fluorescence dynamics techniques. On the protein the lumazine has a nearly monoexponential decay of fluorescence with lifetime 13.8 ns (20 degrees C). In free solution the lifetime is 9.6 ns. The concentration of free and bound lumazine in an equilibrium mixture can be recovered readily by analysis of the fluorescence decay. Only the aldityl derivatives D-xylityl and 3'-deoxy-D-ribityl, having stereoconfigurations at the 2' and 4' positions identical to the natural ligand, 8-(1'-D-ribityl), show comparable dissociation constants (0.3 microM, 20 degrees C, pH 7.0). D-Erythrityl and L-arabityl have dissociation constants of 1-2 microM. All other ligands show no interaction at all or have dissociation constants in the range 6-80 microM, which can still be determined semi-quantitatively using the fluorescence decay technique. In the case of these very weakly bound ligands, unambiguous detection of bound ligand can be shown by a long correlation time (23 ns, 2 degrees C) for the fluorescence anisotropy decay. Examination of the bound D-xylityl compound's fluorescence anisotropy decay at high time resolution (< 100 ps) shows rigid association, i.e. no mobility independent of the macromolecule. All bound ligands appear to be similarly positioned in the binding site. The influence of the stereoconfiguration at the 8-position found for lumazine protein parallels that previously observed for the enzyme riboflavin synthase, where the lumazines are substrates or inhibitors. This is consistent with the finding of significant sequence similarity between these proteins. The binding rigidity may have implications for the mechanism of the enzyme.  相似文献   

11.
Galletto R  Jezewska MJ  Bujalowski W 《Biochemistry》2004,43(34):11002-11016
Kinetics of the Escherichia coli PriA helicase interactions with the ssDNA has been studied, using the fluorescence stopped-flow technique. Experiments have been performed with a series of fluorescent etheno derivatives of ssDNA adenosine oligomers, differing in the number of nucleotide residues. The PriA helicase binds the ssDNA in the sequential process defined by [reaction: see text]. In the first step, the enzyme associates fast with the ssDNA without inducing conformational changes in the DNA. The dependence of the partial equilibrium constant, characterizing the first step, upon the length of the ssDNA strictly reflects the statistical relationship between the size of the DNA-binding site and the number of potential binding sites on the ssDNA. Only the DNA-binding site that encompasses 6.3 +/- 1 residues is directly involved in interactions. The site is located on a structural domain allowing the enzyme to efficiently search and recognize small patches of the ssDNA. Intramolecular steps are independent of the ssDNA length and accompanied by changes in the DNA structure. Salt and glycerol effects on the studied kinetics indicate a very different nature of the intermediates. While the bimolecular step is characterized by net ion release and water uptake, net ion uptake and water release accompany intramolecular transitions. Specific ion binding stabilizes the helicase-ssDNA complex in (P)(2) and (P)(3) intermediates. However, magnesium and AMP-PNP do not affect the mechanism of enzyme-ssDNA interactions. The sequential character of the mechanism indicates that the enzyme does not exist in a preequilibrium conformational transition prior to the DNA binding.  相似文献   

12.
Nanosecond fluorescence spectroscopy was used to study the unique binding site of the retinol-binding protein (RBP) from human serum. At pH 7.4, the binding of retinol to RBP caused the following spectroscopic changes in the ligand: (a) an enhancement of the fluorescence decay time (gamma = 8 ns); and (b) an increase in the emission anisotropy (A = 0.29). Retinol in hexane has a fluorescent decay time of 4.2 ns and a low emission anisotropy (A = 0.02). The increase in the fluorescence decay time of bound retinol is not due to dielectric relaxation effects of polar groups, since nanosecond time-resolved emission spectra of either retinol in glycerol or retinol bound to RBP, failed to show any time-dependent shifts in emission maxima during the time period investigated 0 to 30 ns. The degree of rotational mobility of bound retinol was investigated by time emission anisotropy measurements. The observed rotational correlation time (theta = 7.2 ns) is consistent with a rigid compact macromolecule of 21,000 molecular weight.  相似文献   

13.
E Casali  P H Petra  J B Ross 《Biochemistry》1990,29(40):9334-9343
The relationship between steroid binding and protein subunit interactions of rabbit sex steroid binding protein (rSBP) has been studied by steady-state and time-resolved fluorescence spectroscopy. The high-affinity (Ka approximately 10(8) M-1 at 4 degrees C), fluorescent estrogen d-1,3,5(10),6,8-estrapentaene-3,17 beta-diol [dihydroequilenin (DHE)] was used as a fluorescent probe of the steroid-binding site. Perturbation of the binding site with guanidinium chloride (Gdm.Cl) was monitored by changes in the steady-state fluorescence anisotropy of DHE as well as by changes in fluorescence quenching of DHE with acrylamide. The results of acrylamide quenching at 11 degrees C show that, while between 0 and 1 M Gdm.Cl the steroid-binding site is completely shielded from bulk solvent, there is decreased DHE binding. To study the subunit-subunit interactions, rSBP was covalently labeled with dansyl chloride in the presence of saturating 5 alpha-dihydrotestosterone (DHT), which yielded a dansyl-conjugated protein that retained full steroid-binding activity. The protein subunit perturbation was monitored by changes in the steady-state fluorescence anisotropy of the dansyl group. At 11 degrees C, the dansyl anisotropy perturbation, reflecting changes in global and segmental motions of the dimer protein, occurs at concentrations of Gdm.Cl above 1 M. The Gdm.Cl titration in the presence of steroids with equilibrium association constants less than 10(8) M-1 shows a plateau near 3 M Gdm.Cl at 11 degrees C; at this Gdm.Cl concentration, no DHE is bound. No plateau is observed at 21 degrees C. At higher Gdm.Cl concentrations, the dansyl fluorescence anisotropy decreases further and shows no steroid dependence. Recovery of steroid-binding activity (assayed by saturation binding with [3H]DHT), under renaturation conditions, is dependent on both steroid concentration and affinity. Both unlabeled and dansyl-labeled protein recovery the same amount of activity, and according to fluorescence anisotropy, dansyl-labeled rSBP re-forms a dimer upon dilution below 1 M or removal of Gdm.Cl. From the steroid requirement for recovery of steroid-binding activity, it appears that a conformational template is required for the dimeric protein to re-form a steroid-binding site with native-like properties.  相似文献   

14.
The interaction of the nucleotide-binding subunit B with subunit F is essential in coupling of ion pumping and ATP synthesis in A1AO ATP synthases. Here we provide structural and thermodynamic insights on the nucleotide binding to the surface of subunits B and F of Methanosarcina mazei Gö1 A1AO ATP synthase, which initiated migration to its final binding pocket via two transitional intermediates on the surface of subunit B. NMR- and fluorescence spectroscopy as well as ITC data combined with molecular dynamics simulations of the nucleotide bound subunit B and nucleotide bound B-F complex in explicit solvent, suggests that subunit F is critical for the migration to and eventual occupancy of the final binding site by the nucleotide of subunit B. Rotation of the C-terminus and conformational changes in subunit B are initiated upon binding with subunit F causing a perturbation that leads to the migration of ATP from the transition site 1 through an intermediate transition site 2 to the final binding site 3. This mechanism is elucidated on the basis of change in binding affinity for the nucleotide at the specific sites on subunit B upon complexation with subunit F. The change in enthalpy is further explained based on the fluctuating local environment around the binding sites.  相似文献   

15.
The DNA binding properties of the Escherichia coli RecQ helicase   总被引:6,自引:0,他引:6  
The RecQ helicase family is highly conserved from bacteria to men and plays a conserved role in the preservation of genome integrity. Its deficiency in human cells leads to a marked genomic instability that is associated with premature aging and cancer. To determine the thermodynamic parameters for the interaction of Escherichia coli RecQ helicase with DNA, equilibrium binding studies have been performed using the thermodynamic rigorous fluorescence titration technique. Steady-state fluorescence anisotropy measurements of fluorescein-labeled oligonucleotides revealed that RecQ helicase bound to DNA with an apparent binding stoichiometry of 1 protein monomer/10 nucleotides. This stoichiometry was not altered in the presence of AMPPNP (adenosine 5'-(beta,gamma-imido) triphosphate) or ADP. Analyses of RecQ helicase interactions with oligonucleotides of different lengths over a wide range of pH, NaCl, and nucleic acid concentrations indicate that the RecQ helicase has a single strong DNA binding site with an association constant at 25 degrees C of K=6.7 +/- 0.95 x 10(6) M(-1) and a cooperativity parameter of omega=25.5 +/- 1.2. Both single-stranded DNA and double-stranded DNA bind competitively to the same site. The intrinsic affinities are salt-dependent, and the formation of DNA-helicase complex is accompanied by a net release of 3-4 ions. Allosteric effects of nucleotide cofactors on RecQ binding to DNA were observed only for single-stranded DNA in the presence of 1.5 mM AMPPNP, whereas both AMPPNP and ADP had no detectable effect on double-stranded DNA binding over a large range of nucleotide cofactor concentrations.  相似文献   

16.
The Escherichia coli single-stranded DNA binding protein (SSB) binds selectively to single-stranded (ss) DNA intermediates during DNA replication, recombination and repair. Each subunit of the homo-tetrameric protein contains a potential ssDNA binding site, thus the protein can bind to ssDNA in multiple binding modes, one of which is the (SSB)(65) mode, in which a 65 nucleotide stretch of ssDNA interacts with and wraps around all four subunits of the tetramer. Previous stopped-flow kinetic studies of (SSB)(65) complex formation using the oligodeoxynucleotide, (dT)70, were unable to resolve the initial binding step from the rapid wrapping of ssDNA around the tetramer. Here we report a laser temperature-jump study with resolution in the approximately 500 ns to 4 ms time range, which directly detects these ssDNA wrapping/unwrapping steps. Biphasic time courses are observed with a fast phase that is concentration-independent and which occurs on a time-scale of tens of microseconds, reflecting the wrapping/unwrapping of ssDNA around the SSB tetramer. Analysis of the slower binding phase, in combination with equilibrium binding and stopped-flow kinetic studies, also provides evidence for a previously undetected intermediate along the pathway to forming the (SSB)(65) complex.  相似文献   

17.
The intestinal fatty acid binding protein contains two tryptophan residues (Trp6 and Trp82) both of which have been shown by X-ray and NMR methods to be buried in hydrophobic clusters. By using a combination of steady-state and time-resolved fluorescence experiments, we have deconvoluted the lifetime weighted contribution of each of the tryptophans to the steady-state fluorescence quantum yield. While Trp82 has been implicated in an intermediate that appears at relatively high denaturant concentrations, the variation of the lifetime weighted contribution of Trp6 with urea or guanidium hydrochloride shows formation of an intermediate state at low concentrations of the denaturant before the actual unfolding starts. Trp82 did not show similar behavior. Fluorescence quenching experiments by acrylamide show that while Trp6 in the native protein is less solvent-exposed, its accessibility is increased significantly at low urea concentration indicating that the early intermediate state is partially unfolded. Time-resolved anisotropy experiments indicate that the volume of the partially unfolded intermediates is larger than the native protein and lead to the speculation that the last step of the protein folding might be the removal of solvent molecules from the protein.  相似文献   

18.
The interaction of Escherichia coli aspartate transcarbamylase with linear-benzo-ATP has been investigated by means of fluorescence spectroscopy. The fluorescent nucleotide analogue activates the enzyme to the same extent as ATP. Fluorescence polarization has been used to determine the association constant of lin-benzo-ATP with aspartate transcarbamylase (ATCase) which is 5 X 10(-3) M-1 at pH 8.7, at 4 degrees C, assuming six binding sites. This association constant is similar to those previously obtained for ATP at a variety of temperatures, buffers, and pH. The fluorescence emission of lin-benzo-ATP is not quenched when bound to ATCase, which indicates absence of pi interactions between the activator and tyrosyl residues in the protein. These residues have been implicated in the stereochemical mechanism of allosteric interactions in ATCase. Furthermore, this fluorescence behavior implicates hydrogen bond formation between the amino group of lin-benzo-ATP and a nucleophilic center at the enzyme binding site. The fact that lin-benzo-ATP activates ATCase is consistent with a previously published model for nucleotide regulation of the enzyme.  相似文献   

19.
Dynamic fluorescence properties of bacterial luciferase intermediates   总被引:1,自引:0,他引:1  
J Lee  D J O'Kane  B G Gibson 《Biochemistry》1988,27(13):4862-4870
Three fluorescent species produced by the reaction of bacterial luciferase from Vibrio harveyi with its substrates have the same dynamic fluorescence properties, namely, a dominant fluorescence decay of lifetime of 10 ns and a rotational correlation time of 100 ns at 2 degrees C. These three species are the metastable intermediate formed with the two substrates FMNH2 and O2, both in its low-fluorescence form and in its high-fluorescence form following light irradiation, and the fluorescent transient formed on including the final substrate tetradecanal. For native luciferase, the rotational correlation time is 62 or 74 ns (2 degrees C) derived from the decay of the anisotropy of the intrinsic fluorescence at 340 nm or the fluorescence of bound 8-anilino-1-naphthalenesulfonic acid (470 nm), respectively. The steady-state anisotropy of the fluorescent intermediates is 0.34, and the fundamental anisotropy from a Perrin plot is 0.385. The high-fluorescence intermediate has a fluorescence maximum at 500 nm, and its emission spectrum is distinct from the bioluminescence spectrum. The fluorescence quantum yield is 0.3 but decreases on dilution with a quadratic dependence on protein concentration. This, and the large value of the rotational correlation time, would be explained by protein complex formation in the fluorescent intermediate states, but no increase in protein molecular weight is observed by gel filtration or ultracentrifugation. The results instead favor a proposal that, in these intermediate states, the luciferase undergoes a conformational change in which its axial ratio increases by 50%.  相似文献   

20.
A transient intermediate (I3) observed previously in the unfolding of ribonuclease A has been studied by employing a sequential mixing instrument to populate selectively this species. This approach has made it possible both to determine the refolding behavior of this species and to characterize further the kinetics of its formation. (1) Formation of I3 represents the earliest detectable change in unfolding. (2) The loss of the 2'CMP binding site occurs in parallel with the exposure of the interior of the protein to solvent. (3) I3 is distinct from previously described intermediates in refolding. (4) Overall condensation of the protein to exclude solvent from the interior, as well as the formation of a substrate binding site, takes place in approximately 30 ms (pH 5.8, 47 degrees C), indicating that the formation of native structure can take place faster than had previously been supposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号