首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples of larval and juvenile fishes were collected at two depths weekly during spring and summer 1983 near the mouths of backwater areas in Pool 13 of the Upper Mississippi River. The study was conducted to determine the relative value of these habitats as nursery areas for fishes present and to note any interactions that might occur between the backwaters which are being rapidly lost to siltation, and the main channel. The larvae and juveniles collected represented 13 families divided into 27 lower taxa. Cyprinidae, Clupeidae, and Sciaenidae made up 90% of the total catch. Both larvae and juveniles were more abundant near the surface than near the bottom. Densities differed greatly among the three backwater areas studied. Larval fishes were grouped on the basis of their relative abundance in the backwaters or main channel. Overall, more larvae were captured in the backwaters than in main-channel habitats, indicating that backwaters were more productive. In the main channel, densities were greater downstream from the mouths of the backwaters than upstream-possibly indicating that (1) larval fish drifted out of the backwater areas, (2) water rich in nutrients or zooplankton that flowed into the main channel created productive downstream sites that were used as nursery areas, or (3) adult fishes selected downstream sites as spawning areas. Juvenile forms were more abundant in the backwater areas then in the main-channel habitats, some bottom-dwelling fishes excepted. The backwater areas were judged to be important nursery areas for larval and juvenile fishes, and seemed to benefit downstream main-channel sites. Any loss of these habitats would be detrimental to the Mississippi River as a whole.  相似文献   

2.
We compared the responsiveness of macroinvertebrate assemblages to variation in water quality (ions, nutrients, dissolved metals, and suspended sediment) in two mesohabitats within the main channel of three North American great rivers, the Upper Mississippi, Missouri, and Ohio. Based on about 400 paired samples, we examined the responsiveness of benthic assemblages sampled in the littoral zone and assemblages sampled from the surface of woody snags in the main channel. The assemblages in the two mesohabitats were different in all rivers. Taxa richness was much higher in the benthos than on snags. Macroinvertebrate assemblage response to water quality variation was weak on the Mississippi River, but the reasons for this are unknown. Based on analysis of the similarity between the composition of assemblages from groups of sites with high and low concentrations of water quality variables, benthic assemblages were only slightly more sensitive to water chemistry variation than were snag assemblages. Results of two-sample comparisons between groups of sites with high and low concentrations of water quality variables were consistent with rank correlations of assemblage metrics with water quality. In general, there was little difference between habitats in response to variation in water quality on any river. Our simple method of snag sampling in great rivers is usually much easier than littoral benthic sampling because it does not require wading. Snag sampling in large rivers has some limitations (e.g., natural snags are sometimes absent, samples are semi-quantitative), but lack of sensitivity to water quality gradients compared to the benthos is not among them.  相似文献   

3.
1. In situ exclosure experiments in the Mississippi and Ohio Rivers determined the importance of fish predation in regulating zebra mussels (Dreissena polymorpha), an increasingly important constituent of the benthic invertebrate assemblages in both rivers. 2. We evaluated the effects of predatory fish on the density, biomass and size distribution of zebra mussels in a floodplain reach of the upper Mississippi River and in a naturally constrained reach of the Ohio River. Fifty, six-sided, predator-exclusion cages and fifty ‘partial’ cages (mesh at the upstream end only) were deployed, with half the cages containing willow snags and half clay tiles suspended 12–16 cm above the bottom. A single snag or tile sample unit was removed from each cage at approximately monthly intervals from July to October 1994. Types and relative abundances of molluscivorous fish were evaluated by electrofishing near the cages in both rivers. Actual and potential recruitment of young zebra mussels on to the substrata were measured using benthic samples in both rivers and estimated (Ohio River only) from counts of planktonic veligers. 3. Zebra mussels were consumed by at least three fish species in the upper Mississippi River (mostly carp, Cyprinus carpio, and redhorse suckers, Moxostoma sp.) and five species in the Ohio River (primarily smallmouth buffalo, Ictiobus bubalus, and channel catfish, Ictalurus punctatus), but potential recruitment seemed adequate to replace consumed mussels, at least in the Ohio River. The number of juvenile benthic mussels showed no apparent link with the density of veligers soon after initiation of reproduction. Recruitment of juveniles on snags and tiles was not affected by cage type (thus eliminating a potentially confounding ‘cage effect’). 4. Fish significantly influenced mussel populations, but the impact was often greatest among low density populations in the upper Mississippi. Density and biomass differed in both rivers for cage type (higher inside cages), substratum (greater on tiles), and date (increased over time). Presumed size-selective predation was present in the Mississippi (greater on larger size classes) but was not evident in the Ohio. We hypothesize that fish in the Mississippi can more easily select larger prey from the low density populations; whereas size-selective predation on tightly packed zebra mussels in the Ohio would be difficult. 5. Although fish can reduce numbers of Dreissena polymorpha in the two rivers, current levels of fish predation seem insufficient to regulate zebra mussel densities because of its great reproductive capacity. The recent invasion of zebra mussels, however, could lead to larger fish populations while promoting greater carbon retention and overall ecosystem secondary production.  相似文献   

4.
1. Riverscapes consist of the main channel and lateral slackwater habitats along a gradient of hydrological connectivity from maximum connection in main channel habitats to minimum connection in backwaters. Spatiotemporal differences in water currents along this gradient produce dynamic habitat conditions that influence species diversity, population densities and trophic interactions of fishes. 2. We examined the importance of lateral connectivity gradients for food web dynamics in the Upper Mississippi River during spring (high flow, moderately low temperatures) and summer (low flow, higher temperatures). We used literature information and gut contents analyses to determine feeding guilds and stable isotope analysis to estimate mean trophic position of local fish assemblages. During June and August 2006, we collected over 1000 tissue samples from four habitats (main channel, secondary channels, tertiary channels and backwaters) distributed within four hydrologic connectivity gradients. 3. Mean trophic position differed among feeding guilds and seasons, with highest values in spring. Mean trophic position of fish assemblages, variability in trophic position and food chain length (maximum trophic position) of the two dominant piscivore species (Micropterus salmoides and M. dolomieu) in both seasons were significantly associated with habitat along the lateral connectivity gradient. Food chain length peaked in tertiary channels in both seasons, probably due to higher species diversity of prey at these habitats. We infer that food chain length and trophic position of fish assemblages were lower in backwater habitats in the summer mainly because of the use of alternative food sources in these habitats. 4. A greater number of conspecifics exhibited significant among‐habitat variation in trophic position during the summer, indicating that low river stages can constrain fish movements in the Upper Mississippi River. 5. Results of this study should provide a better understanding of the fundamental structure of large river ecosystems and an improved basis for river rehabilitation and management through knowledge of the importance of lateral complexity in rivers.  相似文献   

5.
This study used stratified random sampling to examine the spatial and temporal distribution of zooplankton communities in a large floodplain river (Mississippi River, USA). Potential mechanisms controlling zooplankton abundance and community structure were considered. Main channel and backwater habitats included in this study differed between a turbid upper pool reach where aquatic macrophytes were sparse and a lower pool reach which was considerably less turbid and had extensive aquatic macrophyte coverage. Samples were collected monthly during the summer over a 2-year period and multivariate analysis was used to examine the spatial and temporal distribution of zooplankton. Significant differences were found in zooplankton density and community composition among habitats and reaches within the pool. Rotifers were the dominant taxa and seasonality was pronounced, with peak densities often occurring in late-spring. Community structure varied by habitat and reach, which suggests that water quality, physical habitat characteristics, presence of aquatic macrophytes, and zooplankton sources can all influence the zooplankton communities of the Upper Mississippi River. Characterization of the zooplankton communities provides a basis for understanding changes in the river ecosystem and examination of zooplankton communities among habitats provides insight into the mechanisms affecting zooplankton dynamics.  相似文献   

6.
7.
Native fishes worldwide have declined as a consequence of habitat loss and degradation and introduction of non-native species. In response to these declines, river restoration projects have been initiated to enhance habitat and remove introduced fishes; however, non-native fish removal is not always logistically feasible or socially acceptable. Consequently, managers often seek to enhance degraded habitat in such a way that native fishes can coexist with introduced species. We quantified dynamics of fish communities to three newly constructed side channels in the Provo River, Utah, USA, to determine if and how they promoted coexistence between native fishes (nine species) and non-native brown trout (Salmo trutta L.). Native and introduced fishes responded differently in each side channel as a function of the unique characteristics and histories of side channels. Beaver activity in two of the three side channels caused habitat differentiation or channel isolation that facilitated the establishment of native species. The third side channel had greater connectivity to and similar habitat as the main channel of the Provo River, resulting in a similar fish community to main channel habitats (i.e. dominated by brown trout with only a few native fish species). These results demonstrate the importance of understanding habitat preferences for each species in a community to guide habitat enhancement projects and the need to create refuge habitats for native fishes.  相似文献   

8.
The fragmentation and homogenization of habitats have seriously affected the fishery resources of the Pearl River. To protect the fishery resources, a novel artificial habitat, constructed using bamboo and palm slices, was deployed in the Youjiang River, a tributary of the Pearl River in China. The results of field and laboratory experiments showed that fish abundance, species richness and Shannon–Wiener diversity index were higher in the artificial habitats than at the control sites. There was no significant impact on fish biomass, as the artificial habitats attracted more Cultrinae and Gobioninae fish that are of a smaller size. Artificial habitats can serve as spawning grounds for fish that produce sticky eggs and refuges that improve the survival rates of juvenile fishes. This study revealed that this novel artificial habitat created suitable habitats and suitable spawning substrate for fish, improved fish richness and diversity in the structureless freshwater ecosystem like the Youjiang River.  相似文献   

9.
Shovelnose sturgeon Scaphirhynchus platorynchus are a large‐river fish distributed throughout the Mississippi River basin, including the lower 1,533 km of the Mississippi River where riverine habitat has been and continues to be modified for navigation and is a potential site for development of instream hydrokinetic electric power generation. Information about habitat use and preference is essential to future conservation efforts. Shovelnose sturgeon have previously been found to select particular habitat types, and these selected habitats vary seasonally; although these past analyses do not consider the selected habitats in a landscape context. We used ecological niche factor analysis (ENFA) that uses distributions of telemetry locations and environmental variables to model habitat suitability in a landscape context. We recorded 333 locations of shovelnose sturgeon during July–December 2013 that included periods of relatively high and low river stages. The ENFA analysis indicated high‐suitability locations were in or near deep water during both high and low river stages. During high river stages, high‐suitability locations were near island tip habitat, deep water, and steep bottom slope and far from main channel habitat. During low stages, high‐suitability locations were in or near deep water and main channel habitat and far from secondary channel and wing dike habitats. This landscape‐scale analysis supports seasonal shifts in habitat use and provides insights that can be used to inform habitat conservation and management to benefit shovelnose sturgeon in the lower Mississippi River and possibly other large rivers.  相似文献   

10.
Snags are used as habitat by several organisms, including bark- and wood-boring beetles, which contribute to snag decomposition and facilitate subsequent snag colonization by other organisms. However, snags seldom occur in young managed forests. This study examines how snag characteristics and spatial arrangement affect bark- and wood-boring beetle colonization and survival in spruce plantations subjected to commercial thinning, thinning with biomass removal and thinning with snag creation where a few clumps of trees were girdled. To this end, we documented the volume of snags, their characteristics and the number of beetle emergence holes in their basal section. Beetle colonization and survival to adulthood in snags was ~33 times greater when expressed per unit area in plantations supplemented with clumps of girdled trees than in other thinning regimes where low densities of beetle emergence holes per hectare were documented. Snag diameter at breast height, snag species and thinning treatments influenced the number of emergence holes per snag. Positive spatial autocorrelation between the abundance of emergence holes per snag was detected but no other spatial effect was noticeable. This work suggests that vertical deadwood is a limiting factor for bark- and wood-boring beetle colonization within plantations and challenges current thinking about the effect of thinning on beetle communities that was developed from window trap studies. These results underline the importance of large diameter snags for beetle conservation within managed forests and demonstrate that tree girdling during thinning entries is a viable method for creating snags to enhance beetle colonization and survival.  相似文献   

11.
SUMMARY. 1. Two predictive models were employed along with intensive field sampling to estimate production of black flies ( Simulium spp.) on snags (submerged wood) in three blackwater streams on the Georgia Coastal Plain of the southeastern U.S.A. One model predicts daily growth rate from temperature and hydrograph pattern; the other predicts habitat abundance (of snags) from river height.
2. In the sixth order Ogeechee River, annual production was twice as high in 1982 (7.1 g dry mass [=DM] m−2 of snag surface) as in 1983 (3.6 g DM m−2). When converted to production per m2 of river bottom, values were 35–40% of the snag surface estimates. Annual production was much lower in fourth order Black Creek (1982, 1.3 g DM m−2 of snag surface) and much higher in the sixth order Satilla River (1975, 15.6–40.0 g DM m−2).
3. There was a distinct bimodal pattern of black fly production in the Ogeechee River in both years, with peaks occurring in winter and summer. Similar bimodal patterns of production were found in Black Creek and in the Satilla River. Although there appears to be an intrinsic component to the bimodal pattern, production peaks (growth rate and biomass) appear to be associated with initial stages of flooding.
4. Annual production/biomass ratios (37–85) are the highest reported for black fly populations. The variation of annual P/B ratios among sites was more strongly dependent on the temporal distribution of standing stock biomass than on differences in growth rates. Variation in production among sites appears to be due to differences in current velocity, hydro-graph variability, and abundance of coexisting consumers.  相似文献   

12.
The ontogenetic patterns of habitat use by a community of fishes in the main channel of the Broken River, an Australian lowland river, was investigated. Stratified sampling was conducted fortnightly across six habitat types throughout the spring‐summer period within the main channel. As predicted by the 'low flow recruitment hypothesis', backwaters and still littoral habitats were important nursery habitats for most species. These habitats were found to be used by some species throughout all stages of their life cycle, while other species showed clear ontogenetic shifts in habitat preference. Only one species, Murray cod Maccullochella peelii peelii , was never found in backwaters. This study confirms the significance of main channel habitats in the rearing of larvae of some riverine fish species, and emphasizes the importance of considering the habitat requirements of all stages of a fish's life cycle in the management and restoration of rivers and streams.  相似文献   

13.
Upper Mississippi River Restoration (UMRR) was implemented to monitor environmental status and trends and restore degraded habitat. There was little experience conducting restoration in large rivers, and engineering and ecological integration evolved through project implementation. Loss of depth in backwaters and side channels, excessive biological oxygen demand, increased currents, and low water temperatures were common symptoms of backwater eutrophication that were primary objectives for implementing UMRR. Biological outcome monitoring was initially funded for six projects using the most common methods to restore aquatic and wetland habitat. UMRR island construction occurred as four generations of learning. Current plans represent a comprehensive restoration approach including: physical process modeling (i.e. hydraulic and wind‐wave modeling) of existing conditions and alternative restoration measures. Habitat Rehabilitation and Enhancement Projects, fish response monitoring validated winter habitat suitability models. Long term fish population monitoring indicates sustainable recovery, and now population interaction among restored lakes is under investigation. Isolated wetland management in Illinois River backwater lakes can achieve bottom consolidation that promotes emergent wetland habitat response that migratory waterfowl exploit in large numbers. Adult fish movement between the river and management units is restricted to flood stage or through control structures and post‐project movements into the lake for overwintering were not apparent. The lack of Illinois River overwintering habitat is shown by an abundance of young fish and few older fish in status and trends monitoring. Upper Mississippi River System ecosystem restoration practitioners have implemented ecosystem restoration science and practice in a manner that exemplifies the best intent of adaptive management.  相似文献   

14.
Bighead and silver carp are well established in the Mississippi River basin following their accidental introduction in the 1980s. Referred to collectively as Asian carp, these species are filter feeders consuming phytoplankton and zooplankton. We examined diet overlap and electivity of Asian carp and three native filter feeding fishes, bigmouth buffalo, gizzard shad, and paddlefish, in backwater lakes of the Illinois and Mississippi rivers. Rotifers, Keratella spp., Brachionus spp., and Trichocerca spp., were the most common prey items consumed by Asian carp and gizzard shad, whereas crustacean zooplankton were the preferred prey of paddlefish. Bigmouth buffalo diet was broad, including both rotifers and crustacean zooplankton. Dietary overlap with Asian carp was greatest for gizzard shad followed by bigmouth buffalo, but we found little diet overlap for paddlefish. Diet similarity based on taxonomy correlated strongly with diet similarity based on size suggesting filtration efficiency influenced the overlap patterns we observed. Although rotifers were the most common prey item consumed by both bighead and silver carp, we found a negative relation between silver carp CPUE and cladoceran density. The competitive effect of Asian carp on native fishes may be forestalled because of the high productivity of Illinois and Mississippi river habitats, yet the potential for negative consequences of Asian carp in less productive ecosystems, including Lake Michigan, should not be underestimated.  相似文献   

15.
The pallid sturgeon (Scaphirhynchus albus) was not described until 1905, when it was commonly caught by commercial fishers. This species began to decline in the early 1900s presumably because of overharvest and habitat degradation. The U.S. Fish and Wildlife Service listed S. albus as an endangered species in 1990. Because S. albus live in deep, turbid rivers that are difficult to sample, very little is known about its reproductive timing and spawning habitat. The act of spawning has never been observed in nature. Captures of wild young S. albus verifying natural reproduction are rare, the last being a 4‐year‐old fish taken in 1978. In this paper, we describe the first collection of a larval S. albus from the wild and subsequent larval collections in the Mississippi River from 1998 to 2000 using a modified slingshot balloon trawl (the Missouri Trawl) designed to capture small fishes in deep, turbulent rivers. We captured larval Scaphirhynchus spp., including verified S. albus, in association with island habitats often in heavy detritus, especially at downstream tips. We postulate that Scaphirhynchus spp. spawned at the heads of islands upstream from where we collected larvae, but we cannot be certain. The capture of larval S. albus verifies reproduction possibly from the lower Missouri River to the upper and lower Mississippi River. However, we found no evidence of recruitment of S. albus from 1998 to 2000 as we were unable to capture juveniles after 374 trawl hauls that captured over 21 735 fish.  相似文献   

16.
17.
Hierarchy theory provides a conceptual framework for understanding the influence of differently scaled processes on the structure of stream communities. Channel form, instream habitat, and stream communities appear to be hierarchically related, but the strength of the relationships among all components of this hypothesized hierarchy have not been examined. We sampled channel form, instream habitat, fishes, and macroinvertebrates in a channelized stream in Mississippi and Alabama to examine the hypothesis that a hierarchical relationship exists among channel form, instream habitat, and stream communities. Instream habitat, fishes, and macroinvertebrates were sampled in May, July, and September 2000. Measurements of channel form were obtained in July 2000. Mantel tests, multiple regressions, and correlation analyses were used to assess strength of the relationships among channel form, instream habitat, and stream communities. Positive correlations were observed between channel form and instream habitat, and correlations observed between these factors were the greatest observed in our study. Overall, fish and macroinvertebrate communities exhibited stronger relationships with instream habitat than with channel form. Species richness, evenness, and abundance tended to exhibit greater correlations with instream habitat, while species composition had greater correlations with channel form. We concluded that channel form, instream habitat, and stream communities were hierarchically related.  相似文献   

18.
We studied spatial and temporal patterns in fish species composition and diversity at the upper Juruá River located in the west Brazilian Amazon. We collected with gillnet 822 fishes belonging to 90 species in the main Juruá River, its tributaries and the floodplain lakes during wet and dry seasons. Fish abundance and species richness were greater in the dry season. During that season, fishes may be concentrated due to the low water level, being caught more easily by gillnets. There has been a trend towards a greater fish biomass caught in lakes. This might be associated with a greater environmental stability as lakes may be less subject to large variations in water level. The fish communities differed between the two seasons and between lakes and the lotic environments (main river and tributaries). Fish species from the family Curimatidae were most abundant in the lakes, while Pimelodus spp. and Hypostomus spp. predominated in the main Juruá River. Seasonal variations in fish communities may be related to differences in the migratory behavior among fish species. Such spatial and temporal patterns influencing fish community structure at the Upper Juruá Extractive Reserve must be accounted for in management and conservation strategies.  相似文献   

19.

In recent decades, the Eurasian beaver (Castor fiber) has once again become the keystone species in small river ecosystems in Russia. In many places, beaver activity has resulted in a significant change in lotic habitats, affecting the diversity, density, and biomass of aquatic organisms, including fish. While many studies have considered the ecosystem impacts of beavers, relatively few have focused on understanding the influence of beaver activity on steppe rivers. We conducted the first quantitative study of beaver impacts on fish assemblages in beaver-influenced and beaver-free sites on two small steppe rivers in the Don River basin in Russia. The presence of beavers altered the habitats in small steppe rivers and affected the diversity, density, and biomass of fish. A comparison of the number of species, density, and biomass of fish in six types of river habitats showed that these parameters were lower in beaver ponds than at riverine sites without beaver activity. Three fish species primarily preferred a single habitat type. Barbatula barbatula was found in riffles, Misgurnus fossilis in old beaver ponds, and Eudontomyzon mariae in abandoned beaver ponds. Beavers impacted fish distribution and density by changing dissolved oxygen, pH, and water current velocity. Overall, our results showed that the presence of beavers led to a temporary homogenization of fish habitats at a local scale in the valleys of small steppe rivers because beavers occupied these rivers only for a short period. However, habitat heterogeneity may increase if the beaver population stays stable or expands in the future.

  相似文献   

20.
Fish in the Kanawha River were collected with a 0.5-m plankton net in main-channel borders and in open areas of backwaters and with a 1-m2 enclosed dropbox in shallow backwater habitats. Larval emerald shiners, Notropis atherinoides , were twice as dense, and gizzard shad, Dorosoma cepedianum , 2.5 times as dense in main-channel borders as in backwaters; larval Lepomis spp. were 20 times as dense in backwaters as in main-channel borders. Smaller Lepomis larvae used open-water backwater areas primarily; larger larvae migrated to vegetated backwater habitats later in the summer. Backwaters appear crucial for the maintenance of nest-building fish species in temperate rivers, just as floodplains are necessary for the maintenance of high species diversity in tropical rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号