首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of neuronal cells to nanomolar concentrations of oligosaccharide portions of ganglioside GM2 and GT1b stimulates cAMP-dependent protein kinase (PKA) Ca2+/calmodulin-dependent protein kinase II (CaMKII), respectively, in a few seconds suggesting the presence of glyco-receptor-like molecules on the surface of the cells. Both GM2/PKA (GalNAc/PKA) and GT1b/CaMKII signaling cascades induced cytoskeletal actin reorganization through Cdc42 activation leading to filopodia formation within 2 min. Long-term effects of these glyco-signals were facilitation of dendritic differentiation of primary cultured hippocampal neurons and cerebellar Purkinje neurons indicating physiological roles of the signals in neuronal differentiation and maturation.  相似文献   

2.
The development of chronic rejection is the major limitation to long-term allograft survival. HLA class I Ags have been implicated to play a role in this process because ligation of class I molecules by anti-HLA Abs stimulates smooth muscle cell and endothelial cell proliferation. In this study, we show that ligation of HLA class I molecules on the surface of human aortic endothelial cells stimulates phosphorylation of Src, focal adhesion kinase, and paxillin. Signaling through class I stimulated Src phosphorylation and mediated fibroblast growth factor receptor (FGFR) translocation to the nucleus. In contrast, Src kinase activity was not involved in class I-mediated transfer of FGFR from cytoplasmic stores to the cell surface. Inhibition of Src protein kinase activity blocked HLA class I-stimulated tyrosine phosphorylation of paxillin and focal adhesion kinase. Furthermore, HLA class I-mediated phosphorylation of the focal adhesion proteins and FGFR expression was inhibited by cytochalasin D and latrunculin A, suggesting a role for the actin cytoskeleton in the signaling process. These findings indicate that anti-HLA Abs have the capacity to transduce activation signals in endothelial cells that may promote the development of chronic rejection.  相似文献   

3.
Exposure of neuronal cells to nanomolar concentrations of oligosaccharide portions of ganglioside GM2 and GT1b stimulates cAMP-dependent protein kinase (PKA) Ca2+/calmodulin-dependent protein kinase II (CaMKII), respectively, in a few seconds suggesting the presence of glyco-receptor-like molecules on the surface of the cells. Both GM2/PKA (GalNAc/PKA) and GT1b/CaMKII signaling cascades induced cytoskeletal actin reorganization through Cdc42 activation leading to filopodia formation within 2 min. Long-term effects of these glyco-signals were facilitation of dendritic differentiation of primary cultured hippocampal neurons and cerebellar Purkinje neurons indicating physiological roles of the signals in neuronal differentiation and maturation. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Partially purified phospholipid- and Ca2+-dependent protein kinase C from human placenta catalyzes the Mg-ATP-dependent phosphorylation of serine residues of purified rabbit muscle actin. Two tryptic [32P]-phosphopeptides were found on HPLC separation. Confirming the previous report by Machicao and Wieland [(1985) Curr. Top. Cell. Regul. 27, 95-105], actin is phosphorylated at serine residues by human placental membranes, and this is stimulated by insulin. In the absence of insulin trypsin treatment yielded eight [32P]phosphopeptides, two of which coincided with the ones due to protein kinase C. Insulin led to the appearance of three new [32P]phosphopeptides. These results suggest that insulin stimulates (a) serine protein kinase(s) which, like protein kinase C, is present in placental membranes.  相似文献   

5.
Incubation of subcellular fractions of fibroblasts with [32P]ATP demonstrated 10 phosphoproteins whose phosphorylation can be increased by cyclic AMP or cyclic AMP-dependent protein kinase. One of these phosphoproteins, MW 240,000, resembles the actin binding protein, filamin, and can be selectively precipitated by antibodies to chicken gizzard filamin. Furthermore chicken gizzard filamin can be phosphorylated by skeletal muscle protein kinase and cyclic AMP stimulates this reaction.  相似文献   

6.
7.
The serine/threonine kinase p21-activated kinase 1 (Pak1) controls the actin cytoskeletal and ruffle formation through mechanisms that are independent of GTPase activity. Here we identify filamin FLNa as a Pak1-interacting protein through a yeast two-hybrid screen using the amino terminus of Pak1 as a bait. FLNa is stimulated by physiological signalling molecules to undergo phosphorylation by Pak1 and to interact and colocalize with endogenous Pak1 in membrane ruffles. The ruffle-forming activity of Pak1 is functional in FLNa-expressing cells but not in FLNa-deficient cells. In FLNa, the Pak1-binding site involves tandem repeat 23 in the carboxyl terminus and phosphorylation takes place on serine 2152. The FLNa-binding site in Pak1 is localized between amino acids 52 and 132 in the conserved Cdc42/Rac-interacting (CRIB) domain; accordingly, FLNa binding to the CRIB domain stimulates Pak1 kinase activity. Our results indicate that FLNa may be essential for Pak1-induced cytoskeletal reorganization and that the two-way regulatory interaction between Pak1 and FLNa may contribute to the local stimulation of Pak1 activity and its targets in cytoskeletal structures.  相似文献   

8.
Activation of classical G protein-coupled receptors (GPCRs) like the mammalian gonadotropin-releasing hormone receptor (GnRHR) typically stimulates heterotrimeric G protein molecules that subsequently activate downstream effectors. Receptor activation of heterotrimeric G protein pathways primarily controls intermediary cell metabolism by elevation or diminution of soluble cytoplasmic second messenger molecules. We have demonstrated here that stimulation of the GnRHR also results in a dramatic change in both cell adhesion and superstructural morphology. Gonadotropin-releasing hormone (GnRH) receptor activation rapidly increases the capacity of HEK293 cells expressing the GnRHR to remain matrix-adherent in the face of fluid insults. Coinciding with this profound elevation in matrix adherence, we demonstrated a GnRH-induced alteration in both cell morphology and the de novo generation of polymerized actin structures. GnRH induction of cytoskeletal remodeling was correlated with significant increases in the tyrosine phosphorylation status of a series of cytoskeletal associated proteins, e.g. focal adhesion kinase (FAK), c-Src, and microtubule-associated protein kinase (MAPK or ERK1/2). The activation of the distal downstream effector ERK1/2 was demonstrated to be sensitive to the disrupters of cytoskeletal rearrangement, cytochalasin D and latrunculin B. In addition to the sensitivity of ERKs to cytoskeletal integrity, GnRH-induced FAK and c-Src kinase activation were sensitive to these agents and the fibronectin-integrin antagonistic RGDS peptide. Activation of ERK was dependent on its protein-protein assembly with FAK and c-Src at focal adhesion complexes. Induction of the cell remodeling event leading to this signaling complex assembly occurred primarily via GnRHR activation of the monomeric G protein Rac but not RhoA. These findings demonstrated a clear divergence of GnRHR signaling via the Rac monomeric G protein focal adhesion signaling complex assembly and cytoskeletal remodeling independent of the classical heterotrimeric G protein-controlled phospholipase C-beta pathway.  相似文献   

9.
CD1d molecules are MHC class I-like molecules that present lipid Ags to NKT cells. Although we have previously shown that several different cell signaling molecules can play a role in the control of Ag presentation by CD1d, a defined mechanism by which a cell signaling pathway regulates CD1d function has been unclear. In the current study, we have found that the Rho kinases, Rho-associated, coiled-coil containing protein kinase (ROCK)1 and ROCK2, negatively regulate both human and mouse CD1d-mediated Ag presentation. Inhibition of ROCK pharmacologically, through specific ROCK1 and ROCK2 short hairpin RNA, or by using dendritic cells generated from ROCK1-deficient mice all resulted in enhanced CD1d-mediated Ag presentation compared with controls. ROCK regulates the actin cytoskeleton by phosphorylating LIM kinase, which, in turn, phosphorylates cofilin, prohibiting actin fiber depolymerization. Treatment of APCs with the actin filament depolymerizing agent, cytochalasin D, as well as knockdown of LIM kinase by short hairpin RNA, resulted in enhanced Ag presentation to NKT cells by CD1d, consistent with our ROCK inhibition data. Therefore, our overall results reveal a model whereby CD1d-mediated Ag presentation is negatively regulated by ROCK via its effects on the actin cytoskeleton.  相似文献   

10.
Lipoxins (LXs) are endogenously produced anti-inflammatory agents that modulate leukocyte trafficking and stimulate nonphlogistic macrophage phagocytosis of apoptotic neutrophils, thereby promoting the resolution of inflammation. Previous data suggest a role for altered protein phosphorylation and cytoskeletal rearrangement in LX-stimulated phagocytosis but the exact mechanisms remain unclear. In this study we examine the effects of LXA4 on the protein phosphorylation pattern of THP-1 cells differentiated into a macrophage-like phenotype. THP-1 cells stimulated with LXA4 (1 nM) exhibit dephosphorylation of a 220-kDa protein. Using mass spectrometry, this protein was identified as MYH9, a nonmuscle myosin H chain II isoform A, which is involved in cytoskeleton rearrangement. THP-1 cells treated with LXA4 adopt a polarized morphology with activated Cdc42 localized toward the leading edge and MYH9 localized at the cell posterior. Polarized distribution of Cdc42 is associated with Akt/PKB-mediated Cdc42 activation. Interestingly, the annexin-derived peptide Ac2-26, a recently described agonist for the LXA4 receptor, also stimulates macrophage phagocytosis, MYH9 dephosphorylation, and MYH9 redistribution. In addition, we demonstrate that LXA4 stimulates the phosphorylation of key polarity organization molecules: Akt, protein kinase Czeta, and glycogen synthase kinase-3beta. Inhibition of LXA4-induced Akt and protein kinase Czeta activity with specific inhibitors prevented LXA4-stimulated phagocytosis of both apoptotic polymorphonuclear neutrophils and lymphocytes, highlighting a potential use for LXA4 in the treatment of autoimmune diseases. Furthermore, phosphorylation and subsequent inactivation of glycogen synthase kinase-3beta resulted in an increase in phagocytosis similar to that of LXA4. These data highlight an integrated mechanism whereby LXA4 regulates phagocytosis through facilitative actin cytoskeleton rearrangement and cell polarization.  相似文献   

11.
Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular pool to the cell surface through a mechanism that is dependent on phosphatidylinositol (PI) 3-kinase (PI3-K) and cortical actin remodeling. Here we test the hypothesis that insulin-dependent actin filament remodeling determines the location of insulin signaling molecules. It has been shown previously that insulin treatment of L6 myotubes leads to a rapid rearrangement of actin filaments into submembrane structures where the p85 regulatory subunit of PI3-K and organelles containing GLUT4, VAMP2, and the insulin-regulated aminopeptidase (IRAP) colocalize. We now report that insulin receptor substrate-1 and the p110alpha catalytic subunit of PI3-K (but not p110beta) also colocalize with the actin structures. Akt-1 was also found in the remodeled actin structures, unlike another PI3-K effector, atypical protein kinase C lambda. Transiently transfected green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of general receptor for phosphoinositides-1 (GRP1) or Akt (ligands of phosphatidylinositol-3,4,5-trisphosphate [PI-3,4,5-P(3)]) migrated to the periphery of the live cells; in fixed cells, they were detected in the insulin-induced actin structures. These results suggest that PI-3,4,5-P(3) is generated on membranes located within the actin mesh. Actin remodeling and GLUT4 externalization were blocked in cells highly expressing GFP-PH-GRP1, suggesting that PI-3,4,5-P(3) is required for both phenomena. We propose that PI-3,4,5-P(3) leads to actin remodeling, which in turn segregates p85alpha and p110alpha, thus localizing PI-3,4,5-P(3) production on membranes trapped by the actin mesh. Insulin-stimulated actin remodeling may spatially coordinate the localized generation of PI-3,4,5-P(3) and recruitment of Akt, ultimately leading to GLUT4 insertion at the plasma membrane.  相似文献   

12.
Both Arp2/3 complex and the Abl2/Arg nonreceptor tyrosine kinase are essential to form and maintain diverse actin-based structures in cells, including cell edge protrusions in fibroblasts and cancer cells and dendritic spines in neurons. The ability of Arg to promote cell edge protrusions in fibroblasts does not absolutely require kinase activity, raising the question of how Arg might modulate actin assembly and turnover in the absence of kinase function. Arg has two distinct actin-binding domains and interacts physically and functionally with cortactin, an activator of the Arp2/3 complex. However, it was not known whether and how Arg influences actin filament stability, actin branch formation, or cofilin-mediated actin severing or how cortactin influences these reactions of Arg with actin. Arg or cortactin bound to actin filaments stabilizes them from depolymerization. Low concentrations of Arg and cortactin cooperate to stabilize filaments by slowing depolymerization. Arg stimulates formation of actin filament branches by Arp2/3 complex and cortactin. An Arg mutant lacking the C-terminal calponin homology actin-binding domain stimulates actin branch formation by the Arp2/3 complex, indicative of autoinhibition. ArgΔCH can stimulate the Arp2/3 complex even in the absence of cortactin. Arg greatly potentiates cofilin severing of actin filaments, and cortactin attenuates this enhanced severing. The ability of Arg to stabilize filaments, promote branching, and increase severing requires the internal (I/L)WEQ actin-binding domain. These activities likely underlie important roles that Arg plays in the formation, dynamics, and stability of actin-based cellular structures.  相似文献   

13.
Phosphorylation of microtubule-associated protein 2 (MAP 2) by Ca2+-, calmodulin-dependent protein kinase II (protein kinase II) inhibited the actin filament cross-linking activity of MAP 2. This inhibition required the presence of ATP, Mg2+, Ca2+ and calmodulin. The minimal concentration of MAP 2 required for gel formation of actin filaments was increased with increasing amounts of phosphate incorporated into MAP 2, and the phosphorylated MAP 2, into which 10.3 mol of phosphate/mol of protein had been incorporated, did not cause actin filaments to gel under the experimental conditions used. The phosphorylation of MAP 2 by Ca2+-, phospholipid-dependent protein kinase (protein kinase C) and cAMP-dependent protein kinase also inhibited the actin filament cross-linking activity of MAP 2. The extent and rate of phosphorylation of MAP 2 by protein kinase II were higher than those of the phosphorylation by protein kinase C and cAMP-dependent protein kinase. The interaction of actin filaments with MAP 2 was inhibited more by the actions of protein kinase II and protein kinase C than by cAMP-dependent protein kinase. The actin filament cross-linking activity of MAP 2 phosphorylated either by protein kinase II, cAMP-dependent protein kinase or protein kinase C was retrieved when phosphorylated MAP 2 was treated by protein phosphatase. These results indicate that the interaction of actin filaments with MAP 2 is regulated by the phosphorylation-dephosphorylation of MAP 2.  相似文献   

14.
Inositol 1,4-bisphosphate (IP2), which rapidly accumulates during cell activation, strongly stimulates an increase in cytoskeletal actin in saponin-permeated platelets, and the effect is insensitive to 5′-Chloro-5′-deoxyadenosine. Within 10 s, the amount of cytoskeletal actin in platelets rapidly increases by 41%, and then slowly increases further. IP2 induces the increase in cytoskeletal actin in a dose-dependent manner. The half-maximal effect requires approximately 2 μM of IP2 Inositol 1,4,5- triphosphate, the messenger for Ca2+ release, causes the increase in cytoskeletal actin, but is less effective than IP2. Inositol 1-monophosphate and inositol 2-monophosphate have no effect on cytoskeletal actin. Phorbol 12-myristate 13-acetate, which has been shown to activate IP3 5′-phosphatase through protein kinase C, stimulates the increase in cytoskeletal actin. Spermine, an inhibitor of IP3 5′-phosphatase, inhibits the thrombin stimulated increase in cytoskeletal actin. These results suggest that IP2 may be a messenger that controls the organization of actin filaments during cell activation. This study presents the first evidence for IP2 as a messenger during cell activation.  相似文献   

15.
Degenerate polymerase chain reaction against conserved kinase catalytic subdomains identified 15 tyrosine and serine-threonine kinases expressed in surgically removed prostatic carcinoma tissues, including six receptor kinases (PDGFBR, IGF1-R, VEGFR2, MET, RYK, and EPH-A1), six non-receptor kinases (ABL, JAK1, JAK2, TYK2, PLK-1, and EMK), and three novel kinases. Several of these kinases are oncogenic, and may function in the development of prostate cancer. One of the novel kinases is a new member of the sterile 20 (STE20) family of serine-threonine kinases which we have called prostate-derived STE20-like kinase (PSK) and characterized functionally. PSK encodes an open reading frame of 3705 nucleotides and contains an N-terminal kinase domain. Immunoprecipitated PSK phosphorylates myelin basic protein and transfected PSK stimulates MKK4 and MKK7 and activates the c-Jun N-terminal kinase mitogen-activated protein kinase pathway. Microinjection of PSK into cells results in localization of PSK to a vesicular compartment and causes a marked reduction in actin stress fibers. In contrast, C-terminally truncated PSK (1-349) did not localize to this compartment or induce a decrease in stress fibers demonstrating a requirement for the C terminus. Kinase-defective PSK (K57A) was unable to reduce stress fibers. PSK is the first member of the STE20 family lacking a Cdc42/Rac binding domain that has been shown to regulate both the c-Jun N-terminal kinase mitogen-activated protein kinase pathway and the actin cytoskeleton.  相似文献   

16.
Phosphorylase kinase was purified (110-fold) from bovine stomach smooth muscle by a procedure involving DEAE-cellulose chromatography, ammonium sulfate fractionation and glycerol density ultracentrifugation. On sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) the final enzyme preparation shows a single protein band of 43 kDa. The purified protein exhibits a close similarity with bovine aortic actin, as revealed by amino acid analysis and sequencing of a tryptic decapeptide fragment, although it differs widely from actin in several respects. In our effort to separate phosphorylase kinase activity from the 43 kDa protein we used a variety of chromatographic procedures, but in all cases the catalytic activity (when eluted) was accompanied by the 43 kDa protein band. Bovine stomach phosphorylase kinase exhibits an apparent molecular mass of 950 kDa, it shows a low Vmax value for phosphorylase b (85 nmol.min-1.mg-1), a pH 6.8/8.2 activity ratio of 0.23, it has an absolute requirement for Ca2+ and it is activated 1.8-fold by Ca2+/calmodulin. Furthermore, the protein kinase activity is neither inhibited by antibodies against rabbit skeletal muscle phosphorylase kinase nor activated by protein phosphorylation. These results suggest that bovine stomach phosphorylase kinase is tightly bound to an aggregate of actin-like molecules.  相似文献   

17.
Adenovirus (Ad) endocytosis via αv integrins requires activation of the lipid kinase phosphatidylinositol-3-OH kinase (PI3K). Previous studies have linked PI3K activity to both the Ras and Rho signaling cascades, each of which has the capacity to alter the host cell actin cytoskeleton. Ad interaction with cells also stimulates reorganization of cortical actin filaments and the formation of membrane ruffles (lamellipodia). We demonstrate here that members of the Rho family of small GTP binding proteins, Rac and CDC42, act downstream of PI3K to promote Ad endocytosis. Ad internalization was significantly reduced in cells treated with Clostridium difficile toxin B and in cells expressing a dominant-negative Rac or CDC42 but not a H-Ras protein. Viral endocytosis was also inhibited by cytochalasin D as well as by expression of effector domain mutants of Rac or CDC42 that impair cytoskeletal function but not JNK/MAP kinase pathway activation. Thus, Ad endocytosis requires assembly of the actin cytoskeleton, an event initiated by activation of PI3K and, subsequently, Rac and CDC42.  相似文献   

18.
In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules.  相似文献   

19.
Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a transforming gene product that is highly expressed in human tumors of the ovary, lung, and breast. eEF1A2 also stimulates actin remodeling, and the expression of this factor is sufficient to induce the formation of filopodia, long cellular processes composed of bundles of parallel actin filaments. Here, we find that eEF1A2 stimulates formation of filopodia by increasing the cellular abundance of cytosolic and plasma membrane-bound phosphatidylinositol-4,5 bisphosphate [PI(4,5)P(2)]. We have previously reported that the eEF1A2 protein binds and activates phosphatidylinositol-4 kinase III beta (PI4KIIIbeta), and we find that production of eEF1A2-dependent PI(4,5)P(2) and generation of filopodia require PI4KIIIbeta. Furthermore, PI4KIIIbeta is itself capable of activating both the production of PI(4,5)P(2) and the creation of filopodia. We propose a model for extrusion of filopodia in which eEF1A2 activates PI4KIIIbeta, and activated PI4KIIIbeta stimulates production of PI(4,5)P(2) and filopodia by increasing PI4P abundance. Our work suggests an important role for both eEF1A2 and PI4KIIIbeta in the control of PI(4,5)P(2) signaling and actin remodeling.  相似文献   

20.
Protein kinase C-epsilon coordinately regulates changes in cell growth and shape. Cells overproducing protein kinase C-epsilon spontaneously acquire a polarized morphology and extend long cellular membrane protrusions that are reminiscent of the morphology observed in ras-transformed fibroblasts. Here we report that the regulatory C1 domain contains an actin binding hexapeptide motif that is essential for the morphogenic effects of protein kinase C-epsilon in cultured NIH3T3 murine fibroblasts. The extension of elongate processes by protein kinase C-epsilon transformed fibroblasts appeared to be driven by a kinase-independent mechanism that required organized networks of both actin and microtubules. Flow cytometry of phalloidin-stained cells demonstrated that protein kinase C-epsilon significantly increased the cellular content of polymerized actin in NIH3T3 cells. Studies with a cell-free system suggest that protein kinase C-epsilon inhibits the in vitro disassembly of actin filaments, is capable of desequestering actin monomers from physiologically relevant concentrations of thymosin beta4, and increases the rate of actin filament elongation by decreasing the critical concentration of actin. Based on these and other observations, it is proposed that protein kinase C-epsilon may function as a terminal downstream effector in at least one of the signaling pathways that mitogens engage to initiate outgrowth of cellular protrusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号