首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was undertaken to determine the effects of running a marathon on concentration of various blood components resulting from phenomena other than fluid loss, and these were related to performance times. Twenty male marathon runners ranging from 20 to 50 years of age participated in the study. Blood samples were collected before and after the subjects ran in a marathon. Blood samples were analyzed for sodium, potassium, glucose, lactate dehydrogenase, creatinine, creatine phosphokinase, triglycerides, cholesterol, hematocrit, hemoglobin, protein, white blood cell number, uric acid, carbon dioxide, and iron. All of the blood parameters increased significantly in concentration with the exceptions of glucose and carbon dioxide which decreased. After accounting for plasma-volume loss (COR), there remained significant increases in blood serum lactate dehydrogenase, creatinine, creatine phosphokinase, uric acid, iron, and whole-blood white blood cell number. Significant decreases in COR serum sodium, protein, glucose, and carbon dioxide were found. Lactate dehydrogenase and creatine phosphokinase concentration changes support the concept of acute damage to muscle tissue resulting from marathon running. No strong relationship between performance time and other measured variables was found. COR measures were more representative of marathon induced blood changes from physiological dynamics other than plasma volume change than presently reported findings.  相似文献   

2.
R. G. McAllister  L. Weidner 《CMAJ》1975,112(11):1310-1312
Fifty-three adult male patients with chest pain underwent treadmill exercise stress testing according to the Bruce protocol. The resting 12-lead electrocardiogram (ECG) and serum concentrations of glutamic oxaloacetic transaminase, lactic dehydrogenase creatine phosphokinase and alpha-hydroxybutyrate dehydrogenase were evaluated before, and at 1 and 20 hours after exercise. Twenty-eight subjects (53 percent) had a normal test result, 10 (19 percent) had ischemic ST -segment changes and anginal pain, and 15 (28 percent) were considered to have equivocal results because of an abnormal baseline ECG or the concurrent administration of cardioactive medication. In contrast to earlier reports, no significant changes in the serum enzyme values were seen in any of the three groups orin any individual subject, nor were ECG changes detected after recovery from exercise. The diagnostic evaluation of the exercise ECG must depend upon the demonstration of ischemic ST -segment changes and not upon changes in concentrations of serum enzymes.  相似文献   

3.
The aim of the present investigation was to investigate plasma ghrelin response to acute maximal exercise in elite male rowers. Eight elite male rowers performed a maximal 6000-m rowing ergometer test (mean performance time: 19 mins 52 secs; 1192.1 +/- 16.4 secs), and venous blood samples were obtained before, immediately after, and after 30 mins of recovery. In addition to ghrelin concentration, leptin, insulin, growth hormone, insulin-like growth factor-1 (IGF-1), testosterone, cortisol, and glucose values were measured. Ghrelin was significantly increased immediately after the exercise (+24.4%; P < 0.05) and was not significantly different than baseline after 30 mins of recovery. Leptin was significantly decreased immediately after the exercise (- 15.8%; P < 0.05) and remained significantly decreased after the first 30 mins of recovery. No changes occurred in insulin concentrations. Growth hormone, IGF-1, and testosterone values were significantly increased and decreased to the pre-exercise level immediately after the exercise and after the first 30 mins of recovery, respectively. Cortisol and glucose values were significantly increased immediately after the exercise and remained significantly increased during the first 30 mins of recovery. There were no relationships between plasma ghrelin and other measured blood parameters after the exercise, nor were changes in ghrelin related to changes in other measured blood biochemical values after the exercise. In conclusion, these results suggest that acute negative energy balance induced by specific maximal short-term exercise elicits a metabolic response with opposite changes in ghrelin and leptin concentrations in elite male athletes.  相似文献   

4.
Acute exercise is known to activate the immune system and thus could lead to increased human immunodeficiency virus (HIV) replication. We sought to determine whether a single acute bout of exercise, similar to what people experience when starting an intensive exercise program, has a detrimental effect on plasma HIV RNA levels. Twenty-five patients with HIV infection performed one 15-min bout of acute exercise. Absolute neutrophil counts, serum creatine phosphokinase, and 72-h urinary 3-methylhistidine (a marker of muscle protein breakdown) were measured before and after the exercise, along with plasma HIV RNA levels. There were increases in neutrophil counts (P < 0.06), serum creatine phosphokinase (P < 0. 01), and urinary 3-methylhistidine (P < 0.01) in response to exercise, indicating a mild acute-phase response with muscle proteolysis. However, mean HIV RNA, which was elevated at baseline in 22 of the 25 subjects (mean of 4 x 10(5) +/- 0.7 x 10(5) copies/ml), did not increase during the week after exercise (P = 0. 12). Small changes in RNA were seen in the three subjects with initially undetectable HIV RNA, but the significance of these changes is unclear. Acute exercise does not have a deleterious effect on HIV replication in adults with high viral loads. Because regular exercise training has not been shown to activate the acute-phase response, the lack of increased viral loads in response to an acute exercise intervention suggests that exercise training is safe in people with HIV infection.  相似文献   

5.
This study was designed to investigate the effect of exercise at 350 m below sea level altitude (–350 m) on the serum levels of lactate dehydrogenase (LDH), insulin, and lactate. The study was carried out on ten trained adult males with mean age of 23.3 ± 3.4 years following a 21-km noncompetitive run. Venous blood was withdrawn from the subjects before exercise and 5 min post exercise. For comparison purposes, a similar study was performed with the same subjects but at 620 m above sea level (+620 m). The results show a significant increase in LDH and lactate levels after exercise only at low altitude (–350 m). Serum insulin levels decreased significantly after exercise at both altitudes. These changes in serum levels of LDH, insulin, and lactate at different altitudes suggest that a type of metabolic adjustment is present that meets energy requirements during exercise.  相似文献   

6.
In great part of the investigations of endocrine system functions in astronauts during space flights the plasma levels of hormones and metabolites were determined only in resting conditions, usually from one blood sample collection. Such levels reflected the psychical and physical state and new hormonal homeostasis of organism at the time of blood collection, however, the functional capacity of neuroendocrine system to respond to various stress stimuli during space flight remained unknown. The aim of present investigations was to study dynamic changes of hormone levels during the stress and metabolic loads (insulin induced hypoglycemia, physical exercise and oral glucose tolerance test) at the exposure of human subject to microgravity on the space station MIR. The responses of sympatico-adrenomedullary system to these stress and workloads were presented by Kvetnansky et al.  相似文献   

7.
Healthy male volunteers were subjected to seven-day “dry” immersion. After that, morphological and biochemical features of erythrocytes, erythropoiesis intensity, including the indices of iron metabolism and erythropoietin, lipid and phospholipid spectrum of the plasma membrane of erythrocytes, and the efficiency of binding and release of oxygen by hemoglobin were studied. The studies were performed before immersion, at the last seventh day of immersion, and on the 7th and 15th days of the recovery period. We found that seven-day “dry” immersion tended to change morphological composition of red blood, erythropoiesis intensity, and metabolic indices in erythrocytes. Seven-day simulated microgravity resulted in significant changes in the indices of oxygen-transporting function of erythrocytes, probably, due to changes at the membrane level and, particularly, in phospholipid fractions. These changes have no clinical importance, because all of them returned to the baseline after the 15-day recovery period. Substantial variability of data is related to an individual response of the body to stress induced by experimental conditions.  相似文献   

8.
The explanation of the mechanism of the response to gravity changes is of great importance for the determination of the capacity of human subjects to adapt to the load of gravitational stress. Therefore several studies were performed to investigate the activity of endocrine system, since the hormones are involved in the regulation of physiological functions and metabolic processes. However the studies of endocrine system activity during altered gravity conditions, especially during the weightlessness are influenced by the several interventions in biomedical observations due to operational program of astronauts, wide variability in individual response and tolerance, use of extensive countermeasures, differences in the type of space missions and in the studies after landing also a hypergravity effect at landing and variability in postflight readaptation process. The significant changes of plasma insulin and glucose levels were observed in astronauts during space flights and in the first days of recovery period. In the first inflight period plasma insulin levels were increased, unchanged or decreased however after 4-5 weeks of exposure to weightlessness a decrease of insulin plasma levels were noted. After space flights an increase of plasma insulin levels were demonstrated in experimental animals and in human subjects. Since plasma insulin level is considered as most important factor involved in the regulation for insulin receptors in target tissues, an investigation of insulin receptors in various tissues was performed in rats exposed to space flight or to hypokinesia (model used for simulation of some effects of microgravity).  相似文献   

9.
The epinephrine (Epi)-induced effects on the sympathetic nervous system (SNS) and metabolic functions were studied in men before and during a decrease in SNS activity achieved through simulated microgravity. Epi was infused at 3 graded rates (0.01, 0.02, and 0. 03 microg. kg(-1). min(-1) for 40 min each) before and on the fifth day of head-down bed rest (HDBR). The effects of Epi on the SNS (assessed by plasma norepinephrine levels and spectral analysis of systolic blood pressure and heart rate variability), on plasma levels of glycerol, nonesterified fatty acids (NEFA), glucose and insulin, and on energy expenditure were evaluated. HDBR decreased urinary norepinephrine excretion (28.1 +/- 4.2 vs. 51.5 +/- 9.1 microg/24 h) and spectral variability of systolic blood pressure in the midfrequency range (16.3 +/- 1.9 vs. 24.5 +/- 0.9 normalized units). Epi increased norepinephrine plasma levels (P < 0.01) and spectral variability of systolic blood pressure (P < 0.009) during, but not before, HDBR. No modification of Epi-induced changes in heart rate and systolic and diastolic blood pressures were observed during HDBR. Epi increased plasma glucose, insulin, and NEFA levels before and during HDBR. During HDBR, the Epi-induced increase in plasma glycerol and lactate levels was more pronounced than before HDBR (P < 0.005 and P < 0.001, respectively). Epi-induced energy expenditure was higher during HDBR (P < 0.02). Our data suggest that the increased effects of Epi during simulated microgravity could be related to both the increased SNS response to Epi infusion and/or to the beta-adrenergic receptor sensitization of end organs, particularly in adipose tissue and skeletal muscle.  相似文献   

10.
Nine bodybuilders performed heavy-resistance exercise activating the quadriceps femoris muscle. Intermittent 30-s exhaustive exercise bouts comprising 6-12 repetitions were interspersed with 60-s periods for 30 min. Venous blood samples were taken repeatedly during and after exercise for analyses of plasma free fatty acid (FFA) and glycerol concentration. Muscle biopsies were obtained from the vastus lateralis muscle before and after exercise and assayed for glycogen, glycerol-3-phosphate, lactate and triglyceride (TG) content. The activities of citrate synthase (CS), lactate dehydrogenase, hexokinase (HK), myokinase, creatine kinase and 3-hydroxyacyl-CoA dehydrogenase (HAD), were analysed. Histochemical staining procedures were used to assess fibre type composition, fibre area and capillary density. TG content before and after exercise averaged (SD) 23.9 (13.3) and 16.7 (6.4) mmol kg-1 dry wt. The basal triglyceride content varied sixfold among individuals and the higher the levels the greater was the change during exercise. The glycogen content decreased (P less than 0.001) from 690 (82) to 495 (95) mmol kg-1 dry wt. and lactate and glycerol-3-phosphate increased (P less than 0.001) to 79.5 (5.5) and 14.5 (7.3) mmol kg-1 dry wt., respectively, after exercise. The HK and HAD/CS content respectively correlated with glycogen or TG content at rest and with changes in these metabolites during exercise. FFA and glycerol concentrations increased slightly (P less than 0.001) during exercise. Lipolysis may, therefore, provide energy during heavy-resistance exercise of relatively short duration. Also, storage and utilization of intramuscular substrates appear to be influenced by the metabolic profile of muscle.  相似文献   

11.
Dynamics of changes in the level of myoglobin, hematological indices, and activity of certain enzymes (lactate dehydrogenase, hydroxybutyrate dehydrogenase, and creatine phosphokinase) was studied in blood of exposed (103.2 mC/kg) pigs. As the activity of enzymes decreased the myoglobin content of blood increased 5-7 days following irradiation. The effect of radiation was shown to promote the development of hypoxia in the animal body which was indicated by the ECG changes, the release of functionally deficient erythrocytes to blood, and the occurrence of stable vast hemorrhages.  相似文献   

12.
Maternal and fetal concentrations of plasma insulin, pancreatic glucagon, growth hormone (GH), corticosteroids and enteroglucagon, and of blood glucose and lactate, were measured in well-fed, late pregnant ewes before, during and after walking on a treadmill at 0.7 m.s-1, 10 degrees slope for 60 min. Exercise caused rapid and substantial increases in maternal concentrations of glucose, lactate, pancreatic glucagon and corticosteroids, smaller but significant decreases in levels of GH and enteroglucagon, and no change in insulin. With the exception of GH, concentrations of these maternal hormones had returned to pre-exercise levels within 20 min of stopping exercise. The exercise-induced maternal hyperglycaemia was associated with a proportionately similar, rapid increase in fetal blood glucose; fetal blood lactate and plasma corticosteroids also increased, but at slower rates and other fetal hormone concentrations were unchanged. During recovery there was a rapid increase in fetal insulin levels. The results are discussed in terms of the regulation of exercise-induced changes in maternal energy metabolism, and fetal metabolic and hormonal sensitivity to these changes.  相似文献   

13.
To examine the effects of repetitive bouts of heavy exercise on the maximal activities of enzymes representative of the major metabolic pathways and segments, 13 untrained volunteers [peak aerobic power (Vo(2 peak)) = 44.3 +/- 2.3 ml.kg(-1).min(-1)] cycled at approximately 91% Vo(2 peak) for 6 min once per hour for 16 h. Maximal enzyme activities (V(max), mol.kg(-1).protein.h(-1)) were measured in homogenates from tissue extracted from the vastus lateralis before and after exercise at repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). For the mitochondrial enzymes, exercise resulted in reductions (P < 0.05) in cytochrome-c oxidase (COX, 14.6%), near significant reductions in malate dehydrogenase (4.06%; P = 0.06) and succinic dehydrogenase (4.82%; P = 0.09), near significant increases in beta-hydroxyacyl-CoA dehydrogenase (4.94%; P = 0.08), and no change in citrate synthase (CS, 2.88%; P = 0.37). For the cytosolic enzymes, exercise reduced (P < 0.05) V(max) in hexokinase (Hex, 4.4%), creatine phosphokinase (9.0%), total phosphorylase (13.5%), phosphofructokinase (16.6%), pyruvate kinase (PK, 14.1%) and lactate dehydrogenase (10.7%). Repetition-dependent reductions (P < 0.05) in V(max) were observed for CS (R1, R2 > R16), COX (R1, R2 > R16), Hex (1R, 2R > R16), and PK (R9 > R16). It is concluded that heavy exercise results in transient reductions in a wide range of enzymes involved in different metabolic functions and that in the case of selected enzymes, multiple repetitions of the exercise reduce average V(max).  相似文献   

14.
Leptin, an ob gene product of adipocytes, plays a key role in the control of food intake and energy expenditure but little is known about leptin response to strenuous exercise in fasted and fed subjects or before and after blood donation. This study was designed to determine the immediate effects of strenuous exercise in healthy volunteers under fasting or fed conditions and before and one day after blood donation (450 ml) on plasma levels of leptin and gut hormones [gastrin, cholecystokinin (CCK), pancreatic polypeptide (PP) and insulin], as well as on "stress" hormones (cortisol, catecholamines and growth hormone. Two groups (A and B) of healthy non-smoking male volunteers were studied. All subjects performed incremental exercise tests until exhaustion (up to maximal oxygen uptake--VO2max), followed by 2 h of rest session. Group A perfomed the tests on a treadmill, while group B on a cycloergometer. In group A, one exercise was performed under fasting conditions and the second following ingestion of a standard liquid meal. In group B, one exercise test was performed as a control test and the second 24 h after blood donation (450 ml). Blood samples were withdrawn 5 min before the start of the test, at the VO2max, and 2 h after finishing the exercise. No significant change in plasma teptin were observed both immediately and 2 h after the exercise in fasted subjects, but after the meal the plasma leptin at VO2max and 2 h after the test was significantly higher, while after blood donation was significantly reduced. The postprandial rise in plasma leptin was accompanied by a marked increment in gut hormones; gastrin, CCK and PP and stress hormones such as norepinephrine, cortisol and GH. These hormonal changes could contribute to the postprandial rise in plasma leptin concentrations, while the fall of leptin after blood donation could be attributed to the inadequate response of stress hormones and autonomic nervous system to exhausting exercise. We conclude that strenuous physical exercise; 1) fails to affect plasma leptin level but when performed after meal but not after blood withdrawal it results in an increase and fall in plasma leptin, and 2) the release of gut hormones (gastrin, CCK and PP) and stress hormones (norepinephrine, cortisol, GH) increase immediately after exercise independently of feeding or blood donation and 3) following blood donation the strenuous exercise resulted in a marked reduction in the plasma leptin, cortisol and GH concentrations, possibly due to the impairment in the autonomic nervous control of these hormones.  相似文献   

15.
The study examines plasma metabolic profiles of patients with chronic obstructive pulmonary disease (COPD) to prove whether the disease influences metabolism at rest and after endurance training. This is based on the hypothesis that metabolome levels should reflect impaired skeletal muscle bioenergetics in COPD. The study aims to test this hypothesis by evaluating plasma metabolic profiles in COPD patients before and after 8?weeks of endurance exercise training. We studied blood samples from 18 COPD patients and 12 healthy subjects. Pre- and post-training blood plasma samples at rest and after constant-work rate exercise (CWRE) at 70% of pre-training Watts peak were analyzed by 1H-nuclear magnetic resonance spectroscopy to assess metabolite profiles. The two groups presented training-induced physiological changes in the VO2 peak and in blood lactate levels (P?<?0.01 each). Before training, the two groups also showed differences in metabolic profiles at rest (P?<?0.05). Levels of valine (r?=?0.51, P?<?0.01), alanine (r?=?0.45, P?<?0.05) and isoleucine (r?=?0.51, P?<?0.01) were positively associated with body composition (Fat Free Mass Index). While training showed a significant impact on the metabolic profile in healthy subjects (P?<?0.001), with changes in levels of amino acids, creatine, succinate, pyruvate, glucose and lactate (P?<?0.05 each), no equivalent training-induced effects were seen in COPD patients in whom only lactate decreased (P?<?0.05). This study shows that plasma metabolic profiling contributes to the phenotypic characterization of COPD patients.  相似文献   

16.
Water immersion has been used as a simulator of microgravity for analyzing gravity responses in semiaquatic plants such as rice. To examine whether or not water immersion for a short experimental period is a useful microgravity simulator even in terrestrial plants, we analyzed effects of water immersion on the cell wall rigidity and metabolisms of its constituents in azuki bean epicotyls. The cell wall rigidity of epicotyls grown underwater was significantly lower than that in the control. Water immersion also caused a decrease in molecular mass of xyloglucans as well as the thinning of the cell wall. Such changes in the mechanical and chemical properties of the cell wall underwater were similar to those observed in microgravity conditions in space. These results suggest that water immersion for a short period is a useful system for analyzing gravity resistance responses even in terrestrial plants.  相似文献   

17.
This study examined the effects of supplemental beta-hydroxy-beta-methylbutyrate (HMB) on muscle damage as a result of intense endurance exercise. Subjects (n = 13) were paired according to their 2-mile run times and past running experience. Each pair was randomly assigned a treatment of either HMB (3 g/day) or a placebo. After 6 wk of daily training and supplementation, all subjects participated in a prolonged run (20-km course). Creatine phosphokinase and lactate dehydrogenase (LDH) activities were measured before and after a prolonged run to assess muscle damage. The placebo-supplemented group exhibited a significantly greater (treatment main effect, P = 0.05) increase in creatine phosphokinase activity after a prolonged run than did the HMB-supplemented group. In addition, LDH activity was significantly lower (treatment main effect, P = 0.003) with HMB supplementation compared with the placebo-supplemented group. In conclusion, supplementation with 3.0 g of HMB results in a decreased creatine phosphokinase and LDH response after a prolonged run. These findings support the hypothesis that HMB supplementation helps prevent exercise-induced muscle damage.  相似文献   

18.
We investigated the influence of a single exhaustive bout of downhill running on oxidative damage to DNA and changes of antioxidant vitamin concentrations in rats. Plasma vitamin E levels were unchanged up to 48 hr postexercise. However, plasma ascorbic acid (AA) levels increased after the exercise, then decreased thereafter. This increase corresponded to a marked decrease in AA concentration in the adrenal glands. The activity of hepatic l-gulono-gamma-lactone oxidase, which catalyzes AA synthesis, was unaltered after the exercise. The weight of the adrenal glands was significantly increased 24 hr postexercise. These results indicate that the change in the plasma AA concentration after vigorous exercise was due mainly to the release of AA from the adrenal glands. The plasma creatine phosphokinase (CPK) activity and white blood cell (WBC) count increased 3 to 6 hr postexercise. Over this same period, a marker of oxidative DNA damage, 8-hydroxydeoxyguanosine in DNA, increased in the WBC, but not in the foreleg muscle. Lipid peroxide and vitamin E levels were also unchanged in the foreleg muscle. There was a positive correlation between CPK activity in the plasma and DNA damage in the WBC, suggesting that the DNA damage in the WBC was closely related with muscle damage due to exercise.  相似文献   

19.
Seventeen male physical education students performed three types of treadmill exercise: (1) progressive exercise to exhaustion, (2) prolonged exercise of 50 min duration at the anaerobic threshold of 4 mmol . l-1 blood lactate (AE), (3) a single bout of short-term high-intensity exercise at 156% of maximal exercise capacity in the progressive test, leading to exhaustion within 1.5 min (ANE). Immediately before and after ANE and before, during, and after AE adrenaline, noradrenaline, growth hormone, cortisol, insulin, testosterone, and oestradiol were determined in venous blood, and glucose and lactate were determined in arterialized blood from the earlobe. Adrenaline and noradrenaline increased 15 fold during ANE and 3--4 fold and 6--9 fold respectively during AE. The adrenaline/noradrenaline ratio was 1 : 3 during ANE and 1 : 10 during AE. Cortisol increased by 35% in ANE (12% of which appeared in the postexercise period) and 54% in AE. Insulin increased during ANE but decreased during AE. Testosterone and oestradiol increased by 14% and 16% during ANE and by 22% and 28% during AE. The results point to a markedly higher emotional stress and higher sympatho-adrenal activity in anaerobic exercise. Growth hormone and cortisol appear to be the more affected by intense prolonged exercise. Taking plasma volume changes and changes of metabolic clearance rates into consideration, neither of the exercise tests appeared to affect secretion of testosterone and oestradiol.  相似文献   

20.
The effects of glucose ingestion on the changes in blood glucose, FFA, insulin and glucagon levels induced by a prolonged exercise at about 50% of maximal oxygen uptake were investigated. Healthy volunteers were submitted to the following procedures: 1. a control test at rest consisting of the ingestion of 100 g glucose, 2. an exercise test without, or 3. with ingestion of 100 g of glucose. Exercise without glucose induced a progressive decrease in blood glucose and plasma insulin; plasma glucagon rose significantly from the 60th min onward (+45 pg/ml), the maximal increase being recorded during the 4th h of exercise (+135 pg/ml); plasma FFA rose significantly from the 60th min onward and reached their maximal values during the 4th h of exercise (2177 +/- 144 muEq/l, m +/- SE). Exercise with glucose ingestion blunted almost completely the normal insulin response to glucose. Under these conditions, exercise did not increase plasma glucagon before the 210th min; similarly, the exercise-induced increase in plasma FFA was markedly delayed and reduced by about 60%. It is suggested that glucose availability reduces exercise-induced glucagon secretion and, possibly consequently, FFA mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号