首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin improves contractile function after ischemia, but does not increase glucose uptake in the isolated working rat heart. We tested the hypothesis that the positive inotropic effect of insulin is independent of the signaling pathway responsible for insulin-stimulated glucose uptake. We inhibited this pathway at the level of phosphatidyl inositol 3-kinase (PI3K) with wortmannin. Hearts were perfused for 70 min at physiological workload with Krebs-Henseleit buffer containing [2-3H] glucose (5 mM, 0.05 Ci/ml) and oleate (0.4 mM, 1% BSA) in the presence (WM, n = 5) or absence (control, n = 7) of wortmannin (WM, 3 mol/L). After 20 min, hearts were subjected to 15 min of total global ischemia followed by 35 min of reperfusion. Insulin (1 mU/ml) was added at the beginning of reperfusion (WM + insulin n = 8, insulin n = 8). Cardiac power before ischemia was 8.1 ± 0.7 mW. Recovery of contractile function after ischemia was significantly increased in the presence of insulin (73.5 ± 8.9% vs. 38.5 ± 6.7%, p < 0.01). The addition of wortmannin completely abolished the effect of insulin on recovery (32.6 ± 6.4%). Glucose uptake was 1.84 ± 0.32 mol/min/g dry before ischemia and was slightly elevated during reperfusion (2.68 ± 0.35 mol/min/g dry, n.s.). Insulin did not affect postischemic glucose uptake. In the presence of wortmannin, glucose uptake was lowest during reperfusion (n.s.). The results suggest that PI3K is involved in the insulin-induced improvement in postischemic recovery of contractile function. This effect of insulin is independent of its effect on glucose uptake.  相似文献   

2.
To investigate the characteristics of the uptake within hypothalamic tissue of the Ca2+-channel blocker, verapamil, push-pull canulae were implanted bilaterally above the anterior hypothalamic-preoptic area (AH/POA) and posterior hypothalamus (PH) of the cat. The functional reactivity of these two anatomical regions was verified in the unrestrained cat, prior to a push-pull perfusion, by a microinjection of either 5–7 g norepinephrine (NE) into AH/POA, or by perfusion of 50 mM Ca2+ within the PH, both of which induce a transient decline in the cat's core temperature. Verapamil was perfused in a concentration of 0.4, 2.0 or 4.0 g/l for successive 10 and 20 min intervals within these NE and Ca2+-sensitive sites. A quantitative analysis of verapamil in each sample of perfusate was performed double-blind by HPLC-spectrophotometric detection. The results showed that the percent recovery of verapamil after the 10 min interval was always less than that after the next 20 min period of perfusion. These recovery values were independent of the site of perfusion and the concentration of verapamil. However, the mean uptake of verapamil into tissue after 10 min was significantly greater than that after the 20 min period for all concentrations tested. These results demonstrate that the hypothalamus has a time-dependent characteristic to incorporate a Ca2+-channel blocker into the parenchyma. Once the point of tissue saturation is reached, a steady-state level of verapamil uptake is established.  相似文献   

3.
Post-ischemic reperfusion causes cardiac dysfunction and radical-induced lipid peroxidation (LPO) detectable by ESR spin trapping. This study deals with the applicability of the spin trap technique to pharmacological investigations during myocardial reperfusion injury. The use of the spin trap phenylbutylnitrone (PBN, 3 mM) in isolated rat hearts demonstrated the release of alkoxyl radicals (aN = 1.39 mT, aH = 0.19 mT) formed particularly within the first 15 min of reperfusion following 30 min of ischemia. The decline of radicals, after 10 min of reperfusion, was accompanied by recovery of function in 80% of the hearts. The radical concentration in the coronary effluent (maximum after 7.5 min) was reduced by the infusion of 1 mM mercaptopropionylglycine (MPG, 2.7 ± 0.5 U/ml, p < 0.001) or 5 M vitamin E (11.7 ± 0.8 U/ml, p < 0.001), compared to the (PBN-containing) control (29.7 ± 4.3 U/ml). Moreover, functional recovery (left ventricular developed pressure, LVDP 91.6 ± 20% of pre-ischemic level, p < 0.05) was improved by the hydrophilic radical scavenger MPG, compared to the (PBN-containing) control (LVDP 50.5 ± 15.7% of baseline). PBN alone led to higher functional recovery (p < 0.05) and reduced VF (duration of ventricular fibrillation; 7.10 ± 0.36 min/30 min, p < 0.05), compared to the untreated (PBN-free) control (LVDP 26.6 ± 11.8%; VF 19.42 ± 3.64 min/30 min). The Ca antagonist verapamil (0.1 M), MPG, and the lipophilic vitamin E showed cardioprotection in the absence of PBN: post-ischemic recovery of LVDP was 25.4 ± 6.8% (p < 0.05), 39.6 ± 12.7% (p < 0.05) and 52.4 ± 2.6% (p < 0.01), respectively, compared to the corresponding untreated control (13.3 ± 6.6%). Whereas verapamil and vitamin E were able to protect the heart when present alone, they offered no additive effect in the presence of PBN. Therefore, PBN can be used to estimate the radical scavenger properties of an agent in the heart. However, because of the protective properties of PBN itself, the results of simultaneous investigations of the effects of other compounds, such as Ca antagonists or lipophilic radical scavengers, on heart function may be limited.  相似文献   

4.
The stimulation of production of inositol phosphates in rat cortical slices by KCl depolarization and the effects of calcium channel active drugs were investigated. Elevation of K+ in the medium up to 48 mM KCl caused a linear concentration-dependent increase in [3H]inositol phosphate accumulation. The KCl stimulated response was not significantly inhibited in the presence of muscarinic or 1-adrenergic antagonists. KCl stimulated the production of inositol trisphosphate at 60 min but not 10 min. Addition of peptidase inhibitors did not significantly affect KCl-stimulated PI hydrolysis. The KCl-stimulated response was still observed in the absence of extracellular calcium, although the net accumulation of inositol phosphates was greater in the presence of 0.1 or 0.5 mM calcium. KCl (48 mM) inhibited [3H]inositol uptake into phospholipids of cortical slices. The dihydropyridine calcium channel agonist BAY K 8644 stimulated PI hydrolysis in cortical slices in a concentration dependent manner in the presence of 19 mM KCl. The BAY K 8644-stimulated PI response was partially inhibited by 1M atropine but not by 1M prazosin. Calcium channel blockers nitrendipine, verapamil, flunarizine, and nifedipine slightly inhibited the PI response stimulated by 19 mM KCl in the presence or absence of BAY K 8644. The effects of the calcium channel antagonists were attenuated in the presence of 1 M atropine. The peptide calcium channel blocker -conotoxin did not affect KCl-stimulated PI hydrolysis. These results suggest that endogenous muscarinic or adrenergic neurotransmitters are not involved in KCl-stimulated PI hydrolysis in cortical slices. Although extracellular calcium is necessary for optimal KCl-stimulated PI hydrolysis, it is not required for the expression of the KCl-evoked response suggesting that depolarization is the primary trigger for this stimulant.  相似文献   

5.
Bovine chromaffin secretory granules were purified by isopycnic Metrizamide gradient centrifugation and their Ca2+ sequestration pathways were characterized. The rate of Ca2+ sequestration at 37°C was first order, with a maximal uptake of 26.9 ±0.46 (mean ± S.D., n = 3) nmol Ca2+/mg protein and a first order rate constant (k) of 0.046 ± 0.002 min–1. At 4°C the rate of uptake was substantially attenuated, with only 2.47 ± 0.2 (mean ± S.D, n = 3) nmol Ca2+/mg protein sequestered in 60 min. Ca2+ sequestration was 93% inhibited by 180 mM NaCl [I50% of 78.7 ± 9.3 mM NaCl (mean ± S.D., n = 11)] but only slightly inhibited by KCl or MgCl2. Ca 2+ sequestration was not stimulated by incubation with MgATP but was inhibited by 57% after incubation with 30 M monensin. Ca 2+ sequestration was dependent on extravesicular Ca 2+ with half-maximal sequestration at pCa2+ 6.81 ± 0.028 (mean ± S.D., n = 3). Sequestered Ca2+ could be exchanged with external 45Ca2+, the exchange rate was first order (k of 0.042 ± 0.004: mean ± S.D., n = 3) and saturated at 27.7 ± 1.1 nmol Ca2+/mg (mean ± S.D., n = 3). The Ca2+/Ca2+ exchange system was totally inhibited by NaCl or KCl but only slightly by MgCl2. About 75% of sequestered 45Ca2+ could be released by incubation with NaCl, but only 8% was released by incubation with KCI. Half-maximal release of sequestered 45Ca2+ required 69.3 ± 12.2 mM NaCl (mean ± S.D., n = 3). The Na+-induced release of sequestered 45Ca2+ was rapid, t0.5 of 2.80 ± 0.63 min (mean ± S.D., n = 3) and inhibited at 4°C. The concurrent incubation of chromaffin granules with 45Ca2+ and either annexin proteins V or VI resulted in attenuated uptake of 45Ca2+. These results suggest that Ca2+ uptake in adrenal chromaffin granules is regulated by Na+ and Ca2+ gradients and also possibly by annexins V and VI.Abbreviations EGTA ethylene glycol bis (-aminoethyl ether)-N,-N,N,N-tetraacetic acid - SDS Sodium dodecyl sulphate - PAGE Polyacrylamide gel electrophoresis - BSA bovine serum albumin - AI Annexin I - AIIt Annexin II tetramer - AIII Annexin III - AIV Annexin IV - AV Annexin V - AVI Annexin VI - k first order rate constant - AT total extent of Ca2+ uptake (nmol) - BufferA 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 5 mM EGTA - Buffer B 300 mM sucrose, 10 mM potassium phosphate (pH 7.0) and 1 mM EGTA - Buffer C 300 mM sucrose, 10 mM potassium phosphate (pH 7.0) - Buffer D 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 0.5 mM EGTA and 0.65 MM CaCl2 - Buffer E 300 mM sucrose, 10 mM potassium phosphate (pH 7.0), 0.25 mM EGTA and 0.325 mM CaCl2  相似文献   

6.
Gharieb MM 《Biodegradation》2002,13(3):191-199
The biosorption of copper oxychloride fungicide particulates(1 m diameter), at concentrations ranging from 25 to 500 ppm active ingredient (ai), by pelleted mycelium of Aspergillus niger grown on Czapek Dox medium was evaluated. The concentration of the fungicide adsorbed to the mycelium, remaining suspended or solubilized in the medium, was determined by analysis of its copper content (CuF)using atomic absorption spectrophotometry (AAS). 2-day-old pellets exhibited highbiosorption efficiency ranging from 97 ± 1.0 to 88 ± 1.2% of the initially added fungicide concentrations, respectively, within 10 min. However, underthe same conditions, amounts of the removed fungicide by 6-day-old mycelial pellets were significantly lower and ranged from 0.5 ± 0.03 to 0.15 ± 0.01%. Scanning electron microscopy studies of 2-day-old pellets supplemented with thefungicide revealed predominant aggregations of clumps and dense particulates on the hyphal tips. The adsorbed CuF of 125 ppm ai fungicide subsequently decreased from 7.5 ± 0.5 to 2.1 ± 0.1 mol Cu (mg dry wt)-1 after 12 h incubation. Simultaneously, the soluble portion of CuF remaining in the medium increased from 0.9 ± 0.6 to4.9 ± 0.2 mol Cu ml-1. The presence of 50 mM CaCl2 resulted in a decrease of the adsorbed CuF to 3.5 ± 0.5 mol Cu (mg dry wt)-1 and solubilizedcopper in the medium increased to 5.9 ± 0.8 mol Cu ml-1. Additionally, the cellular copper contents attained after 2 h were 0.08 ± 0.01 and 0.16 ± 0.007 mol Cu (mg dry wt)-1 in absence and presence of calcium, respectively. The addition of calcium to glucose-starved pellets greatly increased the medium [H+] which was conclusively discussed in relation to Ca2+/H+ exchangecapacity of the fungal cells. These results are of potential environmental,biotechnological and agricultural importance.  相似文献   

7.
Marian  M.  Bindoli  A.  Callegarin  F.  Rigobello  M. P.  Vincenti  E.  Bragadin  M.  Scutari  G. 《Neurochemical research》1999,24(7):875-881
The effect of 2,6-diisopropylphenol (propofol) in comparison to that of the halogenated anesthetics enflurane, isoflurane, and halothane on tetrapenylphosphonium uptake by rat brain synaptosomes was studied. A direct method to separately measure the synaptosomal and the mitochondrial transmembrane potential by using the tetraphenylphosphonium cation (TPP+) was utilized. The latter is a lipophylic charged molecule which distributes between two compartments according to the transmembrane electrical potential in the presence or absence of 60 mM KCl as a synaptosomal membrane depolarizing agent. After previously reporting the damages induced by general anesthetics on isolated mitochondria, the aim of this paper was to study their possible action on the synaptosomal membrane potential and whether or not drugs concentrations damaging isolated mitochondria are also effective on synaptosomal mitochondria. The results indicated that, in the presence of glucose, mitochondria included in synaptosomes were able to maintain a transmembrane potential of 202 ± 8 mV (mean ± SD) while the synaptosomal membrane showed a potential of 78 ± 8 mV (mean ± SD). When anesthetic concentrations (0.6–1 mM propofol, 10–40 M enflurane, 30–50 M isoflurane, 8–15 M halothane) that impair mitochondrial energy metabolism were used, the synaptosomal transmembrane potential was maintained and, in addition, a slight increase of the TPP+ taken up was observed as the anesthetic concentration was increased.  相似文献   

8.
Summary Ascorbic acid is essential for the formation of bone by osteoblasts, but the mechanism by which osteoblasts transport ascorbate has not been investigated previously. We examined the uptake ofl-[14C]ascorbate by a rat osteoblast-like cell line (ROS 17/2.8) and by primary cultures of rat calvaria cells. In both systems, cells accumulatedl-[14C]ascorbate during incubations of 1–30 min at 37°C. Unlike propionic acid, which diffuses across membranes in protonated form, ascorbic acid did not markedly alter cytosolic pH. Initial ascorbate uptake rate saturated with increasing substrate concentration, reflecting a high-affinity interaction that could be described by Michaelis-Menten kinetics (apparentK m =30±2 m andV max=1460±140 nmol ascorbate/g protein/min in ROS 17/2.8 cells incubated with 138mm extracellular Na+). Consistent with a stereoselective carrier-mediated mechanism, unlabeledl-ascorbate was a more potent inhibitor (IC50=30±5 m) ofl-[14C]ascorbate transport than wasd-isoascorbate (IC50=380±55 m). Uptake was dependent on both temperature and Na+, since it was inhibited by cooling to 4°C and by substitution of K+, Li+ or N-methyl-d-glucamine for extracellular Na+. Decreasing the external Na+ concentration lowered both the affinity of the transporter for ascorbate and the apparent maximum velocity of transport. We conclude that osteoblasts possess a stereoselective, high-affinity, Na+-dependent transport system for ascorbate. This system may play a role in the regulation of bone formation.  相似文献   

9.
Several genetic and transgenic mouse models are currently being used for studying the regulation of myocardial contractility under normal conditions and in disease states. Little information has been provided, however, about myocardial energy metabolism in mouse hearts. We measured glycolysis, glucose oxidation and palmitate oxidation (using 3H-glucose, 14C-glucose and 3H-palmitate) in isolated working mouse hearts during normoxic conditions (control group) and following a 15 min global no-flow ischemic period (reperfusion group). Fifty min following reperfusion (10 min Langendorff perfusion + 40 min working heart perfusion) aortic flow, coronary flow, cardiac output, peak systolic pressure and heart rate were 44 ± 4, 88 ± 4, 57 ± 4, 94 ± 2 and 81 ± 4% of pre-ischemic values. Rates of glycolysis and glucose oxidation in the reperfusion group (13.6 ± 0.8 and 2.8 ± 0.2 mol/min/g dry wt) were not different from the control group (12.3 ± 0.6 and 2.5 ± 0.2 mol/min/g dry wt). Palmitate oxidation, however, was markedly elevated in the reperfusion group as compared to the control group (576 ± 37 vs. 357 ± 21 nmol/min/g dry wt, p < 0.05). This change in myocardial substrate utilization was accompanied by a marked fall in cardiac efficiency measured as cardiac output/oxidative ATP production (136 ± 10 vs. 54 ± 5 ml/mol ATP, p < 0.05, control and reperfusion group, respectively). We conclude that ischemia-reperfusion in isolated working mouse hearts is associated with a shift in myocardial substrate utilization in favour of fatty acids, in line with previous observations in rat.  相似文献   

10.
The intracarotid injection method has been utilized to examine blood-brain barrier (BBB) glucose transport in hyperglycemic (4–6 days) mice. In anesthetized mice, Brain Uptake Indices were measured over a range of glucose concentrations from 0.010–50 mmol/l; glucose uptake was found to be saturable and kinetically characterized. The maximal velocity (Vmax) for glucose transport was 989±214 nmol·min–1·g–1· and the half-saturation constant estimated to be 5.80±1.38 mmol/l. The unsaturated Permeability Surface are product (PS) is=171+8 l·min.–1·g–1. A rabbit polyclonal antiserum to a synthetic peptide encoding the 13 C-terminal amino acids of the human erythrocyte glucose transporter immunocytochemically confirmed the presence of the GLUT1 isoform in non-obese diabetic (NOD) mouse brain capillary endothelia. These studies indicate that a down-regulation of BBB glucose transport occurs in these spontaneously hyperglycemic mice; both BBB glucose permeability (as indicated by PS product) and transporter maximal velocity are reduced (in comparison to normoglycemic CD-1 mice), but the half-saturation constant remains unchanged.  相似文献   

11.
The role of histamine in cardiac physiology and pathophysiology is not clarified, but is dependent on species. The effects of exogenous histamine in Langendorff-perfused rat hearts were investigated. 1 mM, 100, 10, 1 and 0.1 M of histamine (n=7 each) as 15 min infusions were employed in a dose-response study, and compared to control perfused hearts (n=7). In another experimental series, 100 M histamine (n=15) was added during reperfusion after 25 min global ischemia, and compared to control ischemia-reperfusion (n=15). The maximal response to histamine in the dose-response study (100 M) was an increase of left ventricular developed pressure to 126±8% of initial value (mean±SEM, p<0.04), and increase of coronary flow to 152+6% (p<0.02) after 5 min infusion. 100 M histamine did not significantly influence heart rate or rhythm. The lowest concentration (0.1 M) did not have effects cardiac performance. Reperfusion with histamine for 2 min after ischemia reduced left ventricular developed pressure to 68±10% of initial value versus 116+17% in ischemic controls (p<0.05), and increased left ventricular end-diastolic pressure to 24±8 mmHg compared to 6±2 mmHg in controls (p<0.04). Left ventricular pressures were similar in hearts reperfused with histamine and in ischemic controls for the rest of the observation. Coronary flow increased during reperfusion in hearts given histamine. Histamine had a dose-dependent positive inotropic and vasodilatory effect in isolated rat hearts. Exogenous histamine had only minor effects on post-ischemic cardiac function.  相似文献   

12.
Pig coronary artery cultured smooth muscle cells were skinned using saponin. In the presence of an ATP-regenerating system and oxalate, the skinned cells showed an ATP-dependent azide insensitive Ca2+-uptake which increased linearly with time for >1 h. The Ca2+-uptake occurred with Km values of 0.20±0.03 M for Ca2+ and 400±34 M for MgATP2–. Thapsigargin and cyclopiazonic acid inhibited this uptake with IC50 values of 0.13±0.02 and 0.56±0.04 M, respectively. These properties of SR Ca2+-pump are similar to those reported for membrane fractions isolated from fresh smooth muscle of coronary artery and other arteries. However, optimum pH of the uptake in the skinned cells (6.2) was lower than that reported previously using isolated membranes (6.4–6.8).Abbreviations SR sarcoplasmic reticulum - ER endoplasmic reticulum - PM plasma membrane - CPA cyclopiazonic acid - DTT dithiothreitol  相似文献   

13.
Summary The triggering of cryoprotectant synthesis was examined in the freeze tolerant wood frog,Rana sylvatica. A slow decrease in ambient temperature (1°C every 2 days) from 3° to –2.1 °C was used to search for a specific trigger temperature. None was found. Instead it was found that, despite subzero temperature, animals which remained in a supercooled unfrozen state had low blood glucose (1.66±0.44 mol/ml) while those which had frozen had high blood glucose (181±16 mol/ml). These results indicate that it is the initiation of ice nucleation, rather than a specific subzero temperature, which triggers cryoprotectant glucose synthesis. This was confirmed by monitoring the freezing curves for individual frogs with sampling of blood and tissues at various times relative to the initiation of nucleation (detected as an instantaneous temperature jump from –3 to –1°C). Animals sampled before nucleation had low blood and liver glucose contents and a low percentage of liver phosphorylase in thea form. Within 4 min of the initiation of freezing, however, blood glucose had jumped to 16 mol/ml and liver glucose to 39.5 mol/g wet weight. Glucose in both compartments continued to increase as the time of freezing increased correlated with an increase in liver phosphorylasea content from 47% before nucleation to 100% after 50 min of freezing. The results clearly demonstrate that freeze tolerant frogs have no anticipatory synthesis of cryoprotectant as a preparation for winter but rather can translate the initiation of extracellular ice formation into a signal which rapidly activates cryoprotectant production by liver.  相似文献   

14.
Summary Vasopressin-induced transformation of ridges to microvilli on the surface of granular cells of toad urinary bladder occurs in conjunction with induced alterations in the water permeability of the luminal membrane. This study was designed to establish the relationship between the time course for induction of microvilli and the time course for induction of increased water permeability after vasopressin stimulation. Hemibladders were examined at 2.5, 5, 10, 20 and 30 min following exposure to 20 mU/ml of vasopressin and at 5, 10, 20, 30, 40, 50 and 60 min after washout of vasopressin. Within 2.5 min, vasopressin initiated complete transformation of ridges to microvilli on approximately 13% of the granular cells, while osmotic water flow (Jv) was 0.31±0.10 l·min–1·cm–2. Five minutes following vasopressin stimulation, microvilli were present on approximately 30% of granular cells andJv was 2.27±0.13 l·min–1·cm–2. At 10 minJv was maximum at 4.03±0.15 l·min–1·cm–2 and 50% of the granular cells were covered with microvilli. This percentage increased to 70% at 20 min and was maintained at 30 min, althoughJv decreased to 3.9±0.35 l·min–1·cm–2 at 30 min. Five minutes following vasopressin washout, ridges interspersed with microvilli reappeared asJv fell to 1.10±0.30 l·min–1·cm–2. At 10 min after vasopressin washout,Jv approached basal levels, but the reversal of microvilli to ridges remained incomplete. At 60 min after vasopressin washout, the granular cells had regained their original ridgelike surface structures. Thus, these studies establish a temporal relationship between the induction and reversibility of vasopressin-induced microvillous formation and alterations in the osmotic water permeability of the apical plasmalemma.  相似文献   

15.
Uptake of extracellular adenosine was studied in primary cultures of astrocytes or neurons. Both cell types showed a high affinity uptake. TheK m values were not significantly different (6.5±3.75 M in astrocytes and 6.1±1.86 M in neurons), but the intensity of the uptake was higher in astrocytes than in neurons (V max values of 0.16±0.030 and 0.105±0.010 nmol×min–1×mg–1 protein, respectively). The temperature sensitivity was similar in the two cell types. Adenosine uptake inhibitors and benzodiazepines inhibited the adenosine uptake systems in both astrocytes and neurons with IC50 values in the high nanomolar or the micromolar range and the rank order of potency was similar in the two cell types. In both cell types the (–) isomers of two sets of benzodiazepine stereoisomers were more potent than the (+) isomers. Dixon analysis showed that dipyridamole, papaverine, hexobendine and chlordiazepoxide inhibited the adenosine uptake competitively and clonazepam noncompetitively in both cell types.  相似文献   

16.
Glucose-limited, continuous cultures (dilution rate 0.1 h-1) of Streptococcus bovis JB1 fermented glucose at a rate of 3.9 mol mg protein-1 h-1 and produced acctate, formate and ethanol. Based on a maximum ATP yield of 32 cells/mol ATP (Stouthamer 1973) and 3 ATP/glucose, the theoretical glucose consumption for growth would have been 2.1 mol mg protein-1 h-1. Because the maintenance energy requirement was 1.7 mol/mg protein/h (Russell and Baldwin 1979), virtually all of the glucose consumption could be explained by growth and maintenance and the YATP was 30. Glucose-limited, continuous cultures produced heat at a rate of 0.29 mW/mg protein, and this value was similar to the enthalpy change of the fermentation (0.32 mW/mg protein). Batch cultures (specific growth rate 2.0 h-1) fermented glucose at a rate of 81 mol mg protein-1 h-1, and produced only lactate. The heat production was in close agreement with the theoretical enthalpy change (1.72 versus 1.70 mW/mg protein), but only 80% of the glucose consumption could be accounted by growth and maintenance. The YATP of the batch cultures was 25. Nitrogen-limited, glucose-excess, non-growing cultures fermented glucose at a rate of 6.9 mol mg protein-1 h-1, and virtually all of the enthalpy for this homolactic fermentation could be accounted as heat (0.17 mW/mg protein). The nitrogenlimited cultures had a membrane potential of 150 mV, and nearly all of the heat production could be explained by a futile cycle of protons through the cell membrane (watts = amperes x voltage where H+/ATP was 3). The membrane voltage of the nitrogen-limited cells was higher than the glucose-limited continuous cultures (150 versus 80 mV), and this difference in voltage explained why nitrogen-limited cultures consumed glucose faster than the maintenance rate. Batch cultures had a membrane potential of 100 mV, and this voltage could not account for increased glucose consumption (more than growth plus maintenance). It appears that another mechanism causes the increased heat production and lower growth efficiency of batch cultures.  相似文献   

17.
To determine the role of nitric oxide (NO) in acute renal failure (ARF), we have studied the time course change activities to activity of nitric oxide synthase (NOS) isoform activities, both calcium dependent and independent NOS, in experimental ischemic ARF. We have also analyzed change activities to activity of the NOS activities in both renal cortex and medulla. Male SD rats (n = 5) were inducted to ARF by ischemia-reperfusion injury and divided into the following groups; Control group (sham operation), Day 0 group, (measurement performed on that day of operation), Day 1 group, (measurement performed one day after induction of ARF), Day 3 group and Day 7 group. Measurement of NOS activity was based on the following principles; NO is synthesized from arginine by nitric oxide synthase (NOS) and NO is converted to NO2 /NO3 (NOx) by oxidation. Detection of the final metabolite of NO, NOx was done using flow injection method (Griess reaction). The results were, (1) calcium dependent NOS activity in the cortex and medulla decreased, however it increased in the recovery period in the renal cortex (Cortex; Control, 0.941 ± 0.765, D0, 0.382 ± 0.271, D1, 0.118 ± 0.353, D3, 2.030 ± 0.235, D7, 3.588 ± 2.706, Medulla; Control, 1.469 ± 0.531, D0, 0.766 ± 0.156, D1, 0.828 ± 0.187, D3, 2.078 ± 0.094, D7, 1.289 ± 0.313 mol NOx produced/mg protein/30 min). (2) On the other hand, iNOS activity increased in the early phase of ARF, both in the cortex and medulla, but returned to control values during the recovery phase in cortex and was maintained at higher levels in the medulla (Cortex; Control, 0.333 ± 0.250, D0, 0.583 ± 0.428, D1, 1.167 ± 0.262, D3, 0.250 ± 0.077, D7, 0.452 ± 0.292, Medulla; Control, 0.139 ± 0.169, D0, 0.279 ± 0.070, D1, 1.140 ± 0.226, D3, 0.452 ± 0.048, D7, 0.625 ± 0.048 mol NOx produced/mg protein/30 min). These findings suggest that the role of NOS in ARF are different for the different NOS isoforms and have anatomic heterogeneity.  相似文献   

18.
Summary The rate of fluid transport across rabbit corneal endothelium has been measured with an automatic volumetric method. The present resolution of the procedure is 1–3 nanoliters, and intervals of measurement can be made as small as seconds. In the presence of glucose, oxidized glutathione (GSSG), and adenosine, the maximal rates were 6.2±1.0 l/hr cm2, and 8.2±0.8 l/hr cm2 if a large portion of the stroma was dissected away. In the presence of glucose and GSSG only, the rates were lower, namely 3.7±0.5 l/hr cm2. The rates consistently increased or decreased when adenosine was added or deleted, respectively, during given experiments. The stimulation of fluid transport by adenosine was in the order of 40–50%. The results raise the possibility that this transport mechanism might be subject to metabolic control.  相似文献   

19.
The object of the present study was to elucidate whether a glucose load modifies glucose uptake by tissues in brown trout in vivo. By the use of 2-[1,2-3H]-deoxyglucose, plasma glucose disappearance rate and tissue glucose uptake were measured after an intraaortic glucose load of 500 mg·kg-1 (glucose load group) and under normoglycemic conditions (control). We also attempted to determine whether fasting modifies the glucose load disposal (fasted glucose load group). The procedure used to calculate 2-deoxyglucose uptake by tissues was evaluated, and the levels of 2-deoxyglucose uptake were compared with those of 2-deoxyglucose phosphorylation. Uptake and phosphorylation rates were similar in all tissues, except in brain and heart. In all the groups glucose uptake rates were highest in spleen, kidney, brain and gills, and lowest in red muscle, heart and white muscle. However, white muscle was the main site of glucose uptake on a whole tissue basis. The glucose load led to strong, long-lasting hyperglycemia, in spite of the increases observed in plasma insulin levels and in glucose uptake rate by the whole body (control: 4.9 mol·min-1·kg-1; glucose load group: 6.5 mol·min-1·kg-1). This higher rate was due to the higher glucose uptake only in white and red muscles (four- and threefold, respectively). Fasting halved the uptake of glucose by both red and white muscles in the load condition. In consequence the use of exogenous glucose decreased with fasting (fasted glucose load group: 5.1 mol·min-1·kg-1), causing still longer hyperglycemia.Abbreviations bw body weight - 2DG 2-[1,2-3H]-deoxyglucose - 2DG-P 2-[1,2-3H]-deoxyglucose phosphate - dpm disintegrations per min - FGL fasted glucose load group - GL glucose load group - G-6-Pase glucose-6-phosphatase - LG L-[1-14C]-glucose - MS-222 3-aminobenzoic acid ethyl ester methanesulphonate salt  相似文献   

20.
Uptake and metabolism of mannose were studied in astroglia-rich primary cultures derived from neonatal rat brains. A saturable component of mannose uptake was found with half-maximal uptake at 6.7±1.0 mM mannose. In addition, a non-saturable component dominated the uptake at high concentrations of mannose. Glucose, cytochalasin B, or phloretin in the incubation buffer inhibited the carrier-mediated uptake of mannose. Within the astroglial cells mannose is phosphorylated to mannose-6-phosphate. In cell homogenates, the KM value of mannose-phosphorylating activity was determined to be 24±7 M. The Vmax value of this activity is only 40% that of glucose-phosphorylating activity. Mannose-6-phosphate was converted to fructose-6-phosphate by mannose-6-phosphate isomerase. The specific activity of this enzyme in homogenates of astroglial cultures was higher than that of hexokinase. Two products of mannose utilization in astroglial cells are glycogen and lactate. The amounts of each of these products increased with increasing concentrations of mannose. In contrast to the generation of lactate, that of glycogen from mannose was enhanced in the presence of insulin. In conclusion, we suggest that mannose is taken up into the cells of astroglia-rich primary cultures by the glial glucose transporter and is metabolized to fructose-6-phosphate within the astroglial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号