首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gene therapy using anticancer drug-resistance genes   总被引:1,自引:0,他引:1  
Sugimoto Y 《Human cell》1999,12(3):115-123
Myelosuppression is a major dose-limiting factor in cancer chemotherapy. Introduction of drug-resistance genes into bone marrow cells of cancer patients has been proposed to overcome this limitation. In theory, any gene whose expression protects cells against the toxic effects of chemotherapy should be useful in vivo for this purpose. Among such genes, human multidrug-resistance gene (MDR1) has been studied most extensively for this purpose, and clinical trials of drug-resistance gene therapy have been started in the US for cancer patients who undergo high-dose chemotherapy with autologous hematopoietic stem cell transplantation. In Japan, our clinical protocol of MDR1 gene therapy "A clinical study of drug-resistance gene therapy to improve the efficacy and safety of chemotherapy against breast cancer" has been submitted to the government. To improve the efficacy and safety of this drug-resistance gene therapy, we have constructed a series of MDR1-bicistronic retrovirus vectors using a retrovirus backbone of Harvey murine sarcoma virus and internal ribosome entry site (IRES) from picornavirus to co-express a second gene with the MDR1 gene. MDR1-MGMT bicistronic vectors can be used to protect bone marrow cells of cancer patients from combination chemotherapy with MDR1-related anticancer agents and nitrosoureas. In addition, MDR1-bicistronic retrovirus vectors can be designed to use the MDR1 gene as an in vivo selectable marker to enrich the transduced cells which express therapeutic genes, if disease is curable by the expression of a single-peptide gene in any types of bone marrow cells or peripheral blood cells.  相似文献   

3.
4.
5.
由MDR1基因过度表达所引起的肿瘤细胞对化疗药物的耐药性,是导致化疗失败的主要原因之一.针对MDR1中一段包含转录启始位点、翻译启始位点和转录正调控区的序列,设计了反义RNA并将其克隆到逆转录病毒载体pLXSN上.用脂质体包裹载体导入MDR1高表达的耐药细胞KBv200中,在反义RNA转染的细胞中,MDR1在mRNA和蛋白水平的表达都有下降,细胞内药物的浓度有所提高,对长春新碱、阿霉素的耐药性分别下降了65%和47%.实验结果表明,反义RNA对MDR1的表达有抑制作用,从而使肿瘤细胞内的药物浓度升高,其耐药程度下降.  相似文献   

6.
This study examined the effects of microtubule-targeting anticancer drugs (paclitaxel, cabazitaxel, and eribulin) on the expression of drug efflux transporter P-glycoprotein, which is encoded by MDR1. Paclitaxel and eribulin induced MDR1 promoter activity in a concentration-dependent manner, while cabazitaxel had little effect in human intestinal epithelial LS174T cells. Overexpression of the nuclear receptor pregnane X receptor (PXR) gene (NR1I2) enhanced paclitaxel- and eribulin-induced MDR1 activation, but expression of the nuclear receptor co-repressor silencing mediator for retinoid and thyroid receptors (SMRT) gene (NCOR2) repressed MDR1 activation. Eribulin increased the mRNA and protein expression of P-glycoprotein in LS174T cells. Cellular uptake of rhodamine 123 and calcein-acetoxymethyl ester (calcein-AM), P-glycoprotein substrates, decreased in paclitaxel- or eribulin-treated LS174T cells. Eribulin also increased MDR1 promoter activity in human breast cancer MCF7 cells. The results suggest that the microtubule-targeting anticancer drug eribulin can induce the drug efflux transporter P-glycoprotein via PXR in human intestinal and breast cancer cells and thus influence the efficacy of anticancer drugs.  相似文献   

7.
The P‐glycoprotein (p170, P‐gp) encoded by human MDR1 gene functions as a pump to extrude anticancer drugs from cancer cells. Over‐expression of p170 is closely related to primary and induced drug resistance phenotype of tumor cells. Recent studies have demonstrated that expression of cyclooxygenase‐2 (COX‐2) is positively correlated with the p170 level, suggesting a potential of COX‐2 specific inhibitors in regulation of cytotoxicity of anticancer agents. Celecoxib is one of the specific inhibitors of COX‐2 and has been widely used in clinic. However, its function in the response of cancer cells to anticancer drugs and the related mechanism are still waiting to be investigated. To explore the correlation of celecoxib and the p170‐mediated drug resistance, the role of celecoxib in drug response of cancer cells was analyzed with flow cytometry, high performance liquid chromatography (HPLC), and colony formation experiments. Celecoxib (50 µM) was found to significantly enhance the sensitivity of MCF‐7 and JAR/VP16 cells to tamoxifen and etoposide, respectively, by inhibition of p170 expression and increase in intracellular accumulation of the drugs. However, celecoxib did not affect pump function of p170. Enzyme activity and methylation analyses demonstrated that the inhibitory effect of celecoxib on p170 was independent on COX‐2 but closely related to hypermethylation of MDR1 gene promoter. Our study suggested that celecoxib was a potential agent for enhancement of the sensitivity of cancer cells to anticancer drugs. It also provided a links between epigenetic change of MDR1 and drug response of cancer cells. J. Cell. Biochem. 108: 181–194, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
Multidrug resistance in human cancer is associated with overexpression of the MDR1 gene which encodes a 170,000 molecular weight membrane glycoprotein that transports cytotoxic drugs out of cancer cells. The MDR1 gene is normally expressed in intestine, kidney, liver, and adrenal glands, and in tumors derived from these tissues, but it is not expressed in normal bone marrow. Transgenic mice that express the MDR1 gene in their bone marrow have been developed, and because of this expression these mice are resistant to the bone marrow-suppressive effects of daunomycin, doxorubicin, taxol, and several other anticancer drugs. These mice can be used in several different ways to develop new types of drugs to treat human cancer.--Pastan, I.; Willingham, M. C.; Gottesman, M. Molecular manipulations of the multidrug transporter: a new role for transgenic mice.  相似文献   

10.
gamma-Glutamylcysteine synthetase (gamma-GCS) is a key enzyme in glutathione (GSH) synthesis, and is thought to play a significant role in intracellular detoxification, especially of anticancer drugs. Increased levels of GSH are commonly found in the drug-resistant human cancer cells. We designed a hammerhead ribozyme against gamma-GCS mRNA (anti-gamma-GCS Rz), which specifically down-regulated gamma-GCS gene expression in the HCT-8 human colon cancer cell line. The aim of this study was to reverse the cisplatin and multidrug resistance for anticancer drugs. The cisplatin-resistant HCT-8 cells (HCT-8DDP cells) overexpressed MRP and MDR1 genes, and showed resistance to not only cisplatin (CDDP), but also doxorubicin (DOX) and etoposide (VP-16). We transfected a vector expressing anti-gamma-GCS Rz into the HCT-8DDP cells (HCT-8DDP/Rz). The anti-gamma-GCS Rz significantly suppressed MRP and MDR, and altered anticancer drug resistance. The HCT-8DDP/Rz cells were more sensitive to CDDP, DOX and VP-16 by 1.8-, 4.9-, and 1.5-fold, respectively, compared to HCT-8DDP cells. The anti-gamma-GCS Rz significantly down-regulated gamma-GCS gene expression as well as MRP/MDR1 expression, and reversed resistance to CDDP, DOX and VP-16. These results suggested that gamma-GCS plays an important role in both cisplatin and multidrug resistance in human cancer cells.  相似文献   

11.
The debate about a direct or indirect effect of GH and IGF-I on the recurrence of malignancy, especially in the case of rhGH therapy in patients with leukemia, is still going on. Recent studies suggested that IGF-I plays a role in drug resistance during anticancer therapy. This resistance to diverse cytotoxic drugs, named multidrug-resistance (MDR), is mainly due to high levels of P-glycoprotein (P-gp). The gene encoding this membrane-associated transporter protein was named MDR1, and increased levels of P-gp are linked to enhanced MDR1 mRNA expression. Our aim was to investigate a possible effect of rhIGF-I on MDR1 gene expression in vitro. We cultured the T-lymphoblastoid cell line CCRF-CEM with different rhIGF-I concentrations (0, 5, 20 and 50 ng/ml) in serum-free medium for 3 days. CCRF-CEM cells are drug-sensitive and express MDR1 at low levels. MDR1 mRNA expression was measured by semiquantitative RT-PCR using a competitive assay with a heterologous DNA construct. In addition, GAPDH mRNA was amplified as an internal control for RNA integrity. P-gp activity was determined by a flow cytometric assay measuring rhodamine 123 accumulation. Furthermore, cell proliferation was monitored in all experiments. Our data do not support an effect of rhIGF-I on MDR1 mRNA expression, P-gp activity or cell proliferation in the CCRF-CEM cell line. MDR1 mRNA levels were inversely correlated to cell density with high significance (p < 0.0001). In conclusion, multidrug resistance linked to P-gp is not induced by IGF-I in CCRF-CEM cells. At high density, CCRF-CEM cells downregulate MDR1 gene expression. Our experimental model provides a very useful tool for monitoring the influence of growth factors on multidrug resistance in vitro.  相似文献   

12.
The natural polyether ionophore antibiotics might be important chemotherapeutic agents for the treatment of cancer. In this article, the pharmacology and anticancer activity of the polyether ionophores undergoing pre-clinical evaluation are reviewed. Most of polyether ionophores have shown potent activity against the proliferation of various cancer cells, including those that display multidrug resistance (MDR) and cancer stem cells (CSC). The mechanism underlying the anticancer activity of ionophore agents can be related to their ability to form complexes with metal cations and transport them across cellular and subcellular membranes. Increasing evidence shows that the anticancer activity of polyether ionophores may be a consequence of the induction of apoptosis leading to apoptotic cell death, arresting cell cycle progression, induction of the cell oxidative stress, loss of mitochondrial membrane potential, reversion of MDR, synergistic anticancer effect with other anticancer drugs, etc. Continued investigation of the mechanisms of action and development of new polyether ionophores and their derivatives may provide more effective therapeutic drugs for cancer treatments.  相似文献   

13.
Inhibition of PGY1/MDR1 (multidrug resistance gene 1) mRNA expression in multidrug resistant KB-8-5 cells by 5'-bis-pyrenyl-3'-aminohexyl oligodeoxyribonucleotide conjugates targeted to four sites of this mRNA has been investigated. Three of the tested oligonucleotide conjugates specifically inhibited the expression of PGY1/MDR1 mRNA as monitored by the RT-PCR assay. The oligonucleotide conjugate targeted to the region (+178; +194) of the PGY1/MDR1 mRNA decreased level of this mRNA to 10% compared to the control. Nuclease-resistant analogs of oligonucleotide, complementary to this MDR1 mRNA region therefore, might be considered as a prototype compounds for development of gene-targeted therapeutic agents for overcoming the MDR phenotype caused by the overexpression of the PGY1/MDR1 gene.  相似文献   

14.
Despite the improvement of strategies against cancer therapy, the multidrug resistance (MDR)is the critical problem for successful cancer therapy. Recurrent cancers after initial treatment with chemotherapy are generally refractory to second treatments with these anticancer therapies. Therefore, it is necessary to elucidate the therapy-resistant mechanism for development of effective therapeutic modalities against tumors. Here we demonstrate a phase-specific chemotherapy resistance due to epidermal growth factor receptor (EGFR) in human breast cancer cells. Thymidine-induced G1-arrested cultures showed upregulated chemosensitivity, whereas S-phase arrested cells were more resistant to chemotherapeutic agents. Overexpression of EGFR promoted the MDR phenotypes in breast cancer cells via accelerating the G1/S phase transition, whereas depletion of EGFR exerted the opposite effects. Furthermore, CyclinD1, a protein related to cell cycle, was demonstrated to be involved in above EGFR-mediated effects since EGFR increased the expression of CyclinD1, and the specific RNA interference against CyclinD1 could primarily abolish the EGFR-induced MDR phenotypes. These data provide new insights into the mode by which MDR breast cancers evade cytoxic attacks from chemotherapeutic agents and also suggest a role for EGFR-CyclinD1 axis in this process.  相似文献   

15.
为寻找能有效逆转肿瘤细胞多药耐药性的药物,通过体外细胞实验对Ams-11、Fw-13、Tul-17三种中药制剂逆转肿瘤细胞多药耐药性的作用进行了分析。并用流式细胞仪测定了Tul-17处理细胞后药物累积程度的变化及细胞P糖蛋白表达情况。为进一步研究体外细胞实验筛选出的多药耐药逆转剂在体内的药效学,将其中Fw13用于人白血病K562/ADR裸鼠移植瘤逆转试验。结果:在无细胞毒性的剂量范围内,该三种中药制剂均能明显增强多药耐药细胞对抗癌药物的敏感性,而且其逆转作用呈剂量依赖关系。Tu-17处理后,K562耐药细胞表达的P糖蛋白较对照降低1.5倍,对罗丹明123的累积量是对照的2.5倍。用Fw13治疗人白血病K562/ADR裸鼠移植瘤,可将硫酸长春新碱(VCR)对K562/ADR的抑瘤率从19.79%提高到86.59%,与单独VCR治疗疗效有显著性差异(P<0.05)。结果表明,这三种中药制剂可望成为肿瘤多药耐药逆转剂,在肿瘤化疗中发挥作用。  相似文献   

16.
17.
Karwatsky J  Lincoln MC  Georges E 《Biochemistry》2003,42(42):12163-12173
Selection of tumor cell lines with anticancer drugs has led to the appearance of multidrug-resistant (MDR) subclones with P-glycoprotein 1 (P-gp1) expression. These cells are cross-resistant to several structurally and functionally dissimilar drugs. Interestingly, in the process of gaining resistance, MDR cells become hypersensitive or collaterally sensitive to membrane-active agents, such as calcium channel blockers, steroids, and local anaesthetics. In this report, hypersensitivity to the calcium channel blocker, verapamil, was analyzed in sensitive and resistant CHO cell lines. Our results show that treatment with verapamil preferentially induced apoptosis in MDR cells compared to drug-sensitive cells. This effect was independent of p53 activity and could be inhibited by overexpression of the Bcl-2 gene. The induction of apoptosis by verapamil had a biphasic trend in which maximum cell death occurred at 10 microM, followed by improved cell survival at higher concentrations (50 microM). We correlated this effect to a similar biphasic trend in P-gp1 ATPase activation by verapamil in which low concentrations of verapamil (10 microM) activated ATPase, followed by inhibition at higher concentrations. To confirm the relationship between apoptosis and ATPase activity, we used two inhibitors of P-gp1 ATPase, PSC 833 and ivermectin. These ATPase inhibitors reduced hypersensitivity to verapamil in MDR cells. In addition, low concentrations of verapamil resulted in the production of reactive oxygen species (ROS) in MDR cells. Taken together, these results show that apoptosis was preferentially induced by P-gp1 expressing cells exposed to verapamil, an effect that was mediated by ROS, produced in response the high ATP demand by P-gp1.  相似文献   

18.
19.
The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Attempts to show that MDR3 P-glycoprotein can cause MDR have been unsuccessful thus far. Here, we report an increased directional transport of several MDR1 P-glycoprotein substrates, such as digoxin, paclitaxel, and vinblastine, through polarized monolayers of MDR3-transfected cells. Transport of other good MDR1 P-glycoprotein substrates, including cyclosporin A and dexamethasone, was not detectably increased. MDR3 P-glycoprotein-dependent transport of a short-chain phosphatidylcholine analog and drugs was inhibited by several MDR reversal agents and other drugs, indicating an interaction between these compounds and MDR3 P-gp. Insect cell membranes from Sf9 cells overexpressing MDR3 showed specific MgATP binding and a vanadate-dependent, N-ethylmaleimide-sensitive nucleotide trapping activity, visualized by covalent binding with [alpha-(32)P]8-azido-ATP. Nucleotide trapping was (nearly) abolished by paclitaxel, vinblastine, and the MDR reversal agents verapamil, cyclosporin A, and PSC 833. We conclude that MDR3 P-glycoprotein can bind and transport a subset of MDR1 P-glycoprotein substrates. The rate of MDR3 P-glycoprotein-mediated transport is low for most drugs, explaining why this protein is not detectably involved in multidrug resistance. It remains possible, however, that drug binding to MDR3 P-glycoprotein could adversely affect phospholipid or toxin secretion under conditions of stress (e.g. in pregnant heterozygotes with one MDR3 null allele).  相似文献   

20.
Development of agents to overcome multidrug resistance (MDR) is important in cancer chemotherapy. Up to date, few chemicals have been reported to down-regulate MDR1 gene expression. We evaluated the effect of tryptanthrin on P-glycoprotein (P-gp)-mediated MDR in a breast cancer cell line MCF-7. Tryptanthrin could depress overexpression of MDR1 gene. We observed reduction of P-gp protein in parallel with decreases in mRNA in MCF-7/adr cells treated with tryptanthrin. Tryptanthrin suppressed the activity of MDR1 gene promoter. Tryptanthrin also enhanced interaction of the nuclear proteins with the negatively regulatory CAAT region of MDR1 gene promoter in MCF-7/adr. It might result in suppression of MDR1 gene. In addition, tryptanthrin decreased the amount of mutant p53 protein with decreasing mutant p53 protein stability. It might contribute to negative regulation of MDR1 gene. In conclusion, tryptanthrin exhibited MDR reversing effect by down-regulation of MDR1 gene and might be a new adjuvant agent for chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号