首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tonoplast vesicles were isolated from Kalanchoe daigremontiana Hamet et Pierrer de la Bâthie and Mesembryanthemum crystallinum L., exhibiting constitutive and inducible crassulacean acid metabolism (CAM), respectively. Membrane-bound proteins were detergent-solubilized with 2% of Triton X-100. During CAM induction in M. crystallinum, ATPase activity increases four-fold, whereas pyrophosphatase activity decreases somewhat. With all plants, ATPase and pyrophosphatase could be separated by size-exclusion chromatography (SEC, Sephacryl S 400), and the ATPase was further purified by diethylaminoethyl-ion-exchange chromatography. Sodium-dodecyl-sulfate electrophoresis of the SEC fractions from K. daigremontiana containing maximum ATPase activity separates several protein bands, indicating subunits of 72, 56, 48, 42, 28, and 16 kDa. Purified ATPase from M. crystallinum in the C3 and CAM states shows a somewhat different protein pattern. With M. crystallinum, an increase in ATP-hydrolysis and changes in the subunit composition of the native enzyme indicate that the change from the C3 to the CAM state is accompanied by de-novo synthesis and by structural changes of the tonoplast ATPase.Abbreviations CAM Crassulacean acid metabolism - DTT dithiothreitol - kDa kilodalton - PAGE polyacrylamide gel electrophoresis - PPiase pyrophosphatase - SEC size exclusion chromatography - SDS sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

2.
3.
Crassulacean acid metabolism (CAM) was induced in Mesembryanthemum crystallinum L. by either NaCl- or high light (HL)- stress. This generated in mesophyll cells predominantly of NaCl-stressed plants two different types of vacuoles: the generic acidic vacuoles for malic acid accumulation and additionally less acidic (“neutral”) vacuoles for NaCl sequestration. To examine differences in the tonoplast properties of the two types of vacuoles, we separated microsomal membranes of HL- and NaCl-stressed M. crystallinum plants by centrifugation in sucrose density gradients. Positive immunoreactions of a set of antibodies directed against tonoplast specific proteins and tonoplast specific ATP- and PPi-hydrolytic activity were used as markers for vacuolar membranes. With these criteria tonoplast membranes were detected in both HL- and NaCl-stressed plants in association with the characteristic low sucrose density but also at an unusual high sucrose density. In HL-stressed plants most of the ATP- and PPi-hydrolytic activity and cross reactivity with antibodies including that directed against the Na+/H+-antiporter from Arabidopsis thaliana was detected with light sucrose density. This relationship was inverted in NaCl-stressed plants; they exhibited most pump activity and immunoreactivity in the heavy fraction. The relative abundance of the heavy membrane fraction reflects the relative occurrence of “neutral” vacuoles in either HL- or NaCl-stressed plants. This suggests that tonoplasts of the “neutral” vacuoles sediment at high sucrose densities. This is consistent with the view that this type of vacuoles serves for Na+ sequestration and is accordingly equipped with a high capacity of proton pumping and Na+ uptake via the Na+/H+-antiporter.  相似文献   

4.
I. Struve  U. Lüttge 《Planta》1987,170(1):111-120
Membrane vesicles were isolated from mesophyll cells of Mesembryanthemum crystallinum in the C3 state and in the crassulacean acid metabolism (CAM) state. The distribution of ATP-hydrolysis and H+-transport activities, and the activities of hydroxypyruvate reductase and Antimycin-insensitive cytochrome-c-reductase on continuous sucrose gradients was studied. For isolations carried out routinely a discontinuous sucrose gradient (24%/37%/50%) was used. Nitrate-sensitive ATP-hydrolysis and H+-transport activities increased several-fold during the transition from C3 photosynthesis to CAM. Nitrate-sensitive ATPase showed a substrate preference for ATP with an apparent Km (MgATP2-) of 0.19–0.37 mM. In both C3 and CAM states the ATPase showed a concentration-dependent stimulation by the anions chloride and malate. However, the pH optima of the two states were different: the ATPase of C3- M. crystallinum had an optimum of pH 7.4 and that of CAM-M. crystallinum an optimum of pH 8.4. The optical probe oxonol-VI was used to demonstrate the formation of MgATP2--dependent electric-potential gradients in tonoplast vesicles.Abbreviations Bistris-Pronane 1,3-bis [tris(hydroxymethyl)-methylaminol propane - CAM Crassulacean acid metabolism - DIDS 4,4-dilsothiocyano-2,2-stilbene disulfonic acid: - DTT dithiothreitol - ER endoplasmic reticulum - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - HPR hydroxypyruvate reductase - IDPase inosine 5-diphosphatase - OX-VI oxonol VI - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

5.
The studies described in the paper were conducted with tissue slices of Crassulacean acid metabolism (CAM) plants floating in isotonic buffer. In a first series of experiments, temperature effects on the efflux of [14C]malate and14CO2 were studied. An increase of temperature increased the efflux from the tissue in a non-linear manner. The efflux was markedly influenced also by the temperatures applied during the pretreatment. The rates of label export in response to the temperature and the relative contributions of14CO2 and [14C]malate to the label export were different in the two studied CAM plants (Kalanchoë daigremontiana, Sempervivum montanum). In further experiments, temperature response of the labelling patterns produced by14CO2 fixation and light and darkness were studied. In tissue which had accumulated malate (acidified state) an increase of temperature decreased the rates of dark CO2 fixation whilst the rates of CO2 fixation in light remained largely unaffected. An increase of temperature shifted the labelling patterns from a C4-type (malate being the mainly labelled compound) into a C3-type (label in carbohydrates). No such shift in the labelling patterns could be observed in the tissue which had depleted the previously stored malate (deacidified state). The results indicate that in the acidified tissue the increase of temperature increases the efflux of malate from the vacuole by changing the properties of the tonoplast. It is assumed that the increased export of malic acid lowers the in-vivo activity of phosphoenol pyruvate carboxylase by feedback inhibition.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - PEPCase phosphoenolpyruvate carboxylase Dedicated to Professor O.L. Lange, Würzburg, on the occasion of his 60th birthday  相似文献   

6.
Klaus Winter 《Planta》1982,154(4):298-308
Properties of phosphoenolpyruvate (PEP) carboxylase, obtained from leaves of Mesembryanthemum crystallinum L. performing Crassulacean acid metabolism (CAM), were determined at frequent time points during a 12-h light/12-h dark cycle. Leaf extracts were rapidly desalted and PEP carboxylase activity as a function of PEP concentration, malate concentration, and pH was measured within 2 min after homogenization of the tissue. Maximum velocity of PEP carboxylase was similar in the light and dark at pH 7.5 and pH 8.0. However, PEP carboxylase had as much as a 12-fold lower K m for PEP and as much as a 20-fold higher K i for malate during the dark than during the light periods, the magnitude of these differences being dependent on the assay pH. Assuming that enzyme properties immediately after isolation reflect the approximate state of the enzyme in vivo, these differences in enzyme properties reduce the potential for CO2 fixation via PEP carboxylase in the light. A small decrease in cytoplasmic pH in the light would greatly magnify the above differences in day/night properties of PEP carboxylase, because the sensitivity of PEP carboxylase to inhibition by malate increased with decreasing pH. Properties of PEP carboxylase were also studied in plants exposed to short-term perturbations of the normal 12-h light/12-h dark cycle (e.g., prolonged light period, prolonged dark period). Under all light/dark regimes, there was a close correlation between change in properties of PEP carboxylase and changes of the tissue from acidification to deacidification, and vice versa. Changes in properties of PEP carboxylase were not merely light/dark phenomena because they were also observed in plants exposed to continuous light or dark. the data indicate that, during CAM, PEP carboxylase exists in two stages which differ in their capacity for net malate synthesis. The physiologically-active state is distinguished by a low K m for PEP and a high K i for malate and favors malate synthesis. The physiologically-inactive state has a high K m for PEP and a low K i for malate and exists during periods of deacidification and other periods lacking synthesis of malic acid.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPC PEP carboxylase - RuBP ribulose 1,5-bisphosphate - RH relative humidity  相似文献   

7.
The influence of the physical state of the membrane on the swimming behaviour of Tetrahymena pyriformis was studied in cells with lipid-modified membranes. When the growth temperature of Tetrahymena cells was increased from 15°C to 34°C or decreased from 39°C to 15°C, their swimming velocity changed gradually in a similar to the adaptive change in membrane lipid composition. Therefore, such adaptive changes in swimming velocity were not observed during short exposures to a different environment. Tetrahymena cells adapted to 34°C swam at 570 μm/s. On incubation at 15°C these cells swam at 100 μm/s. When the temperature was increased to 34°C after a 90-min incubation at 15°C, the initial velocity was immediately recovered. On replacement of tetrahymanol with ergosterol, the swimming velocity of 34°C-grown cells decreased to 210 μm/s, and the cells ceased to move when the temperature was decreased to 15°C. To investigate the influence of the physical state of the membrane on the swimming velocity, total phospholipids were prepared from Tetrahymena cells grown under these different conditions. The fluidities of liposomes of these phospholipid were measured using stearate spin probe. The membrane fluidity of the cells cooled to 15°C increased gradually during incubation at 15°C. On the other hand, the fluidity of the heated cell decreased during incubation at 34°C. Replacement of tetrahymanol with ergosterol decreased the membrane fluidity markedly. Consequently, a good correlation was observed between swimming velocity and membrane fluidity; as the membrane fluidity increased, the swimming velocity increased linearly up to 600 μm/s. These results provide evidence for the regulation of the swimming behaviour by physical properties of the membrane.  相似文献   

8.
In order to investigate membrane fluidity, the hydrophobic probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), has been incorporated into intact isolated thylakoids and separated granal and stromal lamellae obtained from the chloroplasts of Pisum sativum. The steady-state polarization of DPH fluorescence was measured as a function of temperature and indicated that at physiological values the thylakoid membrane is a relatively fluid system with the stromal lamellae being less viscous than the lamellae of the grana. According to the DPH technique, neither region of the membrane, however, showed a sharp phase transition of its bulk lipids from the liquid-crystalline to the gel state for the temperature range -20° to 50° C. Comparison of intact thylakoids isolated from plants grown at cold (4°/7°C) and warm (14°/17° C) temperatures indicate that there is an adaptation mechanism operating which seems to maintain an optimal membrane viscosity necessary for growth. Using a modified Perrin equation the optimal average viscosity for the thylakoid membrane of the chill-resistant variety used in the study (Feltham First) is estimated to be about 1.8 poise.Abbreviations DPH 1,6-diphenyl-1,3,5-hexatriene - Hepes N-(2-hydroxyethyl)-1-piperazineethanesulphonic acid  相似文献   

9.
Differences in water binding were measured in the leaf cells ofMesembryanthemum crystallinum L. plants grown under high-salinity conditions by using nuclear-magnetic-resonance (NMR) imaging. The 7-Tesla proton NMR imaging system yielded a spatial resolution of 20·20·100 m3. Images recorded with different spin-echo times (4.4 ms to 18 ms) showed that the water concentrations in the bladder cells (located on the upper and lower leaf surface), in the mesophyll cells and in the water-conducting vessels were nearly identical. All of the water in the bladder cells and in the water-conducting vessels was found to be mobile, whilst part of the water in the mesophyll cells was bound. Patches of mesophyll cells could be identified which bound water more strongly than the surrounding mesophyll cells. Optical investigations of leaf cross-sections revealed two types of mesophyll cells of different sizes and chloroplast contents. It is therefore likely that in the small-sized mesophyll cells water is strongly bound. A long-term asymmetric water exchange between the mesophyll cells and the bladder cells during Crassulacean acid metabolism has been described in the literature. The high density of these mesophyll cells in the lower epidermis is a possible cause of this asymmetry.Abbreviations CAM Crassulacean acid metabolism - NMR nuclear magnetic resonance - TE spin-echo time  相似文献   

10.
The halophilic melanized yeast-like fungi Hortaea werneckii, Phaeotheca triangularis, and the halotolerant Aureobasidium pullulans, isolated from salterns as their natural environment, were grown at different NaCl concentrations and their membrane lipid composition and fluidity were examined. Among sterols, besides ergosterol, which was the predominant one, 23 additional sterols were identified. Their total content did not change consistently or significantly in response to raised NaCl concentrations in studied melanized fungi. The major phospholipid classes were phosphatidylcholine and phosphatidylethanolamine, followed by anionic phospholipids. The most abundant fatty acids in phospholipids contained C16 and C18 chain lengths with a high percentage of C18:29,12. Salt stress caused an increase in the fatty acid unsaturation in the halophilic H. werneckii and halotolerant A. pullulans but a slight decrease in halophilic P. triangularis. All the halophilic fungi maintained their sterol-to-phospholipid ratio at a significantly lower level than did the salt-sensitive Saccharomyces cerevisiae and halotolerant A. pullulans. Electron paramagnetic resonance (EPR) spectroscopy measurements showed that the membranes of all halophilic fungi were more fluid than those of the halotolerant A. pullulans and salt-sensitive S. cerevisiae, which is in good agreement with the lipid composition observed in this study.Communicated by W.D. Grant  相似文献   

11.

Background

Karwinskia humboldtiana (Kh) is a poisonous plant of the rhamnacea family. To elucidate some of the subcellular effects of Kh toxicity, membrane fluidity and ATPase activities as hydrolytic and as proton-pumping activity were assessed in rat liver submitochondrial particles. Rats were randomly assigned into control non-treated group and groups that received 1, 1.5 and 2 g/Kg body weight of dry powder of Kh fruit, respectively. Rats were euthanized at day 1 and 7 after treatment.

Results

Rats under Kh treatment at all dose levels tested, does not developed any neurologic symptoms. However, we detected alterations in membrane fluidity and ATPase activity. Lower dose of Kh on day 1 after treatment induced higher mitochondrial membrane fluidity than control group. This change was strongly correlated with increased ATPase activity and pH gradient driven by ATP hydrolysis. On the other hand, membrane fluidity was hardly affected on day 7 after treatment with Kh. Surprisingly, the pH gradient driven by ATPase activity was significantly higher than controls despite an diminution of the hydrolytic activity of ATPase.

Conclusions

The changes in ATPase activity and pH gradient driven by ATPase activity suggest an adaptive condition whereby the fluidity of the membrane is altered.  相似文献   

12.
The classical induction of Crassulacean acid metabolism (CAM) in Mesembryanthemum crystallinum L. by water stress is observed within one week when fourto five-week-old plants (grown under a 16/8 h photoperiod at ca. 600 mol quanta · m–2 · s–1) are irrigated with 350 mM NaCl. The induction of CAM was evaluated by measuring phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.31) and NADP-malic enzyme (NADP-ME, EC 4.1.1.82) activities and nocturnal increases in malate content and titratable acidity of leaf extracts, and the daily pattern of CO2 exchange and stomatal conductance during the 7-d induction period. Three growth regulators, abscisic acid (ABA), farnesol (an antitranspirant and analog of ABA), and benzylaminopurine (BAP), were found to substitute for NaCl for induction of CAM when fed to plants in nutrient media. Daily irrigation with solutions containing micromolar levels (optimum ca. 10 micromolar) of these growth regulators led to the induction of CAM similar to that by high salt. Application of the growth regulators, like NaCl, caused large increases in the activity of NADP-ME and the activity and level of PEPCase, which are components of the biochemical machinery required for CAM. Western immunoblotting showed that the increased activity of PEPCase on addition of ABA, farnesol and BAP was mainly due to increased levels of the CAM-specific isoforms. Also, dehydration of cut leaves over 8.5 h under light resulted in a severalfold increase in PEPCase activity. An equivalent increase in PEPCase activity in excised leaves was also obtained by feeding 150 mM NaCl, or micromolar levels of ABA or BAP via the petiole, which supports results obtained by feeding the growth regulators to roots. However, the increase in PEPCase activity was inhibited by feeding high levels of BAP to cut leaves prior to dehydration, indicating a more complex response to the cytokinin. Abscisic acid may have a role in induction of CAM in M. crystallinum under natural conditions as there is previous evidence that induction by NaCl causes an increase in the content of ABA, but not cytokinins, in leaves of this species.Abbreviations ABA abscisic acid - BAP 6-benzylaminopurine - CAM Crassulacean acid metabolism - Chl chlorophyll - 2,4D 2,4-dichlorophenoxyacetic acid - NADP-ME NADP-malic enzyme - PEPCase phosphoenolpyruvate carboxylase Methyl jasmonate was generously provided by Dr. Vincent Franceschi (Botany Department, Washington State University). The anti-maize leaf PEPCase was kindly supplied by Dr. Tatsuo Sugiyama (Department of Agricultural Chemistry, Nagoya University, Japan) and the anti-Flaveria trinervia leaf PEPCase was kindly supplied by Dr. Samuel Sun (Department of Plant Molecular Physiology, University of Hawaii, Honulu). This work was funded in part by U.S. Department of Agriculture Competitive Grant 90-37280-5706 and an equipment grant (DMB 8515521) from the National Science Foundation. Ziyu Dai was supported in part by Guangxi Agricultural College and Ministry of Agriculture of the People's Republic of China  相似文献   

13.
The bacterial secretion of glutamate was studied through plasma membrane fluidity, measured by anisotropy using the fluorophore TMA-DPH incorporated in the lipid part of the cell membrane. Cells of Brevibacterium sp. ATCC 13869 (wild type) were switched from the biotin-limited, producing state to the biotin-supplemented, non-producing state, and back. The following conclusions could be drawn: 1. It was not possible to detect any change in anisotropy by switching the cells from biotin-limited biotin-supplemented, as well as from biotin-supplemented, to biotin-limited, media. 2. The anisotropy value in the glutamic acid fermentation remains constant during the lag, exponential, growth, production and stationary phases. 3. The treatment of cells with a neutral synthetic polyester of ethylene-and propyleneoxide with soya oil-fatty acids increased the anisotropy values, indicating incorporation of the surfactant. 4. Glutamate secretion is not coupled with membrane fluidity, so a leak providing a general fluidization of the membrane could not be detected.  相似文献   

14.
Invertebrates are increasingly raised in mariculture, where it is important to monitor immune function and to minimize stresses that could suppress immunity. The activities of phagocytosis, superoxide dismutase (SOD), catalase (CAT), myeloperoxidase (MPO), and lysozyme (LSZ) were measured to evaluate the immune capacities of the sea cucumber, Apostichopus japonicus, to acute temperature changes (from 12 °C to 0 °C, 8 °C, 16 °C, 24 °C, and 32 °C for 72 h) and salinity changes (from 30‰ to 20‰, 25‰, and 35‰ for 72 h) in the laboratory. Phagocytosis was significantly affected by temperature increases in 3 h, and by salinity (25‰ and 35‰) changes in 1 h. SOD activities decreased significantly in 0.5 h to 6 h samples at 24 °C. At 32 °C, SOD activities decreased significantly in 0.5 h and 1 h exposures, and obviously increased for 12 h exposure. CAT activities decreased significantly at 24 °C for 0.5 h exposure, and increased significantly at 32 °C in 3 h to 12 h exposures. Activities of MPO increased significantly at 0 °C in 0.5 h to 6 h exposures and at 8 °C for 1 h. By contrast, activities of MPO decreased significantly in 24 °C and 32 °C treatments. In elevated-temperature treatments, activities of LSZ increased significantly except at 32 °C for 6 h to 12 h exposures. SOD activity was significantly affected by salinity change. CAT activity decreased significantly after only 1 h exposure to salinity of 20‰. Activities of MPO and LSZ showed that A. japonicus tolerates limited salinity stress. High-temperature stress had a much greater effect on the immune capacities of A. japonicus than did low-temperature and salinity stresses.  相似文献   

15.
Adenosine-triphosphatase activity on the plasmalemma and tonoplast of isolated mesophyll protoplasts, isolated vacuoles and tonoplast-derived microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr., was localized by a cytochemical procedure using lead citrate. Enzyme activity was detected on the cytoplasmic surfaces of the plasmalemma and tonoplast. The identity of the enzymes was confirmed by various treatments differentiating the enzymes by their sensitivity to inhibitors of plasmalemma and tonoplast H+-ATPase. Isolated vacuoles and microsomes prepared from isolated vacuoles clearly exhibited single-sided deposition on membrane surfaces.Abbveviations CAM Crassulacean acid metabolism - H+-ATPase proton-translocating ATPase  相似文献   

16.
The present study deals with the phenotypic adaptation of tonoplast fluidity in the CAM plant Kalancho? daigremontiana to changes in growth temperature. Tonoplast fluidity was characterized by measuring fluorescence depolarization in membranes labeled with fluorescent fatty acid analogues and by following formation of eximeres in membranes labeled by eximere-forming fluorophores. With both techniques it was found that exposure of the plants to higher growth temperature compared with the control decreased the fluidity of the tonoplast while exposure to lower growth temperature caused the opposite. Three hours of high temperature treatment (raised from 25°C to 35°C; ``heat shock') were sufficient to decrease the tonoplast fluidity to roughly the same extent as growth under high temperature for 30 days. The phenotypic response of tonoplast fluidity to changes in growth temperature was found only in the complete membrane, not however in the lipid matrix deprived of the membrane proteins. Heat treatments of the plants decreased the lipid/protein ratio while exposure to low temperature (for 30 days) increased it. Heat treatments led to a decrease in the percentage of linolenic acid (C18:3) and linoleic acid (C18:2), heat shock and low temperature treatments induced an increase in the percentage of linoleic acid (C18:3), with concomitant decrease in the percentage of linoleic acid (C18:2). However, in the case of heat shock, increase in linolenic acid concerned mainly monogalactosyldiacylglycerol, while with low temperature treatment linoleic acid increased in phosphatidylcholine. Both treatment of the plants with high and low temperature led to a slight decrease in the contribution of phosphatidylcholine and phosphoethanolamine to the total phospholipid content of the tonoplast. High-temperature treatment of the plants not only decreased the phospholipid/protein ratio in the tonoplast, but also led to the occurrence of a 35 kDa polypeptide in the tonoplast which cross-reacted with an antiserum against the tonoplast H+-ATPase holoenzyme. The important role of membrane proteins in bringing about the phenotypic rigidization of the tonoplast was mimicked by reconstitution experiments showing that incorporation of the proteins isolated from the tonoplast into phosphatidylcholine vesicles decreased the fluidity of this membrane system. As to be expected from the analyses in the natural membrane, the degree of this effect depended on the phospholipid/protein ratio. Received: 4 March 1998/Revised: 28 July 1998  相似文献   

17.
Lee RE  Damodaran K  Yi SX  Lorigan GA 《Cryobiology》2006,52(3):459-463
The rapid cold-hardening (RCH) response not only confers dramatic protection against cold-shock (non-freezing) injury, but also "instantaneously" enhances organismal performance. Since cold-shock injury is associated with damage to the cell membrane, we investigated the relationship between RCH and changes in cold tolerance and membrane fluidity at the cellular level. None of the adult flies (Sarcophaga bullata) in the cold-shocked treatment group survived direct transfer to -8 degrees C for 2 h; in contrast, 64.5% of flies in the RCH group survived exposure to -8 degrees C. Differences between the treatment groups also were reflected at the cellular level; only 21.3% of fat body cells in the cold-shocked group survived compared to 68.5% in the RCH group. Using 31P solid-state NMR spectroscopy, we determined that membrane fluidity increased concurrently with rapid cold-hardening of fat body cells. This result suggests that membrane characteristics may be modified very rapidly to protect cells against cold-shock injury.  相似文献   

18.
Winter K  Holtum JA 《Planta》2005,222(1):201-209
The carbon isotope composition of the halophyte Mesembryanthemum crystallinum L. (Aizoaceae) changes when plants are exposed to environmental stress and when they shift from C3 to crassulacean acid metabolism (CAM). We examined the coupling between carbon isotope composition and photosynthetic pathway by subjecting plants of different ages to salinity and humidity treatments. Whole shoot 13C values became less negative in plants that were exposed to 400 mM NaCl in the hydroponic solution. The isotopic change had two components: a direct NaCl effect that was greatest in plants still operating in the C3 mode and decreased proportionally with increasing levels of dark fixation, and a second component related to the degree of CAM expression. Ignoring the presumably diffusion-related NaCl effect on carbon isotope ratios results in an overestimation of nocturnal CO2 gain in comparison to an isotope versus nocturnal CO2 gain calibration established previously for C3 and CAM species grown under well-watered conditions. It is widely taken for granted that the shift to CAM in M. crystallinum is partially under developmental control and that CAM is inevitably expressed in mature plants. Plants, cultivated under non-saline conditions and high relative humidity (RH) for up to 63 days, maintained diel CO2 gas-exchange patterns and 13C values typical of C3 plants. However, a weak CAM gas-exchange pattern and an increase in 13C value were observed in non-salt-treated plants grown at reduced RH. These observations are consistent with environmental control rather than developmental control of the induction of CAM in mature M. crystallinum under non-saline conditions.  相似文献   

19.
L. Pistelli  G. Marigo  E. Ball  U. Lüttge 《Planta》1987,172(4):479-486
The levels of phosphorylated compounds studied during the dark period of Crassulacean acid metabolism (CAM) in Kalanchoë leaves showed increases for ATP and pyrophosphate and decreases for ADP, AMP and phosphenolpyruvate; levels of inorganic phosphate remained constant. Changes in adenylate levels and the correlated nocturnal increase in adenylate-energycharge were closely related to changes in malate levels. The increase in ATP levels was much inhibited in CO2-free air and stimulated after induction of CAM in short-day-treated plants of K. blossfeldiana cv. Tom Thumb. Changes in levels of phosphoenolpyruvate and pyrophosphate were independent of the presence of CO2. The results show the operation of complex regulatory mechanisms in the energy metabolism of CAM plants during nocturnal malic-acid accumulation.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - OAA oxaloacetic acia - PEP phosphoenol pyruvate - PPi pyrophosphate  相似文献   

20.
Summary Differences in the activity and structure of the vacuolar H+-ATPase (V-ATPase, EC 3.6.1.3) were investigated in the C3/CAM intermediate plantKalanchoë blossfeldiana Poellnitz cv. Tom Thumb, with lower or higher expression of CAM, andHordeum vulgare cv. Carina, grown with or without 150 mM NaCl. InK. blossfeldiana ATP-hydrolysis and H+-transport activity were higher with higher expression of CAM than in plants with very weak CAM. This was mainly due to a larger amount of V-ATPase. Statistical analysis of the diameter of intramembrane particles (IMPs) on freeze-fractures of tonoplast vesicles showed that IMPs were larger in tonoplast vesicle preparations ofK. blossfeldiana with strong CAM expression (9.1 nm) than in preparations ofK. blossfeldiana with low CAM expression (7.3 nm). As there is evidence that the majority of IMPs on freeze-fractures of tonoplast vesicles corresponds to the V0 domain of V-ATPase, the higher activity of V-ATPase inK. blossfeldiana with stronger CAM could be a result of additional structural changes in its membrane-integral domain. The higher activity of V-ATPase inK. blossfeldiana with stronger CAM is discussed in relation to the requirement for a higher proton pumping capacity for nocturnal malate accumulation in the vacuole. The ATP-dependent H+-pumping activity inH. vulgare was higher under salt stress than in control plants, while the rates of ATP-hydrolysis and the size of IMPs were not affected by the salt treatment. The data presented here indicate that different mechanisms might increase the transport capacity of V-ATPase to meet the higher requirements of secondary active transport related to CAM expression and adaptation to salt stress.Abbrevations ATP adenosine triphosphate - CAM crassulacean acid metabolism - IMP intramembrane particles - V-ATPase vacuolar proton-translocating adenosine triphosphatase - V0 domain membrane-integral domain of V-ATPase - V1 domain membrane-peripheral domain of V-ATPase Dedicated to Prof. Dr. Eberhard Schnepf on the occasion of his retirement  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号