首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
2.
The distally based anterolateral thigh flap has been used for coverage of soft-tissue defects of the knee and upper third of the leg. This flap is based on the septocutaneous or musculocutaneous perforators derived from the lateral circumflex femoral system. The purpose of this study was to examine the results of anatomical variations of the descending branch of the lateral circumflex femoral artery and the retrograde blood pressure of the descending branch of the lateral circumflex femoral artery so that the surgical technique for raising and transferring a distally based anterolateral thigh flap to the knee region could be improved. The authors have actually used this flap in three cases. In 11 thighs of six cadavers, the descending branch of the lateral circumflex femoral artery had a rather consistent connection with the lateral superior genicular artery or profunda femoral artery in the knee region. The pivot point, located at the distal portion of the vastus lateralis muscle, ranges from 3 to 10 cm above the knee. In their three cases, the maximal flap size was 7.0 x 16.0 cm and was harvested safely, without marginal necrosis. The mean pedicle length was 15.2 +/- 0.7 cm (range, 14.5 to 16 cm). The average proximal and distal retrograde blood pressure of the descending branch of the lateral circumflex femoral artery was also studied in another 11 patients, and the anterolateral thigh flap being used for reconstruction of head and neck defects showed 58.3 and 77.7 percent of proximal antegrade blood pressure, respectively. The advantages of this flap include a long pedicle length, a sufficient tissue supply, possible combination with fascia lata for tendon reconstruction, and favorable donor-site selection, without sacrifice of major vessels or muscles.  相似文献   

3.
4.
Free anterolateral thigh adipofascial perforator flap   总被引:13,自引:0,他引:13  
The anterolateral thigh adipofascial flap is a vascularized flap prepared from the adipofascial layer of the anterolateral thigh region. It is a perforator flap based on septocutaneous or musculocutaneous perforators of the lateral circumflex femoral system. With methods similar to those used for the free anterolateral thigh flap, only the deep fascia of the anterolateral thigh and a 2-mm-thick to 3-mm-thick layer of subcutaneous fatty tissue above the fascia were harvested. In 11 cases, this flap (length, 5 to 11 cm; width, 4 to 8 cm) was used for successful reconstruction of extremity defects. Split-thickness skin grafts were used to immediately resurface the adipofascial flaps for eight patients, and delayed skin grafting was performed for the other three patients. The advantage of the anterolateral thigh adipofascial flap is its ability to provide vascularized, thin, pliable, gliding coverage. In addition, the donor-site defect can be closed directly. Other advantages of this flap, such as safe elevation, a long wide vascular pedicle, a large flap territory, and flow-through properties that allow simultaneous reconstruction of major-vessel and soft-tissue defects, are the same as for the conventional anterolateral thigh flap. The main disadvantage of this procedure is the need for a skin graft, with the possible complications of subsequent skin graft loss or hyperpigmentation.  相似文献   

5.
Arterial and venous anatomy and their relation to the anterolateral thigh flap were examined in 10 specimens of six fresh cadavers in which radiopaque materials were injected into both the arterial and venous systems. Territories and positions of individual perforating arteries were measured, and the venous drainage pathway of the flap was analyzed. All specimens were radiographed stereoscopically to observe the three-dimensional structure of the arteries and veins. The territory of each perforating artery was smaller than expected. Most of the venous blood that had perfused the dermis was considered to pool in a polygonal venous network located in the skin layer and to enter the descending branch of the lateral circumflex femoral artery through large descending veins. The venous territories were considered different from the arterial territories. The findings in this study suggest that the design of the anterolateral thigh flap should be based on the venous architecture rather than on the arterial architecture and that the flap survival rate might be improved if thinning is performed appropriately.  相似文献   

6.
7.
8.
9.
From August of 1995 through July of 1998, 38 free anterolateral thigh flaps were transferred to reconstruct soft-tissue defects. The overall success rate was 97 percent. Among 38 anterolateral thigh flaps, four were elevated as cutaneous flaps based on the septocutaneous perforators. The other 34 were harvested as myocutaneous flaps including a cuff of vastus lateralis muscle (15 to 40 cm3), either because of bulk requirements (33 cases) or because of the absence of a septocutaneous perforator (one case). However, vastus lateralis muscle is the largest compartment of the quadriceps, which is the prime extensor of the knee. Losing a portion of the vastus lateralis muscle may affect knee stability. Objective functional assessments of the donor sites were performed at least 6 months postoperatively in 20 patients who had a cuff of vastus lateralis muscle incorporated as part of the myocutaneous flap; assessments were made using a kinetic communicator machine. The isometric power test of the ratios of quadriceps muscle at 30 and 60 degrees of flexion between donor and normal thighs revealed no significant difference (p > 0.05). The isokinetic peak torque ratio of the quadriceps and hamstring muscles, including concentric and eccentric contraction tests, showed no significant difference (p > 0.05), except the concentric contraction test of the quadriceps muscle, which revealed mild weakness of the donor thigh (p < 0.05). In summary, the functional impairment of the donor thighs was minimal after free anterolateral thigh myocutaneous flap transfer.  相似文献   

10.
11.
The free anterolateral thigh flap has proven to be invaluable for many types of reconstruction, ranging from upper and lower extremity trauma to head and neck reconstruction. There exist some controversies relating to certain difficulties in flap harvest because of the intramuscular route of its major perforator, which can exceed 80 percent and create a longer, more tedious dissection. Strategies to expedite flap harvest and minimize technical challenges have been proposed. The authors propose a simplified approach to harvest the anterolateral thigh flap founded on topographic surface anatomy and the intrinsic vascular anatomy of the flap. No Doppler imaging or angiography is used for preoperative perforator mapping.  相似文献   

12.
The redundant tissues of the anterior neck are well suited as a donor site for fasciocutaneous flaps in head and neck reconstruction, with similar skin quality and numerous underlying perforators. However, historic cadaveric research has limited the use of this as a donor site for the design of long and/or large flaps for fear of vascular compromise. The authors undertook an anatomical study to identify the vascular basis for such flaps and have modified previous designs to offer the versatile and reliable superior thyroid artery perforator (STAP) flap. Forty-five consecutive computed tomographic angiograms of the neck were reviewed, assessing the vascular supply of the anterior skin of the neck. Based on these findings, eight consecutive patients underwent head and neck reconstruction using a flap based on the dominant perforator of the region. In all cases, a perforator larger than 0.5 mm was identified within a 2-cm radius of the midpoint of the sternocleidomastoid muscle at its anterior border. This perforator was seen to emerge through the investing layer of deep cervical fascia as a fasciocutaneous perforator and to perforate the platysma on its ipsilateral side of the neck, proximal to the midline. This was seen to be a superior thyroid artery perforator in 89 of 90 sides and an inferior thyroid artery perforator in one case. Eight consecutive patients underwent preoperative imaging and successful flap planning and execution based on this dominant perforator. The superior thyroid artery perforator (STAP) flap demonstrates reliable vascular anatomy and is well suited to reconstruction of a broad range of head and neck defects. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号