首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gastric electrical stimulation (GES) has recently been explored as a therapeutic option for gastrointestinal motility disorders or obesity. The mechanism behind it is not fully elucidated. The aims of this study were to assess the effects of GES with different parameters on antral tone and to explore the involvement of the nitrergic pathway. Eight dogs equipped with a gastric cannula and one pair of serosal electrodes in the greater curvature 4 cm above the pylorus were studied on separate days. The study was composed of seven randomized sessions in the fed state [control, GES with different parameters, and GES plus neuronal nitric oxide synthase (nNOS) inhibitor]. Each session included three consecutive 30-min periods (baseline, GES, and recovery). GES was performed with long pulses or pulse trains. The antral volume was measured using an intragastric balloon connected with a barostat device. Behaviors of the dogs during each stimulation period were also noted. We found that 1) postprandial antral tone was reduced with GES with all tested parameter settings, reflected as a significant and substantial increase in antral volume ranging from 179 to 309%; 2) the inhibitory effect of GES on antral tone was partially blocked (decreased by 39.5%) with an nNOS inhibitor; and 3) mild symptoms were induced with GES and found to be correlated with the GES-induced increase in antral volume. We conclude that retrograde GES with long pulses or pulse trains inhibits antral tone, and this inhibitory effect is partially mediated via the nitrergic pathway. These results suggest that retrograde GES may have a therapeutic potential for obesity.  相似文献   

2.
Obesity is one of the most prevalent health problems in the United States. Current therapeutic strategies for the treatment of obesity are unsatisfactory. We hypothesized the use of colon electrical stimulation (CES) to treat obesity by inhibiting upper gastrointestinal motility. In this preliminary study, we aimed at studying the effects of CES on gastric emptying of solid, intestinal motility, and food intake in dogs. Six dogs, equipped with serosal colon electrodes and a jejunal cannula, were randomly assigned to receive sham-CES or CES during the assessment of: (i) gastric emptying of solids, (ii) postprandial intestinal motility, (iii) autonomic functions, and (iv) food intake. We found that (i) CES delayed gastric emptying of solids by 77%. Guanethidine partially blocked the inhibitory effect of CES on solid gastric emptying; (ii) CES significantly reduced intestinal contractility and the effect lasted throughout the recovery period; (iii) CES decreased vagal activity in both fasting and fed states, increased the sympathovagal balance and marginally increased sympathetic activity in the fasting state; (iv) CES resulted in a reduction of 61% in food intake. CES reduces food intake in healthy dogs and the anorexigenic effect may be attributed to its inhibitory effects on gastric emptying and intestinal motility, mediated via the autonomic mechanisms. Further studies are warranted to investigate the therapeutic potential of CES for obesity.  相似文献   

3.
This study determined the most efficient parameters of low-frequency/long-pulse gastric electrical stimulation (GES) required to entrain gastric slow waves and also evaluated the effect of entrainment and high-frequency, short-pulse GES on gastric electrical activity (GEA). Nine dogs were fitted with stimulation wires along the greater curvature. Entrainment was observed in six or seven animals, with long-pulse GES at six cycles per minute (cpm), at various combinations of current and pulse width and was directly related to the energy delivered. Entrainment was observed in four to seven animals, with GES at 12 cpm, and the maximal driven frequency was 6 cpm. Entrainment did not significantly increase the dominant power of GEA. High-frequency, short-pulse GES, using pulse trains of 14 Hz, 5 mA, and 330 micros, with 0.1 s on and 5 s off, and pulse trains of 40 Hz, 10 mA, and 330 micros, with 2 s on 3 s off, did not affect variables of GEA. We conclude that acute low-frequency GES but not high-frequency, short-pulse GES can entrain slow waves; the power of slow waves is not affected by either type of stimulation.  相似文献   

4.
Objective: It has been reported that electrical stimulation at the distal stomach can disrupt intrinsic gastric electrical activity and delay gastric emptying. Gastric dysrhythmia and impaired gastric emptying are associated with upper gastrointestinal symptoms and weight loss. The purpose of this study was to evaluate the effect of low‐frequency/long‐pulse gastric electrical stimulation (GES), at proximal and distal stomach, on canine gastric emptying, food intake, and body weight. Research Methods and Procedures: Eight dogs were surgically implanted with four pairs of electrodes along the greater curvature and a gastric tube at the dependent part of the stomach. Liquid gastric emptying at baseline, during proximal and distal GES at 6 cycles per minute, was assessed first by a dye dilution technique. Proximal and distal GES were then randomly delivered during feeding for 10 consecutive days, and food intake and body weight were recorded daily. Results: There was no significant difference in gastric emptying parameters among the various sessions. The mean daily food consumption was significantly reduced during both sessions of GES, resulting in significant immediate weight loss. Percentage weight loss was comparable between both sessions of GES. Discussion: Short‐term GES significantly reduced canine food intake and weight. This effect may not be related to changes in gastric emptying. GES may have a potential role in the treatment of obesity.  相似文献   

5.
Gallas S  Fetissov SO 《Peptides》2011,32(11):2283-2289
Ghrelin is a peptide hormone produced mainly by the stomach and has widespread physiological functions including increase in appetite. The stimulation of the ghrelin system represents a potential therapeutic approach in various disorders characterized by deficient ghrelin signaling or by low appetite. This stimulation may be achieved via pharmacological targeting of the ghrelin receptor with synthetic ghrelin or ghrelin mimetics or via increased endogenous ghrelin production. Recently, it was demonstrated that gastric electrical stimulation (GES) with Enterra parameters results in increased ghrelin production in rats. Furthermore, recent data revealed putative role of ghrelin-reactive immunoglobulins in the modulation of the ghrelin signaling which can be also stimulated by GES. Here, we review the links between GES and ghrelin in existing GES experimental and clinical applications for treatment of gastroparesis, functional dyspepsia or obesity and discuss if GES can be proposed as a non-pharmacological approach to improve ghrelin secretion in several pathological conditions characterized by low appetite, such as anorexia nervosa or anorexia-cachexia syndrome.  相似文献   

6.
The purpose of the present study was to determine whether thoracic veins may act as ectopic pacemakers and whether nodelike cells and rich sympathetic innervation are present at the ectopic sites. We used a 1,792-electrode mapping system with 1-mm resolution to map ectopic atrial arrhythmias in eight normal dogs during in vivo right and left stellate ganglia (SG) stimulation before and after sinus node crushing. SG stimulation triggered significant elevations of transcardiac norepinephrine levels, sinus tachycardia in all dogs, and atrial tachycardia in two of eight dogs. Sinus node crushing resulted in a slow junctional rhythm (51 +/- 6 beats/min). Subsequent SG stimulation induced 20 episodes of ectopic beats in seven dogs and seven episodes of pulmonary vein tachycardia in three dogs (cycle length 273 +/- 35 ms, duration 16 +/- 4 s). The ectopic beats arose from the pulmonary vein (n = 11), right atrium (n = 5), left atrium (n = 2), and the vein of Marshall (n = 2). There was no difference in arrhythmogenic effects of left vs. right SG stimulation (13/29 vs. 16/29 episodes, P = nonsignificant). There was a greater density of periodic acid Schiff-positive cells (P < 0.05) and sympathetic nerves (P < 0.05) at the ectopic sites compared with other nonectopic atrial sites. We conclude that, in the absence of a sinus node, thoracic veins may function as subsidiary pacemakers under heightened sympathetic tone, becoming the dominant sites of initiation of focal atrial arrhythmias that arise from sites with abundant sympathetic nerves and periodic acid Schiff-positive cells.  相似文献   

7.
Influence of sympathetic stimulation on the relation of ventricular pressure--directly recorded wall tension were investigated in the left ventricle of the opened chested dogs. It was shown, that despite the substantial decrease of the end-diastolic pressure, sympathetic stimulation did not result in decrease in the wall tension per unit pressure. Investigation of the diastolic circumferential segment length-diastolic pressure relation revealed, that diastolic compliance was increased under the sympathetic stimulation. The revelance of these findings to the regulation of the ventricular performance is discussed.  相似文献   

8.
The aim of the experiment was to clarify whether the altered coronary reactivity in diabetes mellitus might be caused by a general modification of the sympathetic responses. Six of 12 young mongrel dogs of both sexes were made diabetic with alloxan (560 mmol/kg). This amount of alloxan induced a clinically manifest diabetes, however the animals failed to develop ketosis. The remaining six dogs served as controls. The haemodynamic investigation was performed three months after the induction of diabetes. Under pentobarbital anaesthesia (133 mmol/kg) mean arterial blood pressure, blood flow in the left anterior descending coronary artery, myocardial contractile force of left ventricular wall and heart rate were recorded continuously and the conductivity of coronary arterial bed was calculated during electrical stimulation ( 8V , 1-2-4-8-20 s-1) of the cardiac plexus or during the intracoronary infusion of adenosine (30-60-120-240-480 nmol/kg/min). In alloxan-diabetic dogs electrical stimulation evoked vasoconstriction in the coronary arterial bed, while vasodilation was observed in metabolically healthy animals. The vasodilator effect of adenosine was significantly smaller in diabetic than in control dogs. On the other hand there were no differences either in the alterations of heart rate caused by adenosine or in those of myocardial contractile force induced by adenosine or electric stimulation between the two groups. It is concluded that general alteration of sympathetic responses is not, but rather a modified relation of the receptors to the vessel wall might be responsible for the altered vascular responses in diabetes.  相似文献   

9.
Gastric electrical stimulation (GES) has been proposed as a therapeutic option for obesity. However, its clinical efficacy is not proven, and its mechanisms remain largely unknown. To compare the peripheral and central neural and behavioral effects in rats of GES with a pulse width currently used in clinical trials (GES‐A: 6 mA, 0.3 ms, 40 Hz, 2 s on, 3 s off) and GES with a wider pulse (GES‐B: same as GES‐A, except that the pulse width is 3 ms). Experiment 1: assessing gastric volume changes as a result of GES. Experiment 2: recording the extracellular potentials of a single neuron in the paraventricular nucleus (PVN) with GES. Experiment 3: determining the effects of GES on oxytocin‐immunoreactive (OT‐IR) neuron expression in the hypothalamus. Experiment 4: determining the effects of GES on food intake and body weight. GES‐B, but not GES‐A, significantly increased gastric volume. GES‐B activated a higher percentage of gastric distention‐responsive neurons in the PVN (93% vs. 81%, P = 0.021) and elicited more intensive neuronal responses than GES‐A. The number of OT‐IR neurons was significantly increased in the PVN and supraoptic nucleus with both methods of GES compared with control groups. The increase in OT‐IR neurons in the PVN was higher with GES‐B than with GES‐A. A 1‐week GES treatment significantly reduced daily food intake and body weight. GES‐B was more potent than GES‐A in producing weight loss (P < 0.001). The effects of GES depend on the stimulation pulse width. GES with a wider pulse is more effective both peripherally and centrally and more potent in reducing body weight in rats.  相似文献   

10.
Experiments were conducted to determine if α-stimulants could inhibit responses to sympathetic nerve stimulation via a feedback inhibition loop mediated by prejunctional α-receptors. Responses to cardiac nerve stimulation in anesthetized dogs were compared before, during the peak effect of a drug infusion, and during a second drug infusion subsequent to the administration of phentolamine (5 mg/kg i.v.). The drugs infused were norepinephrine, phenylephrine, clonidine, naphazoline - all α-stimulants - and guanethidine. All drugs caused marked elevations of blood pressure, an indication of α-stimulation, but only guanethidine caused significant blockade of responses to sympathetic nerve stimulation. In addition, phentolamine, an α-receptor blocker, and desipramine, an inhibitor of amine uptake, did not potentiate responses to sympathetic nerve stimulation. These results do not support the hypothesis that sympathetic nerves are under a functionally significant feedback loop mediated by α-receptors.  相似文献   

11.
Chloride (Cl) of saliva evoked by electrical stimulation of the parasympathetic nerve to parotid gland was from two to seven times higher than that elicited with sympathetic nerve stimulation; [Cl] remained elevated (125-135 mEq/liter) for 60 min of parasympathetic nerve stimulation, whereas Cl of sympathetically evoked saliva decreased from high levels of 58 to 15 to 20 mEq/liter. The administration of propranolol, the beta-adrenergic antagonist, 20 min prior to initiation of sympathetic nerve stimulation resulted in saliva with Cl of 100 mEq/liter; when phentolamine, the alpha-adrenergic antagonist was administered prior to sympathetic nerve stimulation, [Cl] was 48-35 mEq/liter. Values with the beta-agonist, isoproterenol, were about 35 mEq/liter, whereas phenylephrine, an alpha-adrenergic agonist, evoked saliva with Cl ranging from 113 to 85 mEq/liter. Flow rate was very high with parasympathetic nerve stimulation and low with sympathetic nerve stimulation, but [Cl] with beta-blockade was not flow dependent: flow was very low but Cl high. Cl secretion is principally regulated by activation of cholinergic and alpha-adrenergic receptors.  相似文献   

12.
The effects of electrical stimulation of the stellate ganglia on the arterio-venous concentration differences of neuropeptide Y (NPY)-like immunoreactivity (LI) over the pig heart were studied in vivo in relation to changes in heart rate and left ventricular pressure. Furthermore, the effects of NPY on coronary vascular tone were analysed in vivo and in vitro. Stellate ganglion stimulation at a high frequency (10 Hz) caused a clear-cut, long lasting increase in plasma levels of NPY-LI in the coronary sinus compared to the aorta, suggesting release of this peptide from sympathetic terminals within the heart. The stimulation-evoked overflow of NPY-LI from the heart was enhanced about 3-fold by alpha-adrenoceptor blockade using phenoxybenzamine, suggesting that NPY release is under prejunctional inhibitory control by noradrenaline (NA). Combined alpha- and beta-adrenoceptor blockade abolished most of the positive inotropic response of the heart upon stellate ganglion stimulation, while a considerable positive chronotropic effect remained. After guanethidine treatment, stellate ganglion stimulation still produced a small positive inotropic and chronotropic effect on the heart. The stimulation evoked NPY overflow was markedly reduced by guanethidine indicating an origin from sympathetic nerve terminals. Injection of NPY into the constantly perfused left anterior descending artery in vivo caused a long lasting, adrenoceptor antagonist resistant increase in perfusion pressure, suggesting coronary vasoconstriction. NPY contracted coronary arteries in vitro via a nifedipine-sensitive mechanism. NA dilated coronary vessels both in vivo and in vitro via beta-adrenoceptor activation. It is concluded that sympathetic nerve stimulation increases overflow of NPY-LI from the heart suggesting release from cardiac nerves in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Gastric electrical stimulation modulates lower esophageal sphincter pressure (LESP). High-frequency neural stimulation (NES) can induce gut smooth muscle contractions. To determine whether lower esophageal sphincter (LES) electrical stimulation (ES) can affect LESP, bipolar electrodes were implanted in the LES of four dogs. Esophageal manometry during sham or ES was performed randomly on separate days. Four stimuli were used: 1) low-frequency: 350-ms pulses at 6 cycles/min; 2) high-frequency-1: 1-ms pulses at 50 Hz; 3) high-frequency-2: 1-ms pulses at 20 Hz; and 4) NES: 20-ms bipolar pulses at 50 Hz. Recordings were obtained postprandially. Tests consisted of three 20-min periods: baseline, stimulation/sham, and poststimulation. The effect of NES was tested under anesthesia and following IV administration of l-NAME and atropine. Area under the curve (AUC) and LESP were compared among the three periods, by ANOVA and t-test, P < 0.05. Data are shown as means +/- SD. We found that low-frequency stimulation caused a sustained increase in LESP: 32.1 +/- 12.9 (prestimulation) vs. 43.2 +/- 18.0 (stimulation) vs. 50.1 +/- 23.8 (poststimulation), P < 0.05. AUC significantly increased during and after stimulation. There were no significant changes with other types of ES. With NES, LESP initially rose and then decreased below baseline (LES relaxation). During NES, N(G)-nitro-l-arginine methyl ester increased both resting LESP and the initial rise in LESP and markedly diminished the relaxation. Atropine lowered resting LESP and abolished the initial rise in LESP. In conclusion, low frequency ES of the LES increases LESP in conscious dogs. NES has dual effect on LESP: an initial stimulation, cholinergically mediated, followed by relaxation mediated by nitric oxide.  相似文献   

14.
In experiments on rabbits and dogs it was demonstrated that electrical stimulation of the centripetal fibres of the cut sciatic nerve causing a rise of the arterial blood pressure produced a significant increase in the plasma levels of adrenaline and noradrenaline. This effect was not observed in animals with sympathetic system blockade caused by administration of reserpine. These observations indicate that pressure increase after sciatic nerve stimulation is due to stimulation of the adrenergic system.  相似文献   

15.
Baroreflex responses to changes in arterial pressure are impaired in spontaneously hypertensive rats (SHR). Mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances were measured before and during electrical stimulation (5-90 Hz) of the left aortic depressor nerve (ADN) in conscious SHR and normotensive control rats (NCR). The protocol was repeated after beta-adrenergic-receptor blockade with atenolol. SHR exhibited higher basal MAP (150 +/- 5 vs. 103 +/- 2 mmHg) and HR (393 +/- 9 vs. 360 +/- 5 beats/min). The frequency-dependent hypotensive response to ADN stimulation was preserved or enhanced in SHR. The greater absolute fall in MAP at higher frequencies (-68 +/- 5 vs. -38 +/- 3 mmHg at 90-Hz stimulation) in SHR was associated with a preferential decrease in hindquarter (-43 +/- 5%) vs. mesenteric (-27 +/- 3%) resistance. In contrast, ADN stimulation decreased hindquarter and mesenteric resistances equivalently in NCR (-33 +/- 7% and -30 +/- 7%). Reflex bradycardia was also preserved in SHR, although its mechanism differed. Atenolol attenuated the bradycardia in SHR (-88 +/- 14 vs. -129 +/- 18 beats/min at 90-Hz stimulation) but did not alter the bradycardia in NCR (-116 +/- 16 vs. -133 +/- 13 beats/min). The residual bradycardia under atenolol (parasympathetic component) was reduced in SHR. MAP and HR responses to ADN stimulation were also preserved or enhanced in SHR vs. NCR after deafferentation of carotid sinuses and contralateral right ADN. The results demonstrate distinct differences in central baroreflex control in conscious SHR vs. NCR. Inhibition of cardiac sympathetic tone maintains reflex bradycardia during ADN stimulation in SHR despite impaired parasympathetic activation, and depressor responses to ADN stimulation are equivalent or even greater in SHR due to augmented hindquarter vasodilation.  相似文献   

16.
The sympathetic nervous system is essential for the cardiovascular responses to stimulation of visceral afferents. It remains unclear how the reflex-evoked sympathetic output is distributed to different vascular beds to initiate the hemodynamic changes. In the present study, we examined changes in regional sympathetic nerve activity and blood flows in anesthetized cats. Cardiovascular reflexes were induced by either electrical stimulation of the right splanchnic nerve or application of 10 microg/ml of bradykinin to the gallbladder. Blood flows were measured using colored microspheres or the Transonic flow meter system. Sympathetic efferent activity was recorded from the left splanchnic, inferior cardiac, and tibial nerves. Stimulation of visceral afferents decreased significantly blood flows in the celiac (from 49 +/- 4 to 25 +/- 3 ml/min) and superior mesenteric (from 35 +/- 4 to 23 +/- 2 ml/min) arteries, and the vascular resistance in the splanchnic bed was profoundly increased. Consistently, stimulation of visceral afferents decreased tissue blood flows in the splanchnic organs. By contrast, activation of visceral afferents increased significantly blood flows in the coronary artery and portal vein but did not alter the vascular resistance of the femoral artery. Furthermore, stimulation of visceral afferents increased significantly sympathetic efferent activity in the splanchnic (182 +/- 44%) but not in the inferior cardiac and tibial nerves. Therefore, this study provides substantial new evidence that stimulation of abdominal visceral afferents differentially induces sympathetic outflow to the splanchnic vascular bed.  相似文献   

17.
目的建立胃浆膜多导联电刺激和胃排空动物模型。方法在12条英国比格犬的胃大弯浆膜层包埋四对心内起搏电极,距幽门40cm空肠近端行一造瘘口。结果①造瘘管收集食糜的方法简单易行,通过其排空量,能了解不同的电刺激和不同的电刺激参数对胃动力的作用。②胃浆膜多导联电极记录的胃体、胃窦慢波电信号清晰、稳定,能准确地记录不同时间和不同实验的胃慢波变化。③单导联和多导长脉冲电刺激均能控制胃慢波。结论胃浆膜多导联电极是研究胃电生理、胃电起搏及胃电起搏对胃排空的影响较理想的方法。英国比格犬是此模型的理想材料。  相似文献   

18.
The effects of intravenous administration of guanethidine and guanethidine plus atropine on the reflex vasodilatation induced in the perfused hindlimb by the electrostimulation of the sinus nerve were studied in dogs.Guanethidine induced a marked decrease in the reflex response of the perfused hindlimb. Moreover, the following administration of atropine completely abolished the hemodynamic response to the sinus nerve stimulation.These findings suggest that the cholinergic system is involved, along with the sympathetic and the histaminegic system, in the genesis of the reflex vasodilatation produced by the electrostimulation of the sinus nerve.  相似文献   

19.
Venodilation is thought to contribute to the hemodynamic actions of atrial peptides. Therefore, we measured the effective vascular compliance (EVC) as a parameter of overall venous tone in 7 pentobarbital anesthetized dogs under autonomic blockade during i.v. infusions of rat atriopeptin II (AP II, up to 100 pmol/kg/min), rat alpha-atrial natriuretic factor, and nitroglycerin (GTN). AP II lowered mean arterial pressure by reducing peripheral vascular resistance with a threshold between 3 and 10 pmol/kg/min (but was ineffective in anesthetized or conscious dogs without autonomic blockade). Neither atrial peptide altered EVC, while GTN augmented EVC and caused a 4.6-fold larger reduction of central venous pressure than AP II at equihypotensive dosage. These findings, with infusion rates probably close to endogeneous release, reveal a vasodilator potency of atrial peptides, which is restricted to systemic arterioles without affecting venous tone.  相似文献   

20.
Objective: Tachygastria is known to be associated with gastric hypomotility. This study investigated the effect of tachygastrial electrical stimulation (TES) on food intake and its effects on gastric motility. Research Methods and Procedures: Five experiments were performed to study the effects of TES on gastric slow waves, gastric tone, accommodation, and antral contractions, gastric emptying, acute food intake, and chronic food intake in dogs. Results: TES at tachygastrial frequencies induced tachygastria and reduced normal slow waves. TES significantly reduced gastric tone or induced gastric distention, impaired gastric accommodation, and inhibited antral contractions. TES significantly delayed gastric emptying. Acute TES reduced food intake but did not induce any noticeable symptoms. Chronic TES resulted in a 20% reduction in food intake, and the effect of TES was found to be related to specific parameters. Discussion: TES at the distal antrum results in a significant reduction in food intake in dogs, and this inhibitory effect is probably attributed to TES‐induced reduction in proximal gastric tone, gastric accommodation, antral contractility, and gastric emptying. These data suggest a therapeutic potential of the specific method of TES for obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号