首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tendon injury repairs are big challenges in sports medicine, and fatty infiltration after tendon injury is very common and hampers tendon injury healing process. Tendon stem cells (TSCs), as precursors of tendon cells, have shown promising effect on injury tendon repair for their tenogenesis and tendon extracellular matrix formation. Adipocytes and lipids accumulation is a landmark event in pathological process of tendon injury, and this may induce tendon rupture in clinical practice. Based on this, it is important to inhibit TSCs adipogenesis and lipids infiltration to restore structure and function of injury tendon. Aspirin, as the representative of non‐steroidal anti‐inflammatory drugs (NSAIDs), has been widely used in tendon injury for its anti‐inflammatory and analgesic actions, but effect of aspirin on TSCs adipogenesis and fatty infiltration is still unclear. Under adipogenesis conditions, TSCs were treated with concentration gradient of aspirin. Oil red O staining was performed to observe changes of lipids accumulation. Next, we used RNA sequencing to compare profile changes of gene expression between induction group and aspirin‐treated group. Then, we verified the effect of filtrated signalling on TSCs adipogenesis. At last, we established rat tendon injury model and compared changes of biomechanical properties after aspirin treatment. The results showed that aspirin decreased lipids accumulation in injury tendon and inhibited TSCs adipogenesis. RNA sequencing filtrated PTEN/PI3K/AKT signalling as our target. After adding the signalling activators of VO‐Ohpic and IGF‐1, inhibited adipogenesis of TSCs was reversed. Still, aspirin promoted maximum loading, ultimate stress and breaking elongation of injury tendon. In conclusion, by down‐regulating PTEN/PI3K/AKT signalling, aspirin inhibited adipogenesis of TSCs and fatty infiltration in injury tendon, promoted biomechanical properties and decreased rupture risk of injury tendon. All these provided new therapeutic potential and medicine evidence of aspirin in treating tendon injury and tendinopathy.  相似文献   

2.
Sports injuries usually involve tissues that display a limited capacity for healing. The treatment of sports injuries has improved over the past 10 to 20 years through sophisticated rehabilitation programs, novel operative techniques, and advances in the field of biomechanical research. Despite this considerable progress, no optimal solution has been found for treatment of various sports-related injuries, including muscle injuries, ligament and tendon ruptures, central meniscal tears, cartilage lesions, and delayed bone fracture healing. New biological approaches focus on the treatment of these injuries with growth factors to stimulate and hasten the healing process. Gene therapy using the transfer of defined genes encoding therapeutic proteins represents a promising way to efficiently deliver suitable growth factors into the injured tissue. Tissue engineering, which may eventually be combined with gene therapy, may potentially result in the creation of tissues or scaffolds for regeneration of tissue defects following trauma. In this article we will discuss why gene therapy and tissue engineering are becoming increasingly important in modern orthopaedic sports medicine practice. We then will review recent research achievements in the area of gene therapy and tissue engineering for sports-related injuries, and highlight the potential clinical applications of this technology in the treatment of patients with musculoskeletal problems following sports-related injuries.  相似文献   

3.
4.
Skeletal muscle injuries are a common problem in trauma and orthopaedic surgery. Muscle injuries undergo the healing phases of degeneration, inflammation, regeneration, and fibrosis. Current and experimental therapies to improve muscle regeneration and limit muscle fibrosis include conservative and surgical principles with the adjuvant use of non-steroidal anti-inflammatory drugs (NSAIDs) and growth factor manipulation. NSAIDs appear to have a paradoxical effect on the healing of muscle injuries with early signs of improvement and subsequent late impairment in functional capacity and histology. In vitro and in vivo studies have explored the role of the cyclooxygenases and prostaglandins in the biological processes of healing muscle, including precursor cell activation, myoblast proliferation, myoblast fusion, and muscle protein synthesis. Through use of more specific cyclooxygenase inhibitors, we may be able to better understand the role of inflammation in muscle healing.  相似文献   

5.
Biomechanics of tendon injury and repair   总被引:5,自引:0,他引:5  
Many clinical and experimental studies have investigated how tendons repair in response to an injury. This body of work has led to a greater understanding of tendon healing mechanisms and subsequently to an improvement in their treatment. In this review paper, characterization of normal and healing tendons is first covered. In addition, the debate between intrinsic and extrinsic healing is examined, and the cellular and extracellular matrix response following a tendon injury is detailed. Next, clinical and experimental injury and repair methods utilizing animal models are discussed. Animal models have been utilized to study the effect of various activity levels, motions, injury methods, and injury locations on tendon injury and repair. Finally, current and future treatment modalities for improving tendon healing, such as tissue engineering, cell therapy, and gene therapy, are reviewed.  相似文献   

6.
Knee injury negatively impacts routine activities and quality of life of millions of people every year. Disruption of tendons, ligaments, and articular cartilage are major causes of knee lesions, leading to social and economic losses. Besides the attempts for an optimal recovery of knee function after surgery, the joint healing process is not always adequate given the nature of intra-articular environment. Based on that, different therapeutic methods attempt to improve healing capacity. Hyperbaric oxygen therapy (HBOT) is an innovative biophysical approach that can be used as an adjuvant treatment post-knee surgery, to potentially prevent chronic disorders that commonly follows knee injuries. Given the well-recognized role of HBOT in improving wound healing, further research is necessary to clarify the benefits of HBOT in damaged musculoskeletal tissues, especially knee disorders. Here, we review important mechanisms of action for HBOT-induced healing including the induction of angiogenesis, modulation of inflammation and extracellular matrix components, and activation of parenchyma cells—key events to restore knee function after injury. This review discusses the basic science of the healing process in knee injuries, the role of oxygen during cicatrization, and shed light on the promising actions of HBOT in treating knee disorders, such as tendon, ligament, and cartilage injuries.  相似文献   

7.
Following tendon injury, severe loss of function often occurs either as a result of obliteration of the synovial canal with fibrous scar tissue or from rupture of the repaired tendon. The role of cell engineering in tendon repair is to promote strong and rapid healing of tendon whilst at the same time facilitating rapid reconstitution of the synovial canal. Modification of the immediate inflammatory response around healing tendon has been found to be of value. Experimentally this has been achieved by neutralisation of transforming growth factor-beta over the first 3 days following injury, or by blockade of inflammatory cell binding to the CS-1 locus on fibronectin with an anti-VLA-4 antibody, or with the synthetic VLA-4 inhibitor, CS-1 peptide, in a rat model of tendon transection. It is concluded from this pilot study that the treatments described hold promise in improving outcomes of the common clinical problem of tendon injury in man.  相似文献   

8.
The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products.  相似文献   

9.
Non-steroidal anti-inflammatory drugs (NSAIDs) are used primarily for the treatment of inflammatory diseases. However, certain NSAIDs also have a chemopreventive effect on the development of human colorectal and other cancers. NSAIDs inhibit cyclooxygenase-1 (COX-1) and/or cyclooxygenase-2 (COX-2) activity and considerable evidence supports a role for prostaglandins in cancer development. However, the chemopreventive effect of NSAIDs on colorectal and other cancers appears also to be partially independent of COX activity. COX inhibitors also alter the expression of a number of genes that influence cancer development. One such gene is NAG-1 (NSAID-Activated Gene), a critical gene regulated by a number of COX inhibitors and chemopreventive chemicals. Therefore, this article will discuss the evidence supporting the conclusion that the chemo-preventive activity of COX inhibitors is mediated, in part, by altered gene expression with an emphasis on NAG-1 studies. This review may also provide new insights into how chemicals and environmental factors influence cancer development. In view of the cardiovascular and gastrointestinal toxic side effects of COX-2 inhibitors and non-selective COX inhibitors, respectively, the results presented here may provide the basis for the development of a new family of anti-tumorigenic compounds acting independent of COX inhibition.  相似文献   

10.
The aim of the current study was to investigate the effect of inhibition of nitric oxide (NO) production after injury on inflammatory cell accumulation and fibrosis around digital flexor tendon and synovium. A standard crush injury was applied to the flexor tendons of the middle digit of the hindpaw and the overlying muscle and synovium of female Wistar rats. Thirty animals received an intraperitoneal injection of either isotonic saline or N(G)-nitro-l-arginine methyl ester (L-NAME; 5 mg/kg) immediately following the crush injury, and five animals were then sacrificed at various intervals and the paws processed for histology. Another group of five animals was sacrificed after 3 days for nitrite determinations. The results showed that nitrite production and hence NO synthase activity is doubled at the acute phase of tendon wound healing, and we can prevent this by administering a single dose of L-NAME immediately after injury. The incidence and severity of fibrocellular adhesions between tendon and synovium was much more marked in animals treated with L-NAME. Treatment with L-NAME elicited a chronic inflammatory response characterised by a persistent and extraordinarily severe accumulation of large numbers of inflammatory cells in the subcutaneous tissues, in muscle and in tendon. These findings indicate that in the case of injured tendon and synovium, NO could act to protect the healing tissue from an uncontrolled inflammatory response.  相似文献   

11.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat skeletal muscle injury. However, studies have shown that NSAIDs may be detrimental to the healing process. Mediated by prostaglandin F(2alpha) (PGF(2alpha)) and prostaglandin E(2) (PGE(2)), the cycloxygenase-2 (COX-2) pathway plays an important role in muscle healing. We hypothesize that the COX-2 pathway is important for the fusion of muscle cells and the regeneration of injured muscle. For the in vitro experiments, we isolated myogenic precursor cells from wild-type (Wt) and COX-2 gene-deficient (COX-2(-/-)) mice and examined the effect of PGE(2) and PGF(2alpha) on cell fusion. For the in vivo experiments, we created laceration injury on the tibialis anterior (TA) muscles of Wt and COX-2(-/-) mice. Five and 14 days after injury, we examined the TA muscles histologically and functionally. We found that the secondary fusion between nascent myotubes and myogenic precursor cells isolated from COX-2(-/-) mice was severely compromised compared with that of Wt controls but was restored by the addition of PGF(2alpha) or, to a lesser extent, PGE(2) to the culture. Histological and functional assessments of the TA muscles in COX-2(-/-) mice revealed decreased regeneration relative to that observed in the Wt mice. The findings reported here demonstrate that the COX-2 pathway plays an important role in muscle healing and that prostaglandins are key mediators of the COX-2 pathway. It suggests that the decision to use NSAIDs to treat muscle injuries warrants critical evaluation because NSAIDs might impair muscle healing by inhibiting the fusion of myogenic precursor cells.  相似文献   

12.
Tendon injuries are common musculoskeletal system disorders in clinical, but the regeneration ability of tendon is limited. Tendon stem cells (TSCs) have shown promising effect on tissue engineering and been used for the treatment of tendon injury. Exosomes that serve as genetic information carriers have been implicated in many diseases and physiological processes, but effect of exosomes from TSCs on tendon injury repair is unclear. The aim of this study is to make clear that the effect of exosomes from TSCs on tendon injury healing. Exosomes were harvested from conditioned culture media of TSCs by a sequential centrifugation process. Rat Achilles tendon tendinopathy model was established by collagenase‐I injection. This was followed by intra‐Achilles‐tendon injection with TSCs or exosomes. Tendon healing and matrix degradation were evaluated by histology analysis and biomechanical test at the post‐injury 5 weeks. In vitro, TSCs treated with interleukin 1 beta were added by conditioned medium including exosomes or not, or by exosomes or not. Tendon matrix related markers and tenogenesis related markers were measured by immunostaining and western blot. We found that TSCs injection and exosomes injection significantly decreased matrix metalloproteinases (MMP)‐3 expression, increased expression of tissue inhibitor of metalloproteinase‐3 (TIMP‐3) and Col‐1a1, and increased biomechanical properties of the ultimate stress and maximum loading. In vitro, conditioned medium with exosomes and exosomes also significantly decreased MMP‐3, and increased expression of tenomodulin, Col‐1a1 and TIMP‐3. Exosomes from TSCs could be an ideal therapeutic strategy in tendon injury healing for its balancing tendon extracellular matrix and promoting the tenogenesis of TSCs.  相似文献   

13.
Tendon is a mechanosensitive tissue that transmits force from muscle to bone. Physiological loading contributes to maintaining the homeostasis and adaptation of tendon, but aberrant loading may lead to injury or failed repair. It is shown that stem cells respond to mechanical loading and play an essential role in both acute and chronic injuries, as well as in tendon repair. In the process of mechanotransduction, mechanical loading is detected by mechanosensors that regulate cell differentiation and proliferation via several signaling pathways. In order to better understand the stem-cell response to mechanical stimulation and the potential mechanism of the tendon repair process, in this review, we summarize the source and role of endogenous and exogenous stem cells active in tendon repair, describe the mechanical response of stem cells, and finally, highlight the mechanotransduction process and underlying signaling pathways.  相似文献   

14.
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.  相似文献   

15.
The mouse has proven to be an advantageous animal model system in basic science research focused on aiding in development and evaluation of potential treatments; however, the small size of mouse tendons makes consistent and reproducible injury models and subsequent biomechanical evaluation challenging for studying tendon healing. In this study, we investigated the feasibility and reproducibility of multiple mouse tendon injury models. Our hypothesis was that incisional (using a blade) and excisional (using a biopsy punch) injuries would result in consistent differences in tendon material properties. At 16 weeks of age, 17 C57BL/6 mice underwent surgery to create defects in the flexor digitorum longus, Achilles, or patellar tendon. Each animal received 1-2 full-thickness, central-width incisional or excisional injuries per limb; at least one tendon per limb remained uninjured. The injuries were distributed such that each tendon type had comparable numbers of uninjured, incisionally injured, and excisionally injured specimens. Three weeks after injury, all animals were euthanized and tendons were harvested for mechanical testing. As hypothesized, differences were detected for all three different tendon types at three weeks post-injury. While all models created injuries that produced predictable outcomes, the patellar tendon model was the most consistent in terms of number and size of significant differences in injured tendons compared to native properties, as well as in the overall variance in the data. This finding provides support for its use in fundamental tendon healing studies; however, future work may use any of these models, based on their appropriateness for the specific question under study.  相似文献   

16.
Tendon–bone healing after anterior cruciate ligament (ACL) reconstruction is a complex process, impacting significantly on patients' prognosis. Natural tendon–bone healing usually results in fibrous scar tissue, which is of inferior quality compared to native attachment. In addition, the early formed fibrous attachment after surgery is often not reliable to support functional rehabilitation, which may lead to graft failure or unsatisfied function of the knee joint. Thus, strategies to promote tendon–bone healing are crucial for prompt and satisfactory functional recovery. Recently, a variety of biological approaches, including active substances, gene transfer, tissue engineering and stem cells, have been proposed and applied to enhance tendon–bone healing. Among these, stem cell therapy has been shown to have promising prospects and draws increasing attention. From commonly investigated bone marrow‐derived mesenchymal stem cells (bMSCs) to emerging ACL‐derived CD34+ stem cells, multiple stem cell types have been proven to be effective in accelerating tendon–bone healing. This review describes the current understanding of tendon–bone healing and summarizes the current status of related stem cell therapy. Future limitations and perspectives are also discussed.  相似文献   

17.
Achilles tendon injury is one of the challenges of sports medicine, the aetiology of which remains unknown. For a long time, estrogen receptor β (ERβ) has been known as a regulating factor of the metabolism in many connective tissues, such as bone, muscle and cartilage, but little is known about its role in tendon. Recent studies have implicated ERβ as involved in the process of tendon healing. Tendon‐derived stem cells (TDSCs) are getting more and more attention in tendon physiological and pathological process. In this study, we investigated how ERβ played a role in Achilles tendon healing. Achilles tendon injury model was established to analyse how ERβ affected on healing process in vivo. Cell proliferation assay, Western blots, qRT‐PCR and immunocytochemistry were performed to investigate the effect of ERβ on TDSCs. Here, we showed that ERβ deletion in mice resulted in inferior gross appearance, histological scores and, most importantly, increased accumulation of adipocytes during the early tendon healing which involved activation of peroxisome proliferator‐activated receptor γ (PPARγ) signalling. Furthermore, in vitro results of ours confirmed that the abnormity might be the result of abnormal TDSC adipogenic differentiation which could be partially reversed by the treatment of ERβ agonist LY3201. These data revealed a role of ERβ in Achilles tendon healing for the first time, thereby providing a new target for clinical treatment of Achilles tendon injury.  相似文献   

18.
Rotator cuff tendon tears are one of the most common shoulder injuries. Although surgical repair is typically beneficial, re-tearing of the tendons frequently occurs. It is generally accepted that healing is worse for chronic tears than acute tears, but the reasons for this are unknown. One potential cause may be the large tensions that are sometimes required to repair chronically torn tendons back to bone (i.e., repair tension). Therefore, the objective of this study was to utilize an animal model of chronic rotator cuff repairs to investigate the role of increased repair tension on tendon to bone healing. We hypothesized that an increase in repair tension would be related to detrimental changes to the healing insertion site. To test this hypothesis, the supraspinatus tendon of rats was surgically detached and then repaired immediately or after a delay of 2, 4, or 16 weeks. The repair tension was measured using a tensiometer and the mechanical properties, collagen organization, and protein expression of the healing insertion site were evaluated 4 and/or 16 weeks following repair. We found that the repair tension increased with time following detachment, and was related to a decrease in the failure properties and viscoelastic peak stress and an increase in cross-sectional area and stiffness of the insertion site. Therefore, repair tension should be minimized in the clinical setting. Future studies will include additional animal model studies involving the relationship between tension and muscle properties and a clinical study investigating the role of repair tension on repair failure.  相似文献   

19.
Although it is generally accepted that the rate and strength of fracture healing is intimately linked to the integrity of surrounding soft tissues, the contribution of muscle has largely been viewed as a vascular supply for oxygen and nutrient exchange. However, more is becoming known about the cellular and paracrine contributions of muscle to the fracture healing process. Research has shown that muscle is capable of supplying osteoprogenitor cells in cases where the periosteum is insufficient, and the muscular osteoprogenitors possess similar osteogenic potential to those derived from the periosteum. Muscle’s secrotome includes proteins capable of inhibiting or enhancing osteogenesis and myogenesis following musculoskeletal injury and can be garnered for therapeutic use in patients with traumatic musculoskeletal injuries. In this review, we will highlight the current knowledge on muscle-bone interaction in the context of fracture healing as well as concisely present the current models to study such interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号