首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
I chronicle the changes in my research, especially those that have moved me closer to C. Wright Mills's call for a "sociological imagination" and Dell Hymes's reinvented anthropology. As I spend more time attempting to create and describe equitable educational environments and less time documenting educational inequality, I have adopted a version of "design research." I describe the possibilities and limitations of trying to conduct research while participating in the phenomenon under investigation.  [sociological imagination, critical ethnography, public sociology, design research]  相似文献   

3.
No one maps out their tenure as a postdoc anticipating a life-altering tragedy. But mental health crises of all kinds affect academic trainees and staff at similar or higher levels than the general public. While the mental health resources available to trainees are often set by healthcare providers, all levels of university leadership can work to remove material and immaterial obstacles that render such resources out of reach. I describe how access to care via telemedicine helped me following a loss in my family.

Over the years, my siblings and close friends have sought mental health resources like therapy, psychoanalysis, or psychiatry, so I loosely understood their benefits. When I was a PhD student I went to therapy briefly, but my counselor and I decided I could do without it. Since I started my postdoc, stress manifested in some new ways but I managed it well with my usual coping strategies and support. That changed one bright December morning in 2019 while I was preparing for our weekly lab meeting. My phone rang indicating a call from my father, whom I had spoken to the night before to celebrate the news of my nephew’s birth. But the voice on the phone was that of a family friend, telling me that my father had died overnight of an undiagnosed heart condition. In the moment I couldn’t even understand what was happening, saying over and over, “but I talked to him last night.” Soon I was sitting at home, dazed, on a string of tearful calls with family and friends.I often read words like “lifted” or “buoyed” to describe the stabilizing support of a network of loved ones. In my case this network was tethering me to reality over the next few weeks, preventing me from spinning off the Earth’s surface in a storm of sorrow and anxiety. The trauma also took a strange physical form and convinced me that I was suffering from a cardiac condition of my own. I had a panic attack during which I went to urgent care convinced my own heart was about to give way. Night after night these physical symptoms prevented me from sleeping.Graced by many loving connections with my siblings, my boyfriend, and close friends, I was actually weathering the process as well as one can. My PI gave me a firm directive to take as much time off as I needed. These were two key elements early in my healing process: a supportive network and an understanding advisor. The third was getting professional help, which I soon realized I needed. Even if I felt OK one day, I didn’t trust that I’d be OK the next. My grief formed too thick and too broad a landscape for me to navigate without help.Deciding to seek mental health resources and realizing that one needs them are often the hardest parts. Connecting with those resources once the decision has been made should be as simple as possible. I called a mental health number, and a triage counselor noted my therapy needs and verified my insurance. She asked what times and locations I preferred and then searched for an open appointment with a therapist who accepted my insurance. She also informed me that my coverage allowed 12 sessions with no copay, which was a pleasant surprise. The therapist who agreed to see me had very few openings, in part because this all happened in December—the holidays are especially busy for therapists. I was aiming for a time after normal working hours, or in the morning before I would head to lab, but none of those times were available. I didn’t like interrupting my workday to trot off to therapy. Taking a long break once a week meant I couldn’t run experiments or mentor my student during that time. But I made the sacrifice because my highest priority was getting the help I needed. There was no shortcut. Prioritizing mental health over lab work is tough for researchers, and I would never have accepted that kind of weekly disruption before my dad’s passing. But as a wonderful mentor of mine used to say, “You are the most valuable reagent in the lab.” She wasn’t describing mental health at the time, but the phrase now provided a guiding principle for my recovery. My first few sessions were on Tuesdays at 2:00 pm.The afternoon break turned out to be less disruptive than I had feared, because I had recently come back to the lab and was working short days. Had she asked, I would have told my PI where I was on Tuesday afternoons, but she wasn’t normally abreast of my daily schedule, so I didn’t seek her approval beforehand. Coordinating experiments with lab members thankfully wasn’t an issue because my work was largely independent; I simply let lab members know that I’d would be out of the lab for a bit on those days.The weeks went by, and the benefits of therapy accrued, helping me in large and small ways as I grieved. In mid-March of 2020, my therapist followed public health guidelines and asked all her clients to transition to remote sessions. While this was easy and sensible, it was still a little disappointing. Therapists are professional empaths, among many other things, and doing away with the physical presence and exchange with her was a blow. Yet therapy via video felt less odd simply because most of my social interactions were now virtual. Thankfully I didn’t have to move out of state for the lockdown (as did many students living in campus housing), which meant I could stay with the same therapist without any insurance complications.A few weeks into lockdown, I asked my therapist whether we had reached the limit of my 12 sessions without a copay. She replied with the good news that my insurance provider had waived all copays for mental health costs due to the pandemic. By that time therapy had generated a platform and an outlet to explore areas of my grief beyond the trauma of my father’s passing. Without needing to weigh the costs and benefits of this resource, I saw my therapist for another 4 months. I slowly took stock of my upbringing in an unconventional family and the loss of my mother when I was 25 and waded through a series of difficult decisions regarding my father’s estate. My father’s death changed me at a depth that is untouched by any amount of therapy or treatment. I’m not “healed”: I feel aged, more brittle, and a little ground down compared with who I had been. But therapy guided me through the worst of my grief, past the acute trauma to help me grasp what I was going through.Since the pandemic began, the number of people reporting increased stress or mental health issues has steadily increased (information on the impact of COVID-19 measures on mental health: https://www.apa.org/workforce/publications/depression-anxiety-coronavirus.pdf) (also see Mental health resources for trainees). I am fortunate to have affordable health insurance and the support from my lab and my department. The ease of finding my institution’s phone number for mental health resources was itself an important benefit. I share these pieces of my story with humility and understanding that not everyone enjoys the privileges that I do and the knowledge that everyone weathers life’s tragedies in their own way. It is not lost on me that some benefits stemmed from a policy change made by a private insurance provider. The provider made the right decision to waive copays, freeing me from having to choose between cost and my mental health needs. Yet had I been a student who had to move out of state due to COVID-19, access to mental health resources might have been disrupted or cut off. The need for reduced out-of-pocket costs for healthcare is known and needs no repetition, but the benefits of telehealth should be a low-cost component of health plans offered to students and staff (information on telehealth recommendations: https://www.apaservices.org/advocacy/news/congress-patient-telehealth?_ga=2.231013471.1538013741.1619359426-1228006513.1619359425 and http://www.apaservices.org/practice/advocacy/state/leadership/telebehavioral-health-policies.pdf?_ga=2.3385904.1067518037.1620039082-1228006513.1619359425.I’m not a cloud of emotions attached to a pair of good pipetting hands, I’m a human who is choosing to spend my time doing research. This observation is easy to repeat, by trainees as much as by faculty and administrators, but much harder to act upon in the midst of conflicting priorities. Consider my story a success: Because I could access the resources I needed, I was able to prioritize my mental health in the midst of my ambitious research program even during the lockdown.MEET THE AUTHORI have been a postdoc in Stefani Spranger’s lab at MIT for 4 years. Supported by an Irvington Fellowship from the Cancer Research Institute, my work examines the behaviors of dendritic cells in tumors that contribute to productive or unproductive anti-tumor immune responses. My doctoral work examined modes of multicellular invasion controlled by the actin cytoskeleton with Margaret Gardel at the University of Chicago. Earlier I was a lab technician with Thea Tlsty at the University of California, San Francisco, which followed a bachelor’s degree in biology at the University of California, Santa Cruz. I serve on the Committee for Students and Postdocs at the American Society for Cell Biology, where I chair the Outreach Subcommittee.  相似文献   

4.
This paper is based on my lecture in a macroevolution course I team-teach with Profs. Daniel Brooks and David Evans at the University of Toronto. The lecture has undergone many revisions over the years as I grappled with problems discussing certain areas (e.g., rape as an adaptive strategy, gender “roles”). Eventually, I realized that the problem areas said more about my personal conflicts than they did about the science. This was one of those epiphany moments, a time when I recognized that I was less likely to accept hypotheses that contradicted the way I wanted the world to be and more likely to uncritically accept hypotheses that confirmed my world view. That epiphany, in turn, led me to realize that science is never separate from the personal biases/demons of its practitioners, especially when we are asking questions about the evolution of human behavior. That realization was not novel within the vast literature of sociology and philosophy. But it was novel for me. I was aware of discussions about personal biases clouding scientific interpretation; I just didn’t think it applied to me (I absorbed the philosophical discussions without making the connection to “my world”). So, on the heels of that epiphany, the following is a very personal take on the question of teaching sociobiology, based on where my journey, aided by my experience as an ethologist and phylogeneticist and colored by my own history, has taken me.  相似文献   

5.
In 1971 McMaster University offered an educational program for nurse practitioners sponsored jointly by the Faculty of Medicine and the School of Nursing. Priority in the pilot program was given to nurses employed in family practice settings and to those participating in related McMaster studies. Because of the implications of a change in role for both nurse and physician, one requirement for acceptance of a nurse in the program was participation of the physician-associate in the educational program.The program prepares registered nurses to extend their responsibilities in primary health care activities for the assessment and management of patients in family practice. The current evaluations of the pilot-study results suggest that such programs can contribute effective resources towards meeting expectations of ready access to primary care by the people of Canada.  相似文献   

6.
7.
The year 2020 provided a wake-up call about the role systemic racism plays in shaping our nation and shaping science. While hard work and great mentors helped bring me a long way from a farm in Minnesota, it’s become much clearer that the privilege of being white and male and the accumulated advantages that began there played powerful roles. It’s time for white scientists like me to listen, think, and take action.

We all have personal stories that we use to describe our trajectory in life and science. For the past five decades the narrative I told myself was a simple one of good luck, hard work, support from my community, and mentors at pivotal times. However, in many important ways, this was just a small part of the truth, ignoring the role unperceived privilege played. The many underlying injustices that were laid bare in our nation this past year began to open my eyes, prompting me to look back at the roles hidden privilege played in my career and the power that these have given me. This challenged me to use the power of that privilege to speak and act to try to change the system in which engrained advantages benefit some but not all. I am telling my story in hopes it will encourage my white colleagues to examine their own.  相似文献   

8.
M J Verhoef  T D Kinsella 《CMAJ》1993,148(11):1929-1933
OBJECTIVE: To ascertain the opinions of Alberta physicians about the acceptance of active euthanasia as a medical act (the "medicalization" of active euthanasia) and the reporting of colleagues practising active euthanasia, as well as the sociodemographic correlates. DESIGN: Cross-sectional survey of a random sample of Alberta physicians, grouped by site and type of practice. SETTING: Alberta. PARTICIPANTS: A total of 2002 (46%) of the licensed physicians in Alberta were mailed a 38-item questionnaire in May through July 1991; usable responses were returned by 1391 (69%). RESULTS: Although only 44% of the respondents considered active euthanasia morally "right" at least 70% opted to medicalize the practice if it were legal by restricting it to be performed by physicians and to be taught at medical sites. Even though active euthanasia is criminal homicide in Canada, 33% of the physicians stated that they would not report a colleague participating in the act of anyone, and 40% and 60% stated that they would not report a colleague to medical or legal authorities respectively. Acceptance or rejection of active euthanasia as a medical act was strongly related to religious affiliation and activity (p < 0.01). CONCLUSIONS: This survey about active euthanasia revealed profound incongruities in the opinions of the sample of Alberta physicians concerning their ethical and social duties in the practice of medicine. These data highlight the need for relevant modifications of health education policies concerning biomedical ethics and physicians'' obligations to society.  相似文献   

9.
Getting around     
Strauss BS 《DNA Repair》2005,4(9):951-957
This essay is a response to a request from the Editor for a "historical reflection" relating to work on DNA repair from my laboratory. The writing has been an interesting exercise since it made me recall the people I have worked with and some of the things we found and the many we missed. In the course of the writing, an article was published in The New York Review of Books, which argued that there is a "pervasive dishonesty in the practice of science" relating to the authorship of scientific papers. It seemed to me that the events I was relating spoke to that charge and I appreciate the opportunity to comment.  相似文献   

10.
Gaia Pigino studies the molecular mechanisms and principles of self-organization in cilia using 3D cryo-EM.

Gaia Pigino was only 3 yr old when she became fascinated with nature in the beautiful countryside of Siena, Italy, where she grew up. The neighbor’s daughter showed her a hen in the chicken coop, and they caught it in the act of laying an egg. Gaia remembers, “This was for me almost a shock, as my experience about eggs was that they come directly out of paper boxes!” Her father was also an important part of awakening Gaia’s curiosity for the amazing things in nature. He used to bring home the award-winning magazine Airone, the Italian equivalent of National Geographic. Gaia never missed an issue; even before learning to read, she could spend hours looking at the captivating photos of the wildlife. She wanted to understand what she was seeing, and maybe because of that, she was determined to do science.Gaia Pigino. Photo courtesy of Human Technopole.Gaia took her first “scientific” steps with Professor Fabio Bernini and Professor Claudio Leonzio at the University of Siena, where she studied bioindicators of soil contamination and detoxification strategies of soil arthropods as part of her PhD project. But it was later, when she joined the laboratory of Professor Pietro Lupetti and met Professor Joel Rosenbaum, a pioneer of cilia research, that Gaia discovered the world of 3D EM and felt her place was “inside a single cell.” She solidified her interest in the structure of protein complexes of cilia and flagella and boosted her passion for cryo-electron tomography (ET) in the laboratory of Professor Takashi Ishikawa, first at the ETH Zurich and then at the Paul Scherrer Institut in Switzerland. In 2012, Gaia started her own laboratory at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, with the vision of creating a truly interdisciplinary laboratory. Her team combines techniques from different fields such as biophysics, cell biology, and structural biology to answer open questions in the cilia field. Gaia recently moved countries again—this time to take over the position of Associate Head of the Structural Biology Research Centre, at the Human Technopole, Milan, Italy.We reached out to Gaia to learn more about her scientific journey and future research directions.What interested you about cilia?The first thing that attracted me toward cilia and flagella were some EM micrographs, by Professor Romano Dallai in Siena, that showed the beautiful geometrical microtubular structures of sperm flagella. I was intrigued by the apparent perfection of these organelles that clearly showed me that a cell is a coordinated system of complex molecular machines, the mechanism of many of which we do not understand. Soon after, Professor Joel Rosenbaum introduced me to the bidirectional transport of components inside cilia, which, he explained to me, is required for both assembly and function of virtually all cilia and flagella, from the motile cilia in our lungs to the primary cilium in our kidneys. He called it intraflagellar transport (IFT) and compared it to a Paternoster elevator, where the individual cabins were what we now call IFT trains. I was completely fascinated by the IFT system, the structure, the function, the dynamics, and the mechanism of which were still largely unknown. Quickly, I realized that in addition to IFT, cilia represent a virtually infinite source of open biological questions waiting to be solved, from the mechanics and regulation of the beating to the sensory function of primary cilia, and their importance for human health.What are some of the scientific questions currently of interest in your laboratory?In the past few years, we have made substantial contributions to the current understanding of the structure and the mechanism of the IFT (1, 2, 3). Currently, we are investigating how the structure of IFT trains relates to their functions by looking, in cryo-electron tomography, at how anterograde trains transform into retrograde trains and at how different ciliary cargoes are loaded on the trains. Beside this more classical line of research, we are exploring other approaches to study IFT, for instance we have developed a method to reactivate IFT trains in vitro on reconstituted microtubules. We want to use this approach to investigate the behavior of IFT trains, and their motors, in experimentally controllable conditions, e.g., in the presence of only certain tubulin posttranslational modifications. We have also made interesting discoveries about the distribution of tubulin posttranslational modifications on the microtubule doublets of the axoneme and how this spatially defined tubulin code affects the function of different ciliary components. We hope we will be able to share these new “stories” with the structural and cell biology community very soon!What kind of approach do you bring to your work?I believe that the main reason for why science became an integral, and dominant, part of my life is because it provides infinite riddles and continuous challenges. I have always been curious about how things work in nature, but I quickly realized that learning from books didn’t satisfy me. My desire was to be at the frontline, to be among the ones that see things happening in front of their eyes, at the microscope, for the first time. I wanted to be among the ones that make the discoveries that students read about in textbooks. Thus, what I bring to my work is an endless desire of solving biological riddles, curiosity, creativity, determination, and energy, with which I hope to inspire the members of my team. My laboratory uses an interdisciplinary approach; we use whatever method, technique or technology is needed to reach our goal, from the most basic tool to the most sophisticated cryo-electron microscope. And if the method we need does not yet exist, we try to invent it.A young Gaia Pigino (3 yr old) the day she discovered how eggs are made. Photo courtesy of Giancarlo Pigino.Could you tell us a bit about the Structural Biology Research Centre at the Human Technopole (HT)?At the HT Structural Biology Centre, we are working to create a vibrant and interdisciplinary scientific environment that will attract molecular, structural, cell, and computational biologists from all over the world. We are creating fantastic facilities, including one of the most well equipped and advanced electron microscopy facilities in Europe—and likely the world—headed by Paolo Swuec. My team, together with the teams of my colleague Alessandro Vannini and the research group leaders Ana Casañal, Francesca Coscia, and Philipp Erdmann, already cover a vast range of competences and know-how from classical molecular and structural biology approaches, such as crystallography and protein biophysics, to cryo-CLEM, cryo-FIB SEM and cryo-ET, all of which allow us to address questions in cell biology. Our goal is to create a scientific infrastructure and culture that will enable biologists to obtain a continuum of structural and functional information across scales.What did you learn during your PhD and postdoc that helped prepare you for being a group leader? What were you unprepared for?I learned that everyday research is mostly made of failures, but that with the right amount of obsession, persistence, curiosity, and creativity, it is always possible to succeed and discover new things. Being given the freedom to develop your own ideas and your own project very early in your career is a treat; science is not only about having good ideas! One needs to follow up on these ideas with intense work and troubleshooting to make them reality. In addition, I realized that being fearless and attempting what is considered too difficult by others, despite challenges, can turn into a worthy learning experience. Also, how you present your work to the scientific community matters for swinging the odds of success in your favor. Different places might work in very different ways, and conducting good science does not only depend on you, but also on the possibilities given to you by your environment.What was I unprepared for?—I guess several things, but one comes immediately to mind: I underestimated how much being responsible not only for my own life and career, but also the career of students, postdocs, and others in the laboratory, would affect me personally.Structure of the 96-nm axonemal repeat reconstructed by cryo-ET and subtomogram averaging. Image courtesy of Gonzalo Alvarez Viar, Pigino Lab.What has been the biggest accomplishment in your career so far?This is a tricky question for me... I tend to look into the future more than celebrating the past. I fight to succeed in something, but as soon as I conquer it, I find it less of an achievement than the thing I could conquer next. Nevertheless, I am happy about the discoveries and the papers published together with my students and postdocs (1, 2, 3, 4, 5). I am extremely excited about the fact that after many years of work I am now leading an interdisciplinary laboratory, where we combine techniques from different fields. I am also happy that three times my husband and I were able to move from one world class academic institution to the another to start exciting and fitting jobs and could still live together in the same place. We worked hard for this, but we also got lucky.What has been the biggest challenge in your career so far?I studied French in school; I had almost no exposure to spoken English until the end of my PhD. To avoid having to show my English insufficiencies, I did hide beside the board of my poster at the first international conference I attended in 2004! It took me a while to overcome this barrier and feel confident to express my thoughts and ideas in English.What do you think you would be if you were not a scientist?I had been a good fencer during my youth. I was a member of the Italian National Team between ages 14 and 19 and saw quite a bit of the world, which was cool! When my sporting career failed, due to diabetes, I was torn between art and science. I guess that in a parallel universe, I am a wildlife photographer and a potter specialized in wood kiln firing. [Gaia confesses that she misses “the amazing and addictive adrenaline rush of a good fencing match!”]Any tips for a successful research career?Do not compare your performances to the ones of the people at your career stage; compare yourself with people that are already successful one level higher than you currently are at. For example, if you are a PhD student, ask yourself what in your current performance separates you from being a good postdoc—once a postdoc, what is missing to be a good PI.  相似文献   

11.
I am incredibly honored to receive the 2021 WICB Junior Award for Excellence in Research in WICB’s golden jubilee year. In this essay, I traverse my scientific journey starting with my PhD, highlighting the highs and the lows and how these intersect with luck, privilege, and bias.

V. AnanthanarayananMy pursuit for a PhD started with a hiccup—I had applied to several places in the United States, but barely got any offers due to the economic upheaval that happened that year (2008). I had to forgo any dreams of a PhD in the United States and remained in Bangalore, India to complete a project I had started with William (Bill) Thies at Microsoft Research India on a programming language for expressing biology protocols. Applying to U.S. schools was an expensive task, one which I was unwilling to put my family through again. So, a year later, when I recommenced my search for a PhD position, I set my sights on Europe. I had heard about the PhD program at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG ) at Dresden from a friend who had just joined the institute for her PhD. Fortunately, I received an interview call from MPI-CBG. At the end of a crucial interview week at Dresden, I “matched” with Iva Tolic´’s (now Institut Ruđer Boškovic´, Croatia) lab for my PhD. At the start of my PhD, I knew next to nothing about the cytoskeleton, motor proteins, or microscopy, but I found Iva and my lab members to be some of the warmest and most welcoming people. I made friends for life and graduated with a PhD in Biophysics, with a thesis focused on understanding the regulation of the motor protein cytoplasmic dynein. I was lucky to have been able to get a position at MPI-CBG and join Iva’s lab—of the other three places in Europe I had applied to for a PhD, only one other institute invited me for an interview, which also proved to be unsuccessful.On completing my PhD in 2014, I didn’t quite know what I wanted to do. Due to personal reasons, I had to return to India and was open to options in both industry and academia. But with my training in motor protein and cytoskeleton research, I had some ideas for exploring scientific questions related to dynein activation. However, most labs I approached for a postdoctoral position were not open to a project that was outside the realm of their research focus. Nonetheless, Iva, Nenad Pavin (University of Zagreb), and Jonathon (Joe) Howard (Yale University), who were members of my thesis advisory committee, gave me the courage to continue in academia. In my naïveté, I went ahead and applied for the INSPIRE Faculty Fellowship, which is targeted at fresh PhDs and junior postdoctoral fellows to establish their own independent group at an Indian institute. To my surprise, I ended up getting the fellowship. The next issue was finding a host institute that was preferably in Bangalore, where my partner was based. I applied at a few different places, but only after I attended IndiaBioscience’s Young Investigator Meeting in 2014 did I get the chance to meet representatives of potential host institutes, including the Indian Institute of Science (IISc). After a couple of research seminars at IISc, my application was assessed and I was offered the position of INSPIRE Faculty Fellow at the newly formed Centre for BioSystems Science and Engineering, IISc.While I did not have any additional start-up funding, I was given the infrastructure and the independence to pursue my research program. It was slow and frustrating at the start, not unlike most starting labs. I always wondered if it might have been easier if I had had a regular postdoctoral stint. During this time, I also started recognizing how hard it was to be a woman in Indian academia. As a woman principal investigator, one’s authority, expertise, and ability are constantly called into question. Justifying your presence in academia on a daily basis is an exhausting task. I had a great mentor in Sandhya Visweswariah (IISc) who helped me navigate the system. I also had an extremely supportive partner, who kept me going through some of the worst times. Eventually, my lab and I landed on our feet (more about this in “My INSPIRE’d Journey”). Our research has been recognized with grants and awards, but one of the most rewarding parts of the job is seeing other lab members discovering the joy of science (I wrote about my approach to mentorship recently [https://www.nature.com/articles/s41580-020-0256-6]).Three years into the faculty fellowship, I was able to transition to an Assistant Professor position in the same institute. However, this did not change my experience as a young woman in Indian science, and the implicit and explicit biases continued. In 2020, I accepted a fantastic opportunity to further my lab’s science as an EMBL Australia Group Leader at the Single Molecule Science Node at UNSW Sydney and made the move during a pandemic. My lab’s research focus is in understanding how stochastic and rare events pertaining to cytoskeleton and motor proteins give rise to complexity in intracellular organization. With this theme as the essence of our research, we ask specific questions about motor protein regulation to effect differential cellular trafficking, mitochondria-microtubule interactions, and their role in mitochondrial dynamics, and we aim to determine barcodes of global organelle positioning in health and disease.I have the privilege of being able-bodied, born in an upper middle-class family to college-educated parents who were extremely supportive of my choices. I have also inordinately benefitted from the fact that I was born to an Indian ‘upper caste’ family. I therefore had an undue head start in life. These were circumstances beyond my control and yet played a huge role in how my story turned out. I was embarrassingly ignorant of the rampant misogyny in academia until I had to contend with explicit and implicit gender-based biases myself when I started my independent research group in India. Women make up ∼40% of science PhDs awarded in India but represent only ∼13% of Indian academia (biaswatchindia.com), highlighting the stark gender biases at play in creating a leaky pipeline. While I tried my best to voice my discontent and affect changes to create an equitable environment within my department and institute, it was slow work. In 2020, when the pandemic hit and all conferences and meetings went virtual, conference posters advertised on social media made it immediately apparent just how much women were underrepresented in Indian STEM conferences. So, I teamed up with Shruti Muralidhar (now a scientist at Deep Genomics, Canada) to found BiasWatchIndia, an initiative to document women representation and combat gender-biased panels in Indian STEM conferences.BiasWatchIndia has been in existence for a little over a year now—we have achieved several milestones, but there’s still so much to do. “Manels” (conferences that feature only men) are still as rampant as they were when we first started—40% of all Indian STEM conferences are manels. And while we have just about started to tackle the underrepresentation of women in Indian STEM, we are conscious of the intersectionality of bias with gender, caste, ableism, and socioeconomic background and aim to understand how best we can advocate for all minorities.People who are in power in academia and who oppose equity, diversity, and inclusion initiatives and instead preach merit and equality as the gold standard need to introspect, because when options and opportunities are offered without consideration to the millennia of oppression based on gender, race, and background, it is not promoting equality but upholding values that will continue to oppress underrepresented groups. Still, I am optimistic and hope to see real changes that will result in equity in academia in my lifetime.  相似文献   

12.
Ye Tian investigates how mitochondrial stress signaling pathways regulate longevity using C. elegans as a model system.

An avid reader, Ye Tian used to save up her child allowance with the sole purpose of buying science fiction books. Reading and solving mathematical problems were her favorite hobbies; indeed, she liked mathematics so much that she was about to enroll herself as an architecture major but finally chose biotechnology. Ye moved from her hometown in the Northwest of China, Baoji—famous for housing the Zhou dynasty’s bronzeware and being close to the Terracotta Army—to Beijing for her college and graduate studies.Ye is proud of being among the earliest researchers working on Caenorhabditis elegans in her country; for her PhD studies, she joined the lab of Hong Zhang, who at that time has just established the first C. elegans lab in China at the National Institute of Biological Sciences in Beijing. Ye identified epg-2 as an adaptor for cargo recognition during autophagy. In 2010, she crossed the Pacific toward the U.S. West Coast for her postdoctoral training in the aging field with Andrew Dillin, first at the Salk Institute in San Diego and then at the University of California, Berkeley. There, she discovered that mild mitochondrial stress during development in worms rewires their chromatin landscape to establish specific gene expression patterns throughout the lifespan and promote longevity.Ye Tian. Photo courtesy of Ye Tian.Ye came back to China at the end of 2016 to start her own lab at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences. Her research team studies mitochondrial stress signaling pathways and their interplay with aging. We chatted with her to learn more about her next scientific plans.What interested you about the interplay between mitochondria and aging?I became interested in mitochondrial biology during my postdoc in Andrew Dillin’s lab. Since the origin of eukaryotic cells, mitochondria have been a driving force of evolution. During reproduction, mitochondria are passed from the mother to the offspring through egg cells and they exhibit a unique inheritance pattern. As essential hubs that dictate cellular metabolism, it is clear now that mitochondria and the nucleus maintain a bidirectional communication. Early life “stressed” mitochondria communicate with the nucleus to induce gene expression changes that are beneficial on longevity and persist throughout the lifespan. The fact that mitochondrial function is crucial to aging fascinated me; I wanted to continue exploring that topic further, and that’s why I established my lab around the question of how mitochondrial surveillance mechanisms regulate the aging process.What are you currently working on? What is up next for you?My research team focuses on the interplay between mitochondrial stress signaling pathways and aging. The first work that my lab published was a project that I started during my postdoc. The Dillin lab reported a phenomenon in which perturbations of mitochondria in neurons induced a mitochondrial stress response in the peripheral tissues and hypothesized that a secreted signal molecule, named after mitokine, is required for the cell non-autonomous regulation (1). The identity of this molecular signal remained elusive for almost ten years until we found that a secreted Wnt ligand, EGL-20, functions as the mitokine to coordinate mitochondrial stress signaling across tissues and promote longevity of the organism (2). We are also interested in how the crosstalk between mitochondria and the nucleus influences lifespan. We found that mitochondrial perturbations alter the nuclear epigenome to induce longevity via the histone deacetylation complex NuRD in response to cellular acetyl-CoA levels, the key metabolite at the entry point of the Krebs cycle (3).Lab group picture; current lab members (2021). Photo courtesy of Ye Tian.Our latest work stemmed from a serendipitous observation that neuronal mitochondrial stress is sensed by and transmitted through the mitochondria in the germline. Intergenerational, maternal inheritance of elevated levels of mitochondrial DNA via the mitokine Wnt/EGL-20, which causes the activation of the mitochondrial unfolded protein response (UPRmt), provides descendants with a greater tolerance to environmental stress. This makes the offspring live longer (4).Among our short-term scientific plans, we’re determining how mitochondria functions during the aging process at both the genetic and biochemical levels and searching for ways to apply our findings from C. elegans to neurodegenerative disease models in mammals.What kind of approach do you bring to your work?The curiosity about how things work drives me; what I enjoy the most is when I see things happening in front of my eyes and when I figure out why they occur that way. That enthusiasm is what I try to spread to my team every day. In the lab, we rely on C. elegans as our model system and on genetics to dissect complex biological processes like aging. We have also adapted modern biochemical and imaging techniques as well as bioinformatics to complement our genetic studies. I’m a geneticist at heart, and I like to initiate a project with a well-designed genetic screen. The best part is that the screen often leads me to answers I was not expecting, and that’s genuinely inspiring!What did you learn during your PhD and postdoc that helped prepare you for being a group leader? What were you unprepared for?Like most scientists, my research career has gone through ups and downs. I had to change my research project in the last year of my graduate school; that was nerve-racking, but I eventually managed to redirect my thesis and get exciting results under time pressure, thanks in large to the support of my parents, mentors, and lab mates. That helped me prepare to become a principal investigator; I gained confidence in problem solving, and since I’ve experienced the stress of dealing with last-minute scope changes firsthand, I connect better with my students.I guess, as many other non-native English speakers, I wasn’t prepared for writing grants and papers fluently in English. This issue wasn’t obvious during my graduate and postdoctoral studies, as my mentors were always there for me and proofread and edited my writing. Now I have to stand up for myself. I spend most of my time writing; I’ve improved my writing skills but it’s still an ongoing process.Reconstruction of the nerve system of C. elegans by confocal microscopy. Green corresponds to YFP-labeled neuronal specific marker Q40, and red labels germline specific mitochondrial outer membrane protein TOMM-20::mkate2. Image courtesy of Ye Tian’s lab.What has been the biggest accomplishment in your career so far?My very first PhD student, Qian Zhang, graduated with two first-author papers and decided to pursue a research career in academia. Being responsible for someone else’s career is challenging but also rewarding.What has been the biggest challenge in your career so far?I use the model organism C. elegans for my research in aging, so from time to time, peers criticize the relevance of my work to human health. I’m used to justifying my scientific approach to funding agencies and peers in other fields, but sometimes it’s exhausting or not pleasant.Who were your key influences early in your career?My PhD mentor, Hong Zhang. He is very passionate about the science he does, and he is courageous to shift his research directions to answer new biological questions.What is the best advice you have been given?I think the best advice I’ve gotten is that “tomorrow is another day.” It reminds me to keep going and be optimistic.What hobbies do you have?I love art and music. When I was in San Diego, I used to play in the Chinese Music Band; I miss my musician friends over there. In my teens, I used to hike mountainside trails along the river with my parents. Now, running has become my new favorite hobby. I enjoy the tranquility and peace of mind while running; it’s soothing.  相似文献   

13.
T D Kinsella  M J Verhoef 《CMAJ》1993,148(11):1921-1926
OBJECTIVE: To ascertain the opinions of a sample of Alberta physicians about the morality and legalization of active euthanasia, the determinants of these opinions and the frequency and sources of requests for assistance in active euthanasia. DESIGN: Cross-sectional survey of a random sample of Alberta physicians, grouped by site and type of practice. SETTING: Alberta. PARTICIPANTS: A total of 2002 (46%) of the licensed physicians in Alberta were mailed a 38-item questionnaire in May through July 1991; usable responses were returned by 1391 (69%). RESULTS: Of the respondents 44% did believe that it is sometimes right to practice active euthanasia; 46% did not. Moral acceptance of active euthanasia correlated with type of practice and religious affiliation and activity. In all, 28% of the physicians stated that they would practice active euthanasia if it were legalized, and 51% indicated that they would not. These opinions were significantly related to sex, religious affiliation and activity, and country of graduation. Just over half (51%) of the respondents stated that the law should be changed to permit patients to request active euthanasia. Requests (usually from patients) were reportedly received by 19% of the physicians, 78% of whom received fewer than five. CONCLUSIONS: This survey revealed severely disparate opinions among Alberta physicians about the morality of active euthanasia. In particular, religious affiliation and activity were associated with the polarized opinions. The desire for active euthanasia, as inferred from requests by patients, was not frequent. Overall, there was no strong support expressed by the physicians for the personal practice of legalized active euthanasia. These data will be vital to those involved in health education and public policy formation about active euthanasia in Alberta and the rest of Canada.  相似文献   

14.
While a variety of alternative careers has emerged for Ph.D. life scientists in industry, business, law, and education in the past two decades, the structure of doctoral training programs in many cases does not provide the flexibility necessary to pursue career experiences not directly related to a research emphasis. Here I describe my efforts to supplement my traditional doctoral research training with independent teaching experiences that have allowed me to prepare myself for a career that combines both into a combined educational program. I describe the issues I have come across in finding and taking part in these endeavors, how these issues have affected my work in pursuing my Ph.D., and how my experiences translate into my hopes for a future education-based career in molecular and cell biology.  相似文献   

15.
Mind molecules     
Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius "Julie" Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the "high" that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes.  相似文献   

16.
The transition from bench science to science policy is not always a smooth one, and my journey stretched as far as the unemployment line to the hallowed halls of the U.S. Capitol. While earning my doctorate in microbiology, I found myself more interested in my political activities than my experiments. Thus, my science policy career aspirations were born from merging my love of science with my interest in policy and politics. After receiving my doctorate, I accepted the Henry Luce Scholarship, which allowed me to live in South Korea for 1 year and delve into the field of science policy research. This introduction into science policy occurred at the South Korean think tank called the Science and Technology Policy Institute (STEPI). During that year, I used textbooks, colleagues, and hands-on research projects as my educational introduction into the social science of science and technology decision-making. However, upon returning to the United States during one of the worst job markets in nearly 80 years, securing a position in science policy proved to be very difficult, and I was unemployed for five months. Ultimately, it took more than a year from the end of the Luce Scholarship to obtain my next science policy position with the American Society for Microbiology Congressional Fellowship. This fellowship gave me the opportunity to work as the science and public health advisor to U.S. Senator Harry Reid. While there were significant challenges during my transition from the laboratory to science policy, those challenges made me tougher, more appreciative, and more prepared to move from working at the bench to working in the field of science policy.  相似文献   

17.
The murder of George Floyd sparked an awakening, long overdue, which reverberated throughout society. As science begins to acknowledge its role in perpetuating systematic racism, the voices of Black scientists, which have largely been absent, are now being called on. As we rightly begin to make space for diverse voices and perspectives in science, we all must think about what it is we are asking minoritized individuals to do.

It has been roughly 1 year since the murder of George Floyd, an unarmed Black man, who was killed over an alleged counterfeit 20 dollar bill in Minneapolis, Minnesota (Hill et al. 2020; Kaul, 2020; Levenson, 2021). In many ways, his murder was no different than the murders of thousands of other murders of Black people in this country (Thompson, 2020; Lett et al., 2021; Tate et al., 2021). However, what distinguishes George Floyd’s murder from many other high profile cases is that it was unambiguously captured on video (Alexander, 1994), an act of bravery by Darnella Frazier, a 17-year-old Black woman (Izadi, 2021), at a time when the world was mostly housebound by a raging global pandemic. As a result, his murder reverberated through society in a way that has not happened in my lifetime. While there have been other high profile cases of murders carried out by police (Treyvon Martin, Walter Scott, Breonna Taylor, and Philando Castile, among many others), these cases failed to fully sustain the attention of a national and international audience (Chan et al., 2020; Chughtai, 2021). The murder of George Floyd was fundamentally different, and for once, more than just Black people were paying attention. His murder sparked protests across the nation led by the Black Lives Matter (BLM) movement (Day, 2015; Taylor, 2016; Banks, 2018; Taylor, 2021), and the demands for change were so loud people could not help but hear.As a Black, gay man who is also a scientist, I was thrown into despair. All of my life I have thought if I just worked hard enough, if I am kind and unthreatening, if I play the game and keep my head down, maybe I can make it in academia. Maybe then I will be seen and accepted, not just by society, but by the scientific community. George Floyd’s murder reminded me, and many of my Black colleagues, that our degrees can’t protect us, that our privileged middle-class upbringing (if we had one) was not a shield. Our lives were not worth more than a counterfeit 20 dollar bill.Science, which has always been a product of society, was not impervious to these reverberations. By late June my inbox began to slowly fill with invitations to speak at several institutions for their seminar series, retreats, or special symposia. It felt as if the scientific community, for the first time, realized that there were Black scientists among them. In the throes of my own despair, and the feeling that I needed to be doing something for my community, I began to say “yes.” I was not going to participate in the nightly protests that occurred in my newly adopted hometown of Portland, Oregon. Aside from fearing I could be next to lose my life at the hands of the police (Edwards et al., 2019), these protests were happening in the backdrop of a global pandemic. I came to the conclusion that by accepting these invitations to speak, this could be my activism, my way of sparking change, increasing visibility, and being seen not only for my own sake but also for other Black scientists.Before I write anything else, I want to be clear: I am extremely thankful to all the institutions and organizations that invited me and gave me a platform. I am extremely proud of my students’ work and of the research we produce. I am sharing my experiences with the hope that they can be instructive to the greater scientific community, but if I am being frank, there is a bit of anger.I received over 15 invitations and gave an additional three or four interviews over the course of the year. Most of these came with the expectation that I would also talk about my work in Diversity, Equity, and Inclusion. But here’s the lowdown: prior to this year, I did not view myself as someone who did Diversity, Equity, and Inclusion work. I am co-chair of the LGBTQ+ committee of the American Society of Cell Biology and a member of the Diversity, Equity, and Inclusion committee of the Genetics Society of America. I volunteer for both of these committees because they speak to something I care deeply about, the advocacy for minoritized 1 scientists. I also embody both of these axes of diversity; so, in some way, I am only looking out for myself. This is far from being a scholar or doing “Diversity work.” I fully recognize that there are individuals who have dedicated their lives to this type of work with entire academic fields populated with accomplished scholars. So, I started this year of talks being invited because I am a Black, gay scientist at a time when science was grappling with its own systematic racism, under the guise of my nonexistent Diversity, Equity, and Inclusion work.What has this year actually taught me? The first thing it taught me is that I have been missing out. Prior to George Floyd’s murder, I had only received three seminar invitations from major research institutions and unfortunately all within a year of being posttenure. That is after nearly 6 years in my current position.In giving these talks I got the opportunity to meet with some of the giants in my field, people I have looked up to for years. I received reagents, offers to collaborate, and a litany of great ideas that will help drive my research program for years to come. I left some of these meetings truly inspired and excited to start experiments. These opportunities would have been invaluable to me, pretenure. One could argue, I did not need it. I made it even without this networking and the advantages these visits bring. Before you applaud my ability to persist and be resilient, we should take a deep look at the systems that have forced people who look like me to be doubly resilient. If George Floyd had not been murdered, would any of these invitations have happened? If the previous 6 years are any indication of a trend, I would have to say most certainly not. Why did it take a murder and the reignition of a Civil Rights movement for me to have the type of interactions I now know many of my straight, white counterparts have had from the very beginning of their independent careers? Let me be clear: this is a form of systematic racism, plain and simple.As I began to make the rounds, I was often asked to either share a bit of my journey or include my Diversity, Equity, and Inclusion work in my talks. This sometimes came at the expense of sharing my lab’s work. While I was very happy to do so, this was very much implicit in the invitations I received. At times it did feel that my inclusion was only checking a box, placating the graduate students so that they could see that their department or institution was responding to their demands. This also had the consequence of making me feel as though my science was merely performative. I was being invited to do the Diversity work institutions did not want to do. This is the tension I, and many other minoritized scientists, face. I want to share my experiences with the hopes that the next generation will have it better; but, my scholarly work is not in Diversity, Equity, and Inclusion. I fully recognize that it is my embodied diversity that is bringing me to the table; but, it is the science I want to share.On the first invitation to give a seminar, I promised myself that I was going to be honest. This meant that I would tell the truth about my experience and bare my soul over and over again. What I had not counted on was the emotional toll this would take on me. Reliving my own trauma, on a regular basis, left me emotionally drained after these visits. In one of my “stops” (I use quotes here because these “visits” were all virtual), I met with the queer, person of color (POC), graduate students. This session quickly turned into an emotional support group where I heard stories of mistreatment, racism, and discrimination. It was nearly impossible to maintain my composure. Diversity, Equity, and Inclusion work is clearly extremely important, but, maybe, we could just start by listening to the needs of the students and having a bit of humanity.The trial of Derek Chauvin has come and passed, and much to my surprise, and to the surprise of many other Black people nationwide, he was found guilty and was sentenced to prison (Arango, 2021; Cooper and Fiegel, 2021). This, of course, is not justice, not even close. Justice would mean that George Floyd is still alive and would get to live out his life in the way he chose. We are also at the beginning of the end of the pandemic. In 6 months or less, we may all be returning to life, more or less, as it was before George Floyd, before COVID-19. Does this mean we stop fighting? Does this mean that I, and many other Black scientists, suddenly disappear? For George Floyd, for countless other faceless Black people before him, I sincerely hope not. We need to continue to give Black scientists a platform. We need to ensure that they, too, are given the opportunity to network, collaborate, and interact with the larger scientific community. This means the invitations cannot stop. To further this, we need to ensure that Black scientists are included in every grant review panel, are included on speaker lists at every national and international meeting, are funded, and are in the room where funding, tenure, and other critical decisions are being made. We need to recognize that systematic racism has not gone away with Derek Chauvin’s conviction and sentencing. We need to continue to push forward. And, for all of you young, minoritized scientists (and allies) reading this, demand change and do not take "no" for an answer. I am truly sorry this has fallen on your shoulders, but enough is enough. The next generation of minoritized scientists should be recognized for their science without the additional burden of creating their own space.About the AuthorI am currently an Associate Professor of Biology at Reed College (https://www.reed.edu/biology/applewhite/index.html), which is located in Portland, Oregon. I arrived at Reed in 2014; prior to that, I was a postdoctoral fellow at the University of North Carolina, Chapel Hill. I received my PhD from Northwestern University in Cellular and Molecular Biology and a BS in Biology from the University of Michigan where I was also a 4-year letter winner in track and field. My research focuses on the cytoskeleton where I study cell motility and morphogenesis using Drosophila and Drosophila derived in tissue culture cells to explore actin, microtubules, and molecular motors. My current lab is composed of fierce, determined undergraduate students. I am a member of the American Society of Cell Biology (ASCB) and the current chair of the LGBTQ+ Committee (https://www.ascb.org/committee/lgbtq/). I am also a member of the Diversity, Equity, and Inclusion Committee for the Genetics Society of America (https://genetics-gsa.org/committees/). I also serve as an editor for MBoC’s Voices series.  相似文献   

18.
I would like to express my thanks to all those who have helped me in the preparation of this article, in particular my mother, Mrs K. Brett, for supplying information about the Kirby family; my cousin, Johanna Meyer, for information about the Kappel family; my son, Geoffrey Dommett, for his computer expertise; and Gina Douglas, librarian, for making available to me the archives of the Linnean Society.  相似文献   

19.
Bayer revisited     
Bayer accuses me of wrongly claiming that he holds a negative thesis about the role that the liberal emphasis on privacy rights has had on AIDS public health policy. In his reply to my review essay, he denies holding such a thesis and, moreover, makes the stronger claim that his position is sympathetic to liberalism, or at least to some versions of it. Although I appreciate Bayer's efforts to clarify his views about liberalism and a "culture of restraint and responsibility", it is clear to me that our differences are related not to a misunderstanding on my part, but to a fundamental disagreement concerning what liberalism as a political philosophy is, and what public policy implications it entails in the case of AIDS....  相似文献   

20.
The purpose of Reflections articles, it seems, is to give elderly scientists a chance to write about the "good old days," when everyone walked to school in the snow. They enjoy this activity so much that your editor, Martha Fedor, must have known that I would accept her invitation to write such an article, no matter how much I demurred at first. As everyone knows, flattery will get you everywhere. It may comfort the apprehensive reader to learn that there is not going to be much walking to school in the snow in this story. On the contrary, rather than thinking how hard I had it during my scientific career, I find it inconceivable that anyone could have had a smoother ride. At the time I began my career, science was an expanding enterprise in the United States that welcomed the young. Only in such an opportunity-rich environment would someone like me have stood a chance. The contrast between that world and the dog-eat-dog world young scientists confront today is stark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号