首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We investigated the activity of the cerebral GABA shunt relative to the overall cerebral tricarboxylic acid (TCA) cycle and the importance of the GABA shunt versus 2-oxoglutarate dehydrogenase for the conversion of 2-oxoglutarate into succinate in GABAergic neurons. Awake mice were dosed with [1-13C]glucose, and brain extracts were analyzed by 13C NMR spectroscopy. The percent enrichments of GABA C-2 and glutamate C-4 were the same: 5.0 ± 1.6 and 5.1 ± 0.2%, respectively (mean ± SD). This, together with previous data, indicates that the flux through the GABA shunt relative to the overall cerebral TCA cycle flux equals the GABA/glutamate pool size ratio, which in the mouse is 17%. It has previously been shown that under the experimental conditions used in this study, the 13C labeling of aspartate from [1-13C]glucose specifically reflects the metabolic activity of GABAergic neurons. In the present study, the reduction in the formation of [13C]aspartate during inhibition of the GABA shunt by γ-vinyl-GABA indicated that not more than half the flux from 2-oxoglutarate to succinate in GABAergic neurons goes via the GABA shunt. Therefore, because fluxes through the GABA shunt and 2-oxoglutarate dehydrogenase in GABAergic neurons are approximately the same, the TCA cycle activity of GABAergic neurons could account for one-third of the overall cerebral TCA cycle activity in the mouse. Treatment with γ-vinyl-GABA, which increased GABA levels dramatically, caused changes in the 13C labeling of glutamate and glutamine, which indicated a reduction in the transfer of glutamate from neurons to glia, implying reduced glutamatergic neurotransmission. In the most severely affected animals these alterations were associated with convulsions.  相似文献   

2.
Abstract: Chains of lumbar sympathetic ganglia from 15-day-old chicken embryos were incubated for 4 h at 36°C in a bicarbonate-buffered salt solution equilibrated with 5% CO2-95% O2. Glucose (1–10 m M ), lactate (1–10 m M ), [U-14C]glucose, [1-14C]glucose, [6-14C]glucose, and [U-14C]lactate were added as needed. 14CO2 output was measured continuously by counting the radioactivity in gas that had passed through the incubation chamber. Lactate reduced the output of CO2 from [U-14C]glucose, and glucose reduced that from [U-14C]lactate. When using uniformly labeled substrates in the presence of 5.5 m M glucose, the output of CO2 from lactate exceeded that from glucose when the lactate concentration was >2 m M . The combined outputs at each concentration tested were greater than those from either substrate alone. The 14CO2 output from [1-14C]glucose always exceeded that from [6-14C]glucose, indicating activity of the hexose monophosphate shunt. Lactate reduced both of these outputs, with the maximum difference between them during incubation remaining constant as the lactate concentration was increased, suggesting that lactate may not affect the shunt. Modeling revealed many details of lactate metabolism as a function of its concentration. Addition of a blood-brain barrier to the model suggested that lactate can be a significant metabolite for brain during hyperlactemia, especially at the high levels reached physiologically during exercise.  相似文献   

3.
The quantification of excitatory and inhibitory neurotransmission and the associated energy metabolism is crucial for a proper understanding of brain function. Although the detection of glutamatergic neurotransmission in vivo by 13C NMR spectroscopy is now relatively routine, the detection of GABAergic neurotransmission in vivo has remained elusive because of the low GABA concentration and spectral overlap. Using 1H-[13C] NMR spectroscopy at high magnetic field in combination with robust spectral modeling and the use of different substrates, [U-13C6]-glucose and [2-13C]-acetate, it is shown that GABAergic, as well as glutamatergic neurotransmitter fluxes can be detected non-invasively in rat brain in vivo .  相似文献   

4.
The intracellular metabolism of Listeria monocytogenes was studied by 13C-isotopologue profiling using murine J774A.1 macrophages as host cells. Six hours after infection, bacteria were separated from the macrophages and hydrolyzed. Amino acids were converted into tert-butyl-dimethylsilyl derivatives and subjected to gas chromatography/mass spectrometry. When the macrophages were supplied with [U-13C6]glucose prior to infection, but not during infection, label was detected only in Ala, Asp and Glu of the macrophage and bacterial protein with equal isotope distribution. When [U-13C6]glucose was provided during the infection period, 13C label was found again in Ala, Asp and Glu from host and bacterial protein, but also in Ser, Gly, Thr and Val from the bacterial fraction. Mutants of L. monocytogenes defective in the uptake and catabolism of the C3-metabolites, glycerol and/or dihydroxyacetone, showed reduced incorporation of [U-13C6]glucose into bacterial amino acids under the same experimental settings. The 13C pattern suggests that (i) significant fractions (50–100%) of bacterial amino acids were provided by the host cell, (ii) a C3-metabolite can serve as carbon source for L. monocytogenes under intracellular conditions and (iii) bacterial biosynthesis of Asp, Thr and Glu proceeds via oxaloacetate by carboxylation of pyruvate.  相似文献   

5.
Succinic semialdehyde dehydrogenase (SSADH) catalyzes the NADP-dependent oxidation of succinic semialdehyde to succinate, the final step of the GABA shunt pathway. SSADH deficiency in humans is associated with excessive elevation of GABA and γ-hydroxybutyrate (GHB). Recent studies of SSADH-null mice show that elevated GABA and GHB are accompanied by reduced glutamine, a known precursor of the neurotransmitters glutamate and GABA. In this study, cerebral metabolism was investigated in urethane-anesthetized SSADH-null and wild-type 17-day-old mice by intraperitoneal infusion of [1,6-13C2]glucose or [2-13C]acetate for different periods. Cortical extracts were prepared and measured using high-resolution 1H-[13C] NMR spectroscopy. Compared with wild-type, levels of GABA, GHB, aspartate, and alanine were significantly higher in SSADH-null cortex, whereas glutamate, glutamine, and taurine were lower. 13C Labeling from [1,6-13C2]glucose, which is metabolized in neurons and glia, was significantly lower (expressed as μmol of 13C incorporated per gram of brain tissue) for glutamate-(C4,C3), glutamine-C4, succinate-(C3/2), and aspartate-C3 in SSADH-null cortex, whereas Ala-C3 was higher and GABA-C2 unchanged. 13C Labeling from [2-13C]acetate, a glial substrate, was lower mainly in glutamine-C4 and glutamate-(C4,C3). GHB was labeled by both substrates in SSADH-null mice consistent with GABA as precursor. Our findings indicate that SSADH deficiency is associated with major alterations in glutamate and glutamine metabolism in glia and neurons with surprisingly lesser effects on GABA synthesis.  相似文献   

6.
L-GLUTAMIC ACID DECARBOXYLASE IN NON-NEURAL TISSUES OF THE MOUSE   总被引:7,自引:5,他引:2  
Abstract— Low levels of γ-aminobutyric acid (GABA) and of glutamic acid decarboxylase (GAD) activity have been detected in mouse kidney, liver, spleen and pancreas. Quantitation of both 14CO2 and [14C]GABA produced in radiometric assays from [U-14CJglutamic acid has shown that measurement of 14CO2 evolution alone is not, in all cases, a valid estimate of true GAD activity. As evidenced by increased ,14CO2 production upon addition of NAD and CoA to assay mixtures, radiometric assay of GAD activity in crude homogenates may yield 14CO2 via the coupled reactions of glutamic acid dehydrogenase and a-ketoglutarate dehydrogenase. The addition of 1 mM aminooxyacetic acid (AOAA) to assays of kidney homogenates inhibited [,14C]GABA production 92 per cent while 14CO2 production was inhibited only 53 per cent. No evidence was found to confirm the reported existence of a second form of the enzyme, GAD II. previously described by Haber el al. (H aber B., K uriyama K. & R oberts E. (1970) Biochem. Pharmac. 19, 1119-1136). Based on sensitivity-to AOAA and chloride inhibition, the GAD activity in mouse kidney is. apparently, indistinguishable from that of neural origin.  相似文献   

7.
Abstract: Radiolabelled glutamine and glucose were infused into lateral ventricles of rats in order to label transmitter amino acid pools in vivo . Brain regions close to the lateral ventricle (hippocampus, corpus striatum, hypothalamus) were labelled more effectively than more distant structures such as cerebral cortex or cerebellum. All regions were labelled to much the same extent over 30-150 min by [U-14C]glucose, [U-14C]glutamine, or [3H]glutamine administered alone or together in doublelabel experiments when allowance was made for any differences in precursor specific radioactivities. Slices of cerebral cortex or hippocampus from brains labelled in vivo were incubated and stimulated in vitro with veratrine (75 μ M ); tetrodotoxin (1 μ M ) was present in the control medium. Single-label experiments showed that [U-14C]- glutamine was more effective than [U-14C]glucose for labelling releasable glutamate and GABA. Double-label experiments showed that [3H]glutamine and [U-14C]- glucose given together in vivo labelled glutamate and GABA releasable in vitro to a similar extent. Both types of experiment empbasise the large contribution made by glutamine in vivo to pools of transmitter glutamate and GABA.  相似文献   

8.
Abstract: Oligodendroglia prepared from minced calf cerebral white matter by trypsinization at pH 7.4, screening, and isosmotic Percoll (polyvinylpyr-rolidone-coated silica gel) density gradient centrifugation survived in culture on polylysine-coated glass, extending processes and maintaining phenotypic characteristics of oligodendroglia. In the present study, ethanolamine glycerophospholipid (EGP) metabolism of the freshly isolated cells was examined during short-term suspension culture by dual label time course and substrate concentration dependence experiments with [2-3H]glycerol and either [1,2-14C]ethanolamine or L-[U-14C]serine. Rates of incorporation of 3H from the glycerol and of 14C from the ethanolamine into EGP were constant for 14 h. In medium containing 3 mM-[1,2-14C]ethanolamine and 4.8 mM-[2-3H]glycerol, rates of incorporation of 14C and 3H into diacyl glycerophosphoethanolamine (diacyl GPE) were similar. Under the same conditions, 3H specific activities of alkylacyl GPE and alkenylacyl GPE were much lower than 14C specific activities, likely as a result of the loss of tritium during synthesis of these forms of EGP via dihydroxyacetone phosphate. L-[U-14C]serine was incorporated into serine glycerophospholipid (SGP) by base exchange rather than de novo synthesis. 14C from L-[U-14C]serine also appeared in EGP after an initial lag period of several hours. Methylation of oligodendroglial EGP to choline glycerophospholipid (CGP) was not detected.  相似文献   

9.
Here, we describe use of a reductionist brain model, the brain tissue slice, to generate snapshots of functional metabolism in response to a pharmacological (GABAergic) perturbation. Tissue slices prepared from Guinea pig cerebral cortex were incubated for 1 h in the presence of [3-13C]-pyruvate and ligands with affinity for GABA receptors. The resultant patterns of 13C flux and metabolite levels were measured by 13C/1H NMR spectroscopy, generating 'metabolic fingerprints' for each ligand. Effects of agonists and effectors at GABA receptors (A, B, and C types) were examined, compared to those of exogenous GABA and evaluated using multivariate statistical models. Data clusterings did not directly correlate with GABA receptor types but produced at least five distinct groups ranked according to their affinity for GABA. As our experimental model retains, to a large extent, the structure and function of normal brain tissue, the generated database can be used to assess GABAergic ligands and make unique inferences relevant to their modes of action in brain.  相似文献   

10.
ALANINE METABOLISM IN RAT CORTEX IN VITRO   总被引:1,自引:0,他引:1  
Abstract— (1) The metabolism of [U-14C]alanine was followed in slices of rat cerebral cortex and its interaction with glucose, pyruvate and the metabolic inhibitors fluoracetate and malonate was studied.
(2) Alanine did not stimulate respiration above endogenous levels or affect the rate of oxygen uptake with glucose or pyruvate as cosubstrate. Radioactivity found in CO2 from labelled alanine was only 6 per cent of that from labelled pyruvate. Lactate was not formed from alanine.
(3) After 2 h incubation with [U-14C]alanine the specific activities of glutamate, glutamine and GABA were 20–30 per cent that of alanine. All these specific activities except glutamate were lowered by addition of glucose, but with pyruvate as cosubstrate the specific activity of glutamate was increased by 87 per cent above the level with alanine alone.
(4) The effect of alanine as cosubstrate with [U-14C]pyruvate was to reduce the specific activity of GABA and of glutamine, but not glutamate or lactate; thus there was not an equal dilution of all the metabolites of pyruvate.
(5) Fluoracetate diminished respiration and the production of CO2 from [U-14C]-alanine only slightly; the addition of malonate as well practically abolished both. Fluoracetate lowered incorporation from alanine into all the amino acids, and radioactivity could not be detected in glutamine at all; addition of malonate lowered the specific activity of glutamate to 25 per cent but increased that into aspartate, GABA and glutamine.
(6) The interpretation of these data in terms of known pathways of alanine metabolism is discussed.  相似文献   

11.
Abstract: The metabolic precursors and cerebral compartmentation of the augmented GABA pool induced by vigabatrin, an irreversible inhibitor of GABA transaminase, have been investigated by 13C NMR. Adult rats receiving rat chow ad libitum were given either drinking water only or drinking water containing 2.5 g/L vigabatrin for 7 days. Both groups of animals were infused either with [1,2-13C2]acetate (15 µmol/min/100 g body weight), an exclusive precursor of GABA formation through the glial glutamine pathway, or with [1,2-13C2]glucose (15 µmol/min/100 g body weight), a substrate that can produce GABA through the glial glutamine pathway or by direct metabolism in the neurons. The brains were frozen in situ, extracted with perchloric acid, and analyzed by 13C NMR. In vigabatrin-treated animals [13C]glutamine, a common intermediate for [13C]GABA synthesis from glucose or acetate, was accumulated to similar amounts during infusions with [1,2-13C2]glucose or [1,2-13C2]acetate. However, [13C]GABA accumulation was sevenfold higher during [1,2-13C2]glucose infusions or twofold higher during [1,2-13C2]acetate infusions. These results show that the direct pathway of GABA formation by neuronal metabolism of glucose predominates over the alternative pathway through glial glutamine. Near-equilibrium relationships of the aminotransferases of GABA and aspartate imply that the observed [13C]GABA accumulation occurs initially in the neuronal compartment.  相似文献   

12.
Abstract: Cerebral formation of lactate via the tricarboxylic acid (TCA) cycle was investigated through the labeling of lactate from [2-13C]acetate and [1-13C]glucose as shown by 13C NMR spectroscopy. In fasted mice that had received [2-13C]acetate intravenously, brain lactate C-2 and C-3 were labeled at 5, 15, and 30 min, reflecting formation of pyruvate and hence lactate from TCA cycle intermediates. In contrast, [1-13C]glucose strongly labeled lactate C-3, reflecting glycolysis, whereas lactate C-2 was weakly labeled only at 15 min. These data show that formation of pyruvate, and hence lactate, from TCA cycle intermediates took place predominantly in the acetate-metabolizing compartment, i.e., glia. The enrichment of total brain lactate from [2-13C]acetate reached ∼1% in both the C-2 and the C-3 position in fasted mice. It was calculated that this could account for 20% of the lactate formed in the glial compartment. In fasted mice, there was no significant difference between the labeling of lactate C-2 and C-3 from [2-13C]acetate, whereas in fed mice, lactate C-3 was more highly labeled than the C-2, reflecting adaptive metabolic changes in glia in response to the nutritional state of the animal. It is hypothesized that conversion of TCA cycle intermediates into pyruvate and lactate may be operative in the glial metabolism of extracellular glutamate and GABA in vivo. Given the vasodilating effect of lactate on cerebral vessels, which are ensheathed by astrocytic processes, conversion of glutamate and GABA into lactate could be one mechanism mediating increases in cerebral blood flow during nervous activity.  相似文献   

13.
Abstract: 13C-NMR spectroscopy was used to evaluate the dynamic consequences of portacaval anastomosis on neuronal and astrocytic metabolism and metabolic trafficking between neurons and astrocytes. Glutamate is predominantly labeled from [1-13C]glucose, whereas [2-13C]acetate is more efficient in labeling glutamine, in accordance with its primary metabolism in astrocytes. Alanine and succinate labeling was only observed with [1-13C]glucose as precursor. Brain [1-13C]glucose metabolism in portacaval-shunted rats was similar to that in sham-operated controls with the exception of labeled glutamine and succinate formation, which was increased in shunted rats. The 13C enrichment was, however, decreased owing to an increase in total glutamine and succinate. Using [2-13C]acetate, on the other hand, flux of astrocytic label to neurons was severely decreased because label incorporation into glutamate, aspartate, and GABA was decreased following portacaval shunting. The latter amino acids are predominantly localized in neurons. These findings demonstrate that metabolic trafficking of amino acids from astrocytes to neurons is impaired in portacaval-shunted rats.  相似文献   

14.
We evaluated diurnal and seasonal patterns of carbon isotope composition of leaf dark-respired CO2 ( δ 13Cl) in the C3 perennial shrub velvet mesquite ( Prosopis velutina ) across flood plain and upland savanna ecosystems in the south-western USA. δ 13Cl of darkened leaves increased to maximum values late during daytime periods and declined gradually over night-time periods to minimum values at pre-dawn. The magnitude of the diurnal shift in δ 13Cl was strongly influenced by seasonal and habitat-related differences in soil water availability and leaf surface vapour pressure deficit. δ 13Cl and the cumulative flux-weighted δ 13C value of photosynthates were positively correlated, suggesting that progressive 13C enrichment of the CO2 evolved by darkened leaves during the daytime mainly resulted from short-term changes in photosynthetic 13C discrimination and associated shifts in the δ 13C signature of primary respiratory substrates. The 13C enrichment of dark-respired CO2 relative to photosynthates across habitats and seasons was 4 to 6‰ at the end of the daytime period (1800 h), but progressively declined to 0‰ by pre-dawn (0300 h). The origin of night-time and daytime variations in δ 13Cl is discussed in terms of the carbon source(s) feeding respiration and the drought-induced changes in carbon metabolism.  相似文献   

15.
Abstract: The metabolic fate of glutamate in astrocytes has been controversial since several studies reported >80% of glutamate was metabolized to glutamine; however, other studies have shown that half of the glutamate was metabolized via the tricarboxylic acid (TCA) cycle and half converted to glutamine. Studies were initiated to determine the metabolic fate of increasing concentrations of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain. When astrocytes from rat brain were incubated with 0.1 m M [U-13C]glutamate 85% of the 13C metabolized was converted to glutamine. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. When astrocytes were incubated with 0.2–0.5 m M glutamate, 13C from glutamate was also incorporated into intracellular aspartate and into lactate that was released into the media. The amount of [13C]lactate was essentially unchanged within the range of 0.2–0.5 m M glutamate, whereas the amount of [13C]aspartate continued to increase in parallel with the increase in glutamate concentration. The amount of glutamate metabolized via the TCA cycle progressively increased from 15.3 to 42.7% as the extracellular glutamate concentration increased from 0.1 to 0.5 m M , suggesting that the concentration of glutamate is a major factor determining the metabolic fate of glutamate in astrocytes. Previous studies using glutamate concentrations from 0.01 to 0.5 m M and astrocytes from both rat and mouse brain are consistent with these findings.  相似文献   

16.
Uridine and cytidine are major nucleosides and are produced as catabolites of pyrimidine nucleotides. To study the metabolic fates and role of these nucleosides in plants, we have performed pulse (2 h) and chase (12 h) experiments with [2-14C]uridine and [2-14C]cytidine and determined the activities of some related enzymes using tubers and fully expanded leaves from 10-week-old potato plants ( Solanum tuberosum L.). In tubers, more than 94% of exogenously supplied [2-14C]uridine and [2-14C]cytidine was converted to pyrimidine nucleotides and RNA during 2-h pulse, and radioactivity in these salvage products still remained at 12 h after the chase. Little degradation of pyrimidine was found. A similar pyrimidine salvage was operative in leaves, although more than 20% of the radioactivity from [2-14C]uridine and [2-14C]cytidine was released as 14CO2 during the chase. Enzyme profile data show that uridine/cytidine kinase (EC 2.7.1.48) activity is higher in tubers than in leaves, but uridine nucleosidase (EC 3.2.2.3) activity was higher in leaves. In leaves, radioactivity from [U-14C]uracil was incorporated into β-ureidopropionic acid, CO2, β-alanine, pantothenic acid and several common amino acids. Our results suggest two functions of uridine and cytidine metabolism in leaves; these nucleosides are not only substrates for the classical pyrimidine salvage pathways but also starting materials for the biosynthesis of β-alanine. Subsequently, some β-alanine units are utilized for the synthesis of pantothenic acid in potato leaves.  相似文献   

17.
Abstract. The fate of radioactively labelled amino acids injected into the haemolymph of the aphid Aphis fabae was investigated. Radioactivity from each of L-[U-14C]-glutamic acid, L-[U-14C]-serine and L-[U-14C]-threonine in the aphid tissues declined exponentially, at rates of 32, 9.3 and 1.0 pmol/aphid/min, respectively. For 14C-glutamic acid, radioactivity lost from the aphids was recovered quantitatively as carbon dioxide, and radioactivity in aphid saliva and honeydew was undetectable. When expressed on a per unit aphid biomass basis, the rate of respiratory loss of glutamic acid from aphids reared on chemically-defined diets was more than double that of aphids reared on the host plant, Vicia faba . It is concluded that respiration is a quantitatively important component to the aphid metabolism of glutamic acid and other amino acids.  相似文献   

18.
In this research, two dynamic 13C-labeling experiments confirmed turnover and rapid mobilization of stored glycogen and trehalose in an aerobic glucose-limited chemostat ( D =0.05 h−1) culture of Saccharomyces cerevisiae . In one experiment, the continuous feed to an aerobic glucose-limited chemostat culture of S. cerevisiae was instantaneously switched from naturally labeled to fully 13C labeled while maintaining the same feed rate before and after the switch. The dynamic replacements of naturally labeled intracellular glycolytic intermediates and CO2 (in the off-gas) with their 13C-labeled equivalents were measured. The data of this experiment suggest that the continuous turnover of glycogen and trehalose is substantial ( c . 1/3 of the glycolytic flux). The second experiment combined the medium switch with a shiftup in the glucose feeding rate (dilution rate shiftup from 0.05 to 0.10 h−1). This experiment triggered a strong but transient mobilization of storage carbon, that was channelled into glycolysis, causing a significant disruption in the dynamic labeling profile of glycolytic intermediates. The off-gas measurements in the shiftup experiment confirmed a considerable transient influx of 12C-carbon into glycolysis after the combined medium switch and dilution rate shiftup. This study shows that for accurate in vivo kinetic interpretation of rapid pulse experiments, glycogen and trehalose metabolism must be taken into account.  相似文献   

19.
Abstract: N -Pivaloyl-leucyl–γ-aminobutyric acid (PLG) is a synthetic dipeptide with a partition coefficient of 1.67 in an ethyl acetate/water system that partially inhibits the synaptosomal uptake and activates the release of [U- 14C]-γ-aminobutyric acid ([U-14C]GABA). The displacement of GAB A from crude synaptic membranes by PLG occurs with an IC50 of 10−5 M . The compound has the capacity to cross the blood-brain barrier and increase central GABA levels. Its ED50 on cardiazol-induced convulsions is 60-65 mg/kg. PLG is resistant to hydrolysis by chymotrypsin and partially inhibits the proteolytic activity of trypsin.  相似文献   

20.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY l-DOPA   总被引:3,自引:2,他引:1  
Abstract— A study has been made of the effect of a single intraperitoneal dose of l -DOPA on the in vivo metabolism of [14C]leucine and [14C]lysine by the brain, and on their uptake into brain protein. Administration of 500 mg DOPA/kg to 40-g rats raised the concentrations of several free amino acids; the only amino acid which underwent a statistically significant increment was alanine. Intracisternally-injected [U-14C]leucine was rapidly metabolized to other labelled compounds; DOPA administration did not influence significantly the rate of its metabolism. No similar metabolic change was observed after administering [U-14C]lysine intracisternally.
Incorporation of [14C]leucine and [14C]lysine into total brain protein was significantly reduced 45 min after DOPA administration. There was also depression of the uptake of labelled amino acid into a supernatant fraction, obtained by high speed centrifugation of the brain homogenate, and into brain microtubular protein (tubulin). Reduced amino-acid incorporation into brain proteins observed 45 min after l -DOPA injection coincided with extensive disaggregation of brain polyribosomes. At 120 min after DOPA treatment, disaggregation was no longer significant and there was a smaller depression in labelled amino aicd incorporation, which disappeared completely 240 min after l -DOPA injection. It is concluded that disaggregation of brain polysomes following DOPA treatment is an accurate reflection of a change in the intensity of brain protein synthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号