首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The design, synthesis and evaluation of N,N',N"-tris(2-pyridylmethyl)-cis,cis-1,3,5,-triaminocyclohexane (tachpyr, 1) derivatives as novel anti-angiogenic agents were performed in an in vitro endothelial cell proliferation assay to assess their cytotoxicity and selectivity. The selective nature of the anti-angiogenic agents for human umbilical vein endothelial cells (Huvec) was compared to a normal fibroblast cell line and a human Glioma cell line to evaluate these compounds. N,N',N"-tris(2-mercaptoethyl)-cis,cis-1,3,5-triaminocyclohexane trihydrochloride (3b) was superior to tachpyr in terms of selectivity of its inhibitory activity toward the proliferation of Huvec compared to the fibroblast and human Glioma cell lines.  相似文献   

2.
Novel bicyclic tetrahydropyrano[3,2-d]oxazolones derivatives, analogues of Fumagillin, were synthesised via a stereocontrolled oxidative-rearrangement of furylcarbinols and subsequent treatment with the appropriate isocyanate. These compounds demonstrated potent antiangiogenic activity.  相似文献   

3.
Betulinic acid and its derivatives as anti-angiogenic agents   总被引:2,自引:0,他引:2  
Betulinic acid (1) significantly caused cytotoxicity to endothelial cell line ECV304 (IC(50) 1.26+/-0.44 microg/mL) in a 5-day MTT assay. Novel and more potent derivatives of betulinic acid (2, 4, 6-8) have been synthesized with IC(50) less than 0.4 microg/mL. The endothelial cell specificity against human tumor cell lines DU145, L132, A549, and PA-1 were determined. Further betulinic acid (1) inhibited TLS formation of ECV304 cells on Matrigel(TM) by 5.5% while its derivatives caused an inhibition of 13.1-49.2%.  相似文献   

4.
Previously, we have found that BRN-103, a nicotinamide derivative, inhibits vascular endothelial growth factor (VEGF)-mediated angiogenesis signaling in human endothelial cells. During our continuous efforts to identify more potent anti-angiogenic agents, we synthesized various nicotinamide derivatives and evaluated their anti-angiogenic effects. We found that 2-{1-[1-(6-chloro-5-fluoropyrimidin-4-yl)ethyl]piperidin-4-ylamino}-N-(3-chlorophenyl) pyridine-3-carboxamide (BRN-250) significantly inhibited human umbilical vascular endothelial cells (HUVECs) proliferation, migration, tube formation, and microvessel growth in a concentration range of 10–100 nM. Furthermore, BRN-250 inhibited the VEGF-induced phosphorylation and intracellular tyrosine kinase activity of VEGF receptor 2 (VEGFR2) and the activation of its downstream AKT pathway. Taken together, these findings suggest that BRN-250 be considered a potential lead compound for cancer therapy.  相似文献   

5.
Design of therapeutic chelating agents   总被引:2,自引:0,他引:2  
The successful design of orally active non-toxic selective metal chelators is a much sought-after goal. In order to identify an ideal chelator for clinical use, a range of specifications must be considered, such as metal selectivity and affinity, kinetic stability of the complex, bioavailability and toxicity. In this overview the comparative properties of ligands capable of endowing complexes with such properties will be discussed.  相似文献   

6.
A series of carboxyl-containing cyclophanes have been designed and synthesised as chemical chelators (or host molecules) of cationic muscle relaxant drugs (or guest molecules). Three of these cyclophane derivatives, 1-3, have been shown by NMR to form 1:1 complexes with the muscle relaxants pancuronium, and gallamine, in D(2)O, with association constants up to 10(4) M(-1). When tested in an in vitro chick biventer muscle preparation, the cyclophanes reversed the neuromuscular block induced by pancuronium and gallamine, with having the most effective reversal against pancuronium (EC(50) 40 microM.  相似文献   

7.
An efficient protocol was developed to tether chelating agents and rhenium complexes onto a glucoside scaffold with a heterogeneous copper catalyst via click chemistry. The supported catalyst avoids the formation of unwanted copper complexes during the cyclisation step. The possibility to graft a pre-chelated M(CO)3 core by click chemistry onto a biomolecule was highlighted for the first time. 99mTc(CO)3-glucoconjugates displayed excellent in vitro stability, a fast in vivo blood clearance and a low specific organ uptake or long-term retention in spleen and stomach.  相似文献   

8.
M Oliver 《CMAJ》1997,157(6):750-753
The College of Physicians and Surgeons of Saskatchewan recently agreed to allow physicians to administer chelation therapy. Supporters, relying on anecdotal evidence, say it works wonders in overcoming heart disease, but many physicians remain profoundly sceptical. In Saskatchewan, the college decision has proved popular with patients but has drawn an angry reaction from doctors.  相似文献   

9.
The kinetics of the mobilizing reactions of five chelating agents for human serum albumin (HSA)-bound copper(II) [Cu(II)] have been studied spectrophotometrically. The decreasing sequence of reaction rate has been determined to be EDTA greater than DTPA greater than EGTA greater than NTA greater than IDA. A group of mathematical models were established to define the mechanisms of the competitive reactions between low-molecular-weight ligand and macromolecular ligand. All reactions of the five chelating agents follow a process involving the intermediate ternary complexes: (formula; see text) The reactions of DTPA and EDTA were found to be different from those of EGTA, NTA, and IDA. In the former cases, the reactions are likely following an overlapping mechanism in which the rate constant k1 was closed to k2. The reactions involving the other three chelators are different in k1 much greater than k2.  相似文献   

10.
The copper chelator N,N'-diethyldithiocarbamate (DDC), is often used to inactivate intracellular copper-zinc superoxide dismutase in erythrocytes. However, in studies with red cells we found that the compound also reacted with oxyhemoglobin to produce oxygen radicals in addition to generating lipid peroxidation products, oxidized N,N'-diethyldithiocarbamate, methemoglobin, and sulfhemoglobin. Moreover, intracellular glutathione was depleted and vital cellular enzymes were susceptible to inactivation. We, and others, have confirmed these findings in nonerythrocytic cell lines. Thus, cells exposed to DDC are severely damaged before studies on the effects of added putative superoxide producing compounds can be performed with them. In this report, we have systematically investigated other copper chelators for their ability to inactivate intracellular copper-zinc superoxide dismutase without producing the deleterious effects mentioned above. Catechol, triethylenetetramine, and tetraethylenepentamine were found to be such agents when erythrocytes were dialyzed in the cold against dilute solutions of these chelators. In addition, with a myeloid leukemic cell line (HL-60), triethylenetetramine inhibited SOD without causing significant GSH oxidation. Examination of the affinity constants of chelators active against purified copper-zinc superoxide dismutase indicated that an affinity binding constant (log K1) between 12.6 and 13.8 was required for the chelator to successfully remove copper from the enzyme.  相似文献   

11.
The relative efficacy of thiol-containing mercurial scavengers was assayed by using cellular suspensions of erythrocytes or isolated hepatocytes. The blood cells incubated in a buffer (pH 7.4) containing 1 mM glucose (10% hematocrit) were exposed to 5 μM methyl mercuric chloride. In the absence of extracellular thiols the red blood cells took up more than 90% of methyl mercury from the surrounding medium during 5–10 min. This uptake was almost completely inhibited by dimercaptosuccinic acid (DMSA) (1 mM) and the same chelant could rapidly remove 80% of the mercury from ‘pre-loaded’ erythrocytes. Hepatocytes prepared according to the method of Seglen [11] in a suspension of 106 cells/ml in a buffer containing 5 mM glucose and 5 mg/ml of bovine serum albumin were also exposed to methyl mercuric chloride (4 μM). Almost 50% of the mercurial was taken up by the cells slowly during the incubation period of 240 min. DMSA (1 mM) almost completely blocked the methyl mercury binding by the hepatocytes. 2-Mercaptopropionylglycin (Thiola) or mercaptosuccinic acid (MSA) was almost as effective mercurial scavengers as DMSA in hepatocytes and in red blood cells. Diethyldithiocarbamate (DDC) and dimercaptopropanol (BAL) were considerably less effective than DMSA to inhibit the mercurial binding to hepatocytes. Experiments in vivo have shown that DMSA is a better mercurial chelator than Thiola or MSA, whereas DDC and BAL may both be considered to be inapplicable in methyl mercury poisonings. Our cellular assay provides preliminary information of the efficiency of chelating thiols and may serve as a useful first approximation when planning further experiments.  相似文献   

12.
Two pentaaza macrocycles containing pyridine in the backbone, namely 3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),14,16-triene ([15]pyN5), and 3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),15,17-triene ([16]pyN5), were synthesized in good yields. The acid-base behaviour of these compounds was studied by potentiometry at 298.2 K in aqueous solution and ionic strength 0.10 M in KNO3. The protonation sequence of [15]pyN5 was investigated by 1H NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of the two ligands with Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ metal ions were performed under the same experimental conditions. The results showed that all the complexes formed with the 15-membered ligand, particularly those of Cu2+ and especially Ni2+, are thermodynamically more stable than with the larger macrocycle. Cyclic voltammetric data showed that the copper(II) complexes of the two macrocycles exhibited analogous behaviour, with a single quasi-reversible one-electron transfer reduction process assigned to the Cu(II)/Cu(I) couple. The UV-visible-near IR spectroscopic and magnetic moment data of the nickel(II) complexes in solution indicated a tetragonal distorted coordination geometry for the metal centre. X-band EPR spectra of the copper(II) complexes are consistent with distorted square pyramidal geometries. The crystal structure of [Cu([15]pyN5)]2+ determined by X-ray diffraction showed the copper(II) centre coordinated to all five macrocyclic nitrogen donors in a distorted square pyramidal environment.  相似文献   

13.
14.
15.
Coaggregation between pairs of microorganisms was found to be inhibited by chelating agents, such as acetylacetone, citrate, EDTA and carboxymethylcellulose. Assays were conducted on eight pairs of periodontopathogens and one pair consisting of Escherichia coli and Saccharomyces cerevisiae. The inhibitory effects of the chelating agents were reversible except for Actinomyces naeslundii 12104, the adhesin of which was irreversibly inactivated. Even though the bacteria possessed different kinds of adhesins, their sensitivity to chelating agents appears to be a common property. Non-toxic chelating agents, such as carboxymethylcellulose and citrate, may prove to be useful anti-adhesins.  相似文献   

16.
Preparation of some starch-based neutral chelating agents   总被引:6,自引:0,他引:6  
Various neutral starch derivatives have been prepared by reacting maize starch with mono- and dimethylol resins based on urea, thiourea, and melamine. The factors affecting these reactions were studied. These factors include curing duration, catalyst, and resin concentrations. The starch derivatives so prepared were used in heavy-metal removal from solutions. The sorption ability of those derivatives depends on resin type and metal ions. The sorption values of different starch derivatives follow the order (a) monomethylol resin-starch > dimethylol resin starch; (b) thiourea resin-starch > urea resin-starch > melamine resin-starch. The sorption efficiency (%) of starch derivatives increases with increasing nitrogen content, reaching a maximum value and then decreasing. The sorption values of Hg2+ (mmol/mol resin) of different starch monomethylol derivatives at the maximum values were 1135, 2624, and 2538 for urea, thiourea, and melamine derivatives, respectively. This indicates that urea derivatives act as bidentate ligands, while thiourea and melamine act as tridentate ligands.  相似文献   

17.
Vascular endothelial growth factor Receptor-2 (VEGFR-2) kinase inhibition is one of the well established strategies to promptly tackle tumor growth by suppression of angiogenesis. In the current study, structure-based virtual screening methodology of a series of quinolyl-thienyl chalcones indicated their strong potential as VEGFR-2 kinase inhibitors. In vitro VEGFR-2 kinase inhibitory activity was found to be significant (compound 19, IC(50): 73.41nM). All compounds showed significant inhibition of human umbilical vein endothelial cells (HUVEC) proliferation (compound 19, IC(50): 21.78nM). Molecular interactions of the compounds were studied using molecular docking studies.  相似文献   

18.
Formation of new blood vessels (angiogenesis) has been demonstrated to be a basic prerequisite for sustainable growth and proliferation of tumor. Several growth factors, cytokines, small peptides and enzymes support tumor growth either independently or in synergy. Decoding the crucial mechanisms of angiogenesis in physiological and pathological state has remained a subject of intense interest during the past three decades. Currently, the most widely preferred approach for arresting tumor angiogenesis is the blockade of vascular endothelial growth factor (VEGF) pathway; however, the clinical usage of this modality is still limited by several factors such as adverse effects, toxicity, acquired drug resistance, and non-availability of valid biomarkers. Nevertheless, angiogenesis, being a normal physiological process imposes limitations in maneuvering it as therapeutic target for tumor angiogenesis. The present review offers an updated relevant literature describing the role of well-characterized angiogenic factors, such as VEGF, basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF), placenta growth factor (PLGF), hepatocyte growth factor/scatter factor (HGF/SF) and angiopoetins (ANGs) in regulating tumor angiogenesis. We have also attempted to discuss tumor angiogenesis with a perspective of ‘an attractive target with emerging challenges’, along with the limitations and present status of anti-angiogenic therapy in the current state-of-the-art.  相似文献   

19.
Anti-angiogenic therapy has recently been added to the panel of cancer therapeutics, but predictive biomarkers of response are still not available. In animal models, anti-angiogenic therapy causes tumor starvation by increasing hypoxia and impairing nutrients supply. It is thus conceivable that angiogenesis inhibition causes remarkable metabolic perturbations in tumors, although they remain largely uncharted. We review here recent acquisitions about metabolic effects of angiogenesis blockade in tumors and discuss the possibility that some metabolic features of tumor cells - i.e. their dependency from glucose as primary energy substrate - might affect tumor responses to anti-VEGF treatment.  相似文献   

20.
The chelating agents, EDDHA, its iron salt, EDTA, and salicylic acid enhance bud formation in Bartramidula bartramioides (Griff.) Wijk & Marg. Salicylic acid elicits optimal response at 10–4 M , whereas the other substances do so at 10–7 M . Increased concentration of ferric citrate and cupric sulphate also stimulate bud induction. The accumulation of Fe3+ and Cu2+ is facilitated by chelators. The endogenous iron content is maximum at 10–7 M EDDHA or EDTA, which is also the concentration optimal for bud induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号