首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Connexins are a family of transmembrane proteins essential for the gap junctions, which mediate cell-to-cell communication. Several connexins are reported to be tumor suppressors, and we have established transgenic (Tg) rats with a connexin 32 (Cx32) dominant negative mutant showing high sensitivity to early-stage diethylnitrosamine (DEN)-induced liver carcinogenesis. In this study, we carried out two independent experiments using Tg rats to further investigate the roles of disrupted Cx32 in late-stage carcinogenesis (carcinoma induction and metastasis) in the liver. In the first experiment, of 50 weeks’ duration, DEN was administered at 6 weeks of age and at 26 weeks to explore the effects of carcinogen treatments at different stages. The number of hepatocellular carcinomas (HCCs) was significantly increased in Tg compared with non-Tg rats. The second experiment focused on the effects of Cx32 disruption on metastasis by HCCs induced by administration of DEN and N-nitrosomorpholine. Only Tg rats had multiple metastases of HCCs in the lung, and the development and growth of HCCs was dramatically accelerated in Tg compared to non-Tg rats. Thus, normal function of Cx32 may be essential for suppression of both early and late stages of hepatocarcinogenesis.  相似文献   

2.
Connexin32 knockout mice (Cx32-KO) exhibit increased chemical and radiation-induced liver and lung tumorigenesis. This increased tumor incidence is associated with altered tumor biology including enhanced tumor progression and an increased percent of MAPK-active tumors. Likewise, mice lacking the tumor suppressor/cell cycle regulator p27Kip1 exhibit increased tumorigenesis in a variety of tissues following chemical and radiation induction. Interestingly, in a double-deficient mouse model (DKO), additional loss of p27Kip1 in a Cx32-KO background results in attenuation of liver and lung tumorigenesis as well as MAPK activation profiles, suggesting pathway interaction. While these mouse strains exhibit altered liver and lung tumor susceptibility following both chemical (DEN) and radiation (X-ray) induction protocols, comparisons of the resulting tumor incidence, multiplicity, tumor progression, and MAPK activation in response to these two distinct carcinogens underscores the separate influence of each individual gene on both tumor formation and activation of specific oncogenic pathways. Furthermore, these studies demonstrate that different carcinogens interact disparately with Cx32/p27Kip1 genotypic backgrounds in situ resulting in varied tumorigenic response.  相似文献   

3.
Awuah PK  Rhieu BH  Singh S  Misse A  Monga SP 《PloS one》2012,7(6):e39771
Hepatocellular Carcinoma (HCC) is the fifth most common cancer worldwide. β-Catenin, the central orchestrator of the canonical Wnt pathway and a known oncogene is paramount in HCC pathogenesis. Administration of phenobarbital (PB) containing water (0.05% w/v) as tumor promoter following initial injected intraperitoneal (IP) diethylnitrosamine (DEN) injection (5 μg/gm body weight) as a tumor inducer is commonly used model to study HCC in mice. Herein, nine fifteen-day male β-catenin knockout mice (KO) and fifteen wild-type littermate controls (WT) underwent DEN/PB treatment and were examined for hepatic tumorigenesis at eight months. Paradoxically, a significantly higher tumor burden was observed in KO (p<0.05). Tumors in KO were β-catenin and glutamine synthetase negative and HGF/Met, EGFR & IGFR signaling was unremarkable. A significant increase in PDGFRα and its ligand PDGF-CC leading to increased phosphotyrosine-720-PDGFRα was observed in tumor-bearing KO mice (p<0.05). Simultaneously, these livers displayed increased cell death, stellate cell activation, hepatic fibrosis and cell proliferation. Further, PDGF-CC significantly induced hepatoma cell proliferation especially following β-catenin suppression. Our studies also demonstrate that the utilized DEN/PB protocol in the WT C57BL/6 mice did not select for β-catenin gene mutations during hepatocarcinogenesis. Thus, DEN/PB enhanced HCC in mice lacking β-catenin in the liver may be due to their ineptness at regulating cell survival, leading to enhanced fibrosis and regeneration through PDGFRα activation. β-Catenin downregulation also made hepatoma cells more sensitive to receptor tyrosine kinases and thus may be exploited for therapeutics.  相似文献   

4.
5.
Connexin32 knockout mice (Cx32-KO) exhibit increased chemical and radiation-induced liver and lung tumorigenesis. This increased tumor incidence is associated with altered tumor biology including enhanced tumor progression and an increased percent of MAPK-active tumors. Likewise, mice lacking the tumor suppressor/cell cycle regulator p27Kip1 exhibit increased tumorigenesis in a variety of tissues following chemical and radiation induction. Interestingly, in a double-deficient mouse model (DKO), additional loss of p27Kip1 in a Cx32-KO background results in attenuation of liver and lung tumorigenesis as well as MAPK activation profiles, suggesting pathway interaction. While these mouse strains exhibit altered liver and lung tumor susceptibility following both chemical (DEN) and radiation (X-ray) induction protocols, comparisons of the resulting tumor incidence, multiplicity, tumor progression, and MAPK activation in response to these two distinct carcinogens underscores the separate influence of each individual gene on both tumor formation and activation of specific oncogenic pathways. Furthermore, these studies demonstrate that different carcinogens interact disparately with Cx32/p27Kip1 genotypic backgrounds in situ resulting in varied tumorigenic response.  相似文献   

6.
Cell-to-cell exchanges of signaling molecules are thought to be involved in the control of cell proliferation. Connexins, which are encoded by a family of genes expressed in a cell type-specific manner, are considered as tumor suppressors. Thyroid epithelial cells co-express connexin 32 (Cx32) and connexin 43 (Cx43) that form distinct and delocalized gap junctions in vivo. The communication-deficient rat thyroid-derived cell lines, FRTL-5 and FRT, stably transfected with the Cx32 cDNA, have a reduced proliferation rate related to a prolonged G1 cell cycle phase. To determine whether Cx32-gap junctions exert the same regulatory role in vivo, we have undertaken a program of production of transgenic mice over-expressing Cx32 specifically in thyrocytes. To this purpose, we designed a vector in which the Cx32 cDNA was fused to the gene encoding the enhanced green fluorescent protein (EGFP) and placed under the control of a strong and thyroid-specific promoter, the thyroglobulin gene promoter (pTg). In stably transfected FRTL-5 cells, the Cx32/EGFP chimeric protein forms functional gap junction channels and induces the same proliferation slowdown as native Cx32. The pTg-Cx32/EGFP construct should thus allow us to obtain the thyroid-targeted over-expression of Cx32 in the mouse to investigate the involvement of Cx32-gap junctions in thyroid growth, functional activity and propensity to form tumors.  相似文献   

7.
Identification of Hepatocarcinogen-Resistance Genes in Dba/2 Mice   总被引:6,自引:0,他引:6       下载免费PDF全文
Male DBA/2J mice are ~20-fold more susceptible than male C57BL/6J mice to hepatocarcinogenesis induced by perinatal treatment with N,N-diethylnitrosamine (DEN). In order to elucidate the genetic control of hepatocarcinogenesis in DBA/2J mice, male BXD recombinant inbred, D2B6F(1) X B6 backcross, and D2B6F(2) intercross mice were treated at 12 days of age with DEN and liver tumors were enumerated at 32 weeks. Interestingly, the distribution of mean tumor multiplicities among BXD recombinant inbred strains indicated that hepatocarcinogen-sensitive DBA/2 mice carry multiple genes with opposing effects on the susceptibility to liver tumor induction. By analyzing D2B6F(1) X B6 backcross and D2B6F(2) intercross mice for their liver tumor multiplicity phenotypes and for their genotypes at simple sequence repeat marker loci, we mapped two resistance genes carried by DBA/2J mice, designated Hcr1 and -2, to chromosomes 4 and 10, respectively. Hcr1 and Hcr2 resolved the genetic variance in the backcross population well, indicating that these resistance loci are the major determinants of the variance in the backcross population. Although our collection of 100 simple sequence repeat markers allowed linkage analysis for ~95% of the genome, we failed to map any sensitivity alleles for DBA/2J mice. Thus, it is likely that the susceptibility of DBA/2J mice is the consequence of the combined effects of multiple sensitivity loci.  相似文献   

8.
Gap junctions (GJs) play an important role in vascular function, stability, and homeostasis in endothelial cells (ECs), and GJs are comprised of members of the connexin (Cx) family. GJs of vascular ECs are assembled from Cx37, Cx40, and Cx43, and we showed that ECs also express Cx32. In this study, we investigated a potential role for Cx32 during vascular inflammation. Expression of Cx32 mRNA and protein by human umbilical venous ECs (HUVECs) decreased following treatment with tumor necrosis factor (TNF)-α, but lipopolysaccharide (LPS) and interleukin (IL)-1β did not affect Cx32 expression. Intracellular transfer of an inhibitory anti-Cx32 monoclonal antibody significantly enhanced TNF-α-induced monocyte chemotactic protein (MCP)-1 and IL-6 expression, but overexpression of Cx32 abrogated TNF-α-induced MCP-1 and IL-6 expression. LPS treatment of Cx32 knock-out mice significantly increased the serum concentrations of TNF-α, interferon-γ, IL-6 and MCP-1, compared to wild-type littermate mice. These data suggest that Cx32 protects ECs from inflammation by regulating cytokine expression and plays an important role in the maintenance of vascular function.  相似文献   

9.
The present study characterized the immunohistochemical localization of beta-catenin protein in hepatocellular neoplasms and hepatoblastomas in B6C3F(1) mice exposed to diethanolamine (DEA) for 2 years and evaluated genetic alterations in the Catnb and H-ras genes which are known to play important roles in the pathogenesis of liver malignancies. Genomic DNA was isolated from paraffin sections of each liver tumor. Catnb exon 2 (corresponds to exon 3 in human) genetic alterations were identified in 18/18 (100%) hepatoblastomas from DEA exposed mice. Deletion mutations (15/18, 83%) were identified more frequently than point mutations (6/18, 33%) in hepatoblastomas. Eleven of 34 (32%) hepatocellular adenomas and carcinomas from DEA treated mice had mutations in exon 2 of the beta-catenin gene, while only 1 of 10 spontaneous neoplasms had a deletion mutation of codon 5-6. Common to all liver neoplasms (hepatocellular adenomas, carcinomas and hepatoblastomas) was membrane staining for the beta-catenin protein, while cytoplasmic and nuclear staining was observed only in hepatoblastomas. The lack of H-ras mutations in hepatocellular neoplasms and hepatoblastomas suggests that the ras signal transduction pathway is not involved in the development of liver tumors following DEA exposure which is different from that of spontaneous liver tumors that often contain H-ras mutations.  相似文献   

10.
Gap junctions are thought to be necessary for proper tissue function. However, no clear hepatic phenotype has been described in patients lacking connexin 32 (Cx32), the principal gap junction in liver. To determine the physiological role of Cx32 in liver, we compared the response of wild type and Cx32-deficient mice to endotoxin, since this stress increases serum levels of hormones that bind to receptors that are asymmetrically distributed across the hepatic lobule. In hepatocyte couplets isolated from wild type mice, most hepatocytes could transfer microinjected dye to their neighbor even after treatment with endotoxin. Dye transfer was not observed in Cx32-deficient couplets. Treatment of hepatocyte couplets from wild type mice with vasopressin induced calcium (Ca(2+)) waves that crossed the couplets in a concentration-dependent fashion, but the delay in transmission was markedly prolonged at all concentrations in Cx32-deficient couplets. Expression of the vasopressin receptor and the inositol 1,4,5-trisphosphate receptor was not decreased by endotoxin or in Cx32-deficient couplets. Finally, endotoxin caused transient hypoglycemia and cholestasis in wild type animals, but hypoglycemia was slightly prolonged and cholestasis was much worse in Cx32-deficient mice treated with endotoxin. The hepatic response to endotoxin is markedly impaired in the absence of Cx32. Thus, an important role of gap junctions in the liver is to assure integrated and uniform tissue response in times of stress.  相似文献   

11.
12.
AIM: The methanolic extract of Solanum trilobatum (ST) is cytotoxic and exerts an inhibitory effect on tumor growth and in the present study, its role on the antioxidant status of N-diethylnitrosamine (DEN) induced and phenobarbital (PB) promoted hepatocarcinogenesis was assessed. METHODS: The protective role of ST on DEN induced and PB promoted hepatocarcinogenesis in Wistar rats was assessed from total nodular incidence, nodule multiplicity and volume of persistent nodules after an experimental period of 3 and 6 months following co-administration. The levels of thiobarbituric reactive substances (TBARS), glutathione (GSH) and activities of antioxidant enzymes were assessed in the haemolysate and liver of experimental animals to evaluate the antioxidant status. RESULTS: In DEN+PB+ST animals, the nodular incidence, multiplicity and volume reduced significantly compared to DEN+PB treated animals. In DEN+PB animals, the levels of TBARS increased significantly, whereas the levels of GSH and the activities of antioxidant enzymes-superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glucose 6 phosphate dehydrogenase showed significant alterations compared to control both in the haemolysate and liver. However, in DEN+PB+ST animals, the levels of TBARS decreased significantly and the levels of GSH increased with favorable alterations in the activities of antioxidant enzymes in both the haemolysate and liver. CONCLUSION: The present results suggest that ST exerts its chemopreventive effects by modulating the antioxidant status during DEN induced hepatocarcinogenesis.  相似文献   

13.
The combined effects of vanadium (V) and 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] in inhibiting diethylnitrosamine (DEN)-induced and phenobarbital (PB) promoted hepatocarcinogenesis were examined in male Sprague-Dawley rats. All the rats were subjected to 70% partial hepatectomy (PH) at week 4 and 24h later were administered either solvent trioctanoin (Group B, D, F and H) or 10 mg DEN/kg (Group A, C, E and G) by gavage. Briefly after two weeks of DEN administration, PB were administered (0.05% in basal diet) to all the DEN-treated rats and continued till the completion of the experiment. Supplementary V at the dose of 0.5 ppm in drinking water ad libitum (Group C and D), 1,25(OH)2D3 at the dose of 3 microg/ml in propylene glycol per os twice a week (Group E and F) or both V and 1,25(OH)2D3 at the same above given doses (Group G and H) were started 4 weeks prior to DEN administration (week 0) and continued thereafter till week 15. The expression of the number and area of altered hepatocyte foci (AHF) positive for placental glutathione S-transferase (GST-P) was maximum in DEN-treated and PB promoted group (Group A). V (Group C) and 1,25(OH)2D3 (Group E) treatment significantly reduced the expression of GST-P-positive hepatocytes by 36.02% and 45.16% respectively but an additive protective action (61.46%) was found in Group G which received both V and 1,25(OH)2D3 for the entire period of the study. Moreover, histopathological examination and the incidence of hepatic hyperplastic nodules showed that combined action of V and 1,25(OH)2D3 can able to minimize the appearance of nodules as well and maintain the normal cellular architecture than V and 1,25(OH)2D3 when given alone. These results suggest that, when given together V and 1,25(OH)2D3 could be the chemopreventive agents for rat liver carcinogenesis.  相似文献   

14.
In the present study, we have evaluated the effects of dietary selenite (Se) on polyamine levels and its influence on N-nitrosodiethylamine (DEN) initiated and Phenobarbital (PB) promoted in rat liver carcinogenesis. Dietary selenite at a concentration of 4 ppm (through drinking water) was administered in rats either before initiation (4 weeks), or during promotion (16 weeks) and entire experimental period (20 weeks). Male Wistar strain of albino rats was treated with single intra peritoneal dose of DEN (200 mg kg−1 body weight), after 2 weeks the carcinogenic effect was promoted by PB (0.05%; through diet). Alpha fetoprotein (AFP) was investigated after the 20th-week of experimental period. Selenite-treated animals markedly reduced the AFP during the time of pre-selenite [before initiation (4 weeks)] and entire experimental period (20 weeks), administration rather than the promotion period. This infers that anticancer property of selenite depends on the stage of carcinogenesis, rather than duration of treatment. Evaluation of polyamine levels in hepatoma and surrounding liver tissue showed significant difference in the selenite-treated groups compared with pair-fed control groups. Furthermore, histopathological examination showing remarkable difference between control and treated groups. These results demonstrate that selenite can modulate the development of DEN-induced and PB-promoted rat liver carcinogenesis through a polyamine-dependent mechanism. (Mol Cell Biochem xxx: 165–172, 2005)  相似文献   

15.
Scaffolding of membrane proteins is a common strategy for forming complexes of proteins, including some connexins, within membrane microdomains. Here we describe studies indicating that Cx32 interacts with a PDZ-containing scaffolding protein, Dlgh1 (Discs Large homolog 1). Initial screens of liver lysates using antibody arrays indicated an interaction between Cx32 and Dlgh1 that was confirmed using coimmunoprecipitation studies. Yeast two-hybrid complementation determined that the Cx32 bound via interaction with the SH3/Hook domain of Dlgh1. Confocal microscopy of liver sections revealed that Cx32 and Dlgh1 could colocalize in hepatocyte membranes in wild type mice. Examination of levels and localization of Dlgh1 in livers from Cx32 null mice indicate that, in the absence of Cx32, Dlgh1 was decreased, and the remainder was translocated from the hepatocyte membrane to the nucleus with some remaining in cytoplasmic compartments. This translocation was confirmed by Western blots comparing Dlgh1 levels in nuclear extracts from wild type and Cx32 null murine livers. Using SKHep cells stably transfected with Cx32 under the control of a tet-off promoter, we found that acute removal of Cx32 led to a decrease of membrane-localized Dlgh1 and an increase in the nuclear localization of this tumor suppressor protein. Together, these results suggest that loss of Cx32 alters the levels, localization, and interactions of the tumor suppressor protein Dlgh1, events known in other systems to alter cell cycle and increase tumorigenicity.  相似文献   

16.
Accumulating evidence indicates that gap junctions play an important role in the maintenance of normal cell growth, so that genes for the connexin gap junction proteins form a family of tumor-suppressor genes. Although mice from which nine types of connexin gene are deleted have been established, little information from carcinogenesis experiments with these mice is available. We have previously found several mutant forms of connexin 32 (Cx32) to be able to inhibit, in a dominant-negative manner, gap junctional intercellular communication (GJIC) exerted by wild-type Cx32. By introducing a gene for such a dominant-negative Cx32 mutant expressed under the control of a liver-specific albumin gene promoter, we have generated transgenic mouse lines in which the function of Cx32 is down-regulated only in the liver. Although GJIC was diminished in the transgenic liver as expected, the reduced GJIC did not affect viability nor the number of spontaneous liver tumors. Although susceptibility to diethylnitrosamine-induced hepatocarcinogenesis was significantly elevated in the transgenic mice, liver regeneration after partial hepatectomy was delayed compared with wild-type mice, suggesting that gap junctions function not only to suppress excessive cell growth but also to promote cell proliferation when necessary for normal function of tissues. Although the phenotype of Cx32-deficient mice was similar to that of the transgenic mice, the former showed more drastically altered phenotypes, i.e. increased BrdU incorporation in the quiescent liver and development of spontaneous liver tumors. We also established 3T3 fibroblasts from embryos lacking the Cx43 gene and characterized their growth. These fibroblasts showed no difference from the wild type in growth characteristics. From these and other studies, we suggest that gap junctions do not necessarily suppress cell growth but support an optimal growth rate.  相似文献   

17.
Ginkgo biloba (EGb) has been proposed as a promising candidate for cancer chemoprevention and has shown protective effects on the liver against chemically induced oxidative injury and fibrosis. The potential beneficial effects of EGb were investigated in two rat liver carcinogenesis bioassays induced by diethylnitrosamine (DEN). In a short-term study for anti-initiating screening, male Wistar rats were fed a basal diet or supplemented diet with 500 or 1000 ppm EGb and initiated 14 days later with a single dose of DEN (100 mg/kg i.p.). The respective groups were killed 24h or 2 weeks after DEN-initiation. Liver samples were collected for the analysis of proliferating cell nuclear antigen (PCNA), transforming growth factor alpha (TGF-alpha), p53, apoptosis and induction of single hepatocytes and minifoci positive for the enzyme glutathione S-transferase P-form (GST-P). In a medium-term study for anti-promoting screening, the animals received a single dose of DEN (200 mg/kg i.p.) and, 2 weeks later, were fed a basal diet or supplemented diet with 500 or 1000 ppm EGb for 6 weeks. All animals underwent 70% partial hepatectomy (PH) at week 3 and killed at week 8. Liver samples were collected to analyze development of preneoplastic foci of altered hepatocytes (FAH) expressing GST-P. In the short-term study, pretreatment of rats with 1000 ppm EGb significantly reduced the rates of cell proliferation, apoptosis and p53, TGF-alpha immunoreactivity and the number of GST-P-positive hepatocytes. In the medium-term study, EGb treatment during the post-initiation stage failed to reduce the development of DEN-induced GST-P-positive foci. Thus, EGb presented inhibitory actions during initiation but not promotion of rat liver carcinogenesis induced by DEN.  相似文献   

18.
The generation of free radicals is a cause of many pathological conditions like diabetes mellitus, cancer, stroke, etc. Free radicals cause damage to cellular DNA and initiate carcinogenesis. Free radicals also bring about proliferation of cells via cell signaling. An inverse relationship between the consumption of vegetable diets and the risk of cancer has been established. In the present study, Star anise (Illicium verum), which is a commonly used condiment in Indian cuisine, was assessed for its anti-carcinogenic potential in N-nitrosodiethylamine (NDEA) initiated and phenobarbital (PB) promoted hepato-carcinogenesis. Rats were randomly selected for eight experimental groups. The carcinogenesis was induced by injecting the rats, with a single dose of NDEA (200 mg/kg body weight) intraperitoneally as initiator, followed by promotion with PB (0.05%) in drinking water for 14 consecutive weeks. The treatment with NDEA increased liver weight, while Star anise (Star) treatment reduced the liver weight of rats. The treatment with Star throughout for 20 weeks or during the promotion stage (6-20 weeks) significantly reduced the nodule incidence and nodule multiplicity in the rats, while the treatment with Star at the initiation phase (first 4 weeks) only could not reduce these parameters. The treatment with Star for 20 consecutive weeks significantly reduced the nodule size and nodule volume. The treatment with Star throughout as well as at the promotion stage lowered the lipid peroxidation (LPO) in liver and erythrocytes, while the LPO was not lowered, when Star was administered during initiation stage only. The treatment with Star restored the liver and erythrocyte super-oxide dismutase (SOD) activities to normal in the carcinogenesis-induced rats. The liver catalase (CAT) activity increased in all the treated groups. The erythrocyte CAT activity increased in the rats treated with Star during initiation and promotion stage only. The liver glutathione (GSH) level increased significantly in the groups treated with Star. The erythrocyte GSH level was lowered in the rats treated with NDEA and PB, however, Star treatment helped in increasing the erythrocyte GSH level to some extent. The liver and erythrocyte glutathione-S-transferase (GST) activity increased in all the groups treated with NDEA and PB. The treatment with Star decreased GST level significantly. These results indicate that the treatment with Star reduces the tumor burden, lowers oxidative stress and increases the level of phase II enzymes, which may contribute to its anti-carcinogenic potential.  相似文献   

19.
Hepatic gap junctions in the hepatocarcinogen-resistant DRH rat   总被引:1,自引:1,他引:0  
Although the gap junction or connexin (Cx) is considered to be a tumor-suppressor, it is also required for tumor promotion. Therefore, we examined hepatic gap junctions in hepatocarcinogen-resistant (DRH) rats. Specifically, we investigated gap junction structure and Cx32 expression during normal conditions and in response to a hepatocarcinogen, 3'-methyl-4-dimethylaminoazobenzene (3'-MeDAB). On a basal diet without 3'-MeDAB, hepatic gap junctions and Cx32 protein expression were greater in DRH rats than in control Donryu rats, as evidenced by morphometry, immunohistochemistry and immunoblotting. On a diet containing 3'-MeDAB, gap junctions and expressed Cx32 were increased significantly in Donryu rats, but not in DRH rats. In this condition, Donryu rats lost weight but DRH rats increased relative liver weight. After 3'-MeDAB treatment, cathepsin D expression in hepatocytes was significantly increased only in Donryu rats, indicating that DRH rats were less susceptible to 3'-MeDAB. The abundance of mitogen-activated protein kinase, some constituent of which might be associated with the degree of Cx protein phosphorylation, was reduced to a greater extent in Donryu than in DRH rats after 3'-MeDAB treatment. The resistance of DRH rats to carcinogenesis may be due partially to their stabilized gap junctions, which could coordinate metabolic coupling to evade 3'-MeDAB toxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号