首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解种间关系对沉水植物群落结构的影响,在不同光照(20%自然光和50%自然光)和不同物种组合下,研究了长江中下游常见优势沉水植物苦草(Vallisneria natans)与黑藻(Hydrilla verticillata)和穗状狐尾藻(Myriophyllum spicatum)的相互作用。结果表明,在低光下,苦草与穗状狐尾藻混种时,苦草生物量、株高和叶数均没有明显变化,当穗状狐尾藻的比例较高时,苦草根长生长受到抑制,根叶比呈下降趋势;在高光下,穗状狐尾藻比例的增加会促进苦草单株生物量和叶生物量的增加,而对苦草株高、根长和叶数无显著影响;与黑藻混种相比,苦草与穗状狐尾藻混种时,苦草的株高、根长和叶数均无显著差异,而苦草的单株生物量和叶生物量均呈降低趋势。因此,物种组合和混种比例均会影响苦草与其他物种的相互作用关系,进而影响沉水植被的群落动态。  相似文献   

2.
With ecosystems increasingly supporting multiple invasive species, interactions among invaders could magnify or ameliorate the undesired consequences for native communities and ecosystems. We evaluated the individual and combined effects of rusty crayfish (Orconectes rusticus) and Chinese mystery snails [Bellamya (=Cipangopaludina) chinensis] on native snail communities (Physa, Helisoma and Lymnaea sp.) and ecosystem attributes (algal chlorophyll a and nutrient concentrations). Both invaders are widespread in the USA and commonly co-occur within northern temperate lakes, underscoring the importance of understanding their singular and joint effects. An outdoor mesocosm experiment revealed that while the two invaders had only weakly negative effects upon one another, both negatively affected the abundance and biomass of native snails, and their combined presence drove one native species to extinction and reduced a second by >95%. Owing to its larger size and thicker shell, adult Bellamya were protected from crayfish attack relative to native species (especially Physa and Lymnaea), suggesting the co-occurrence of these invaders in nature could have elevated consequences for native communities. The per capita impacts of Orconectes (a snail predator) on native snails were substantially greater than those of Bellamya (a snail competitor). Crayfish predation also had a cascading effect by reducing native snail biomass, leading to increased periphyton growth. Bellamya, in contrast, reduced periphyton biomass, likely causing a reduction in growth by native lymnaeid snails. Bellamya also increased water column N:P ratio, possibly because of a low P excretion rate relative to native snail species. Together, these findings highlight the importance of understanding interactions among invasive species, which can have significant community- and ecosystem-level effects.  相似文献   

3.
The relationships between producers (e.g., macrophytes, phytoplankton and epiphytic algae) and snails play an important role in maintaining the function and stability of shallow ecosystems. Complex relationships exist among macrophytes, epiphytic algae, phytoplankton, and snails. We studied the effects of snail communities (consisting of Radix swinhoei, Hippeutis cantori, Bellamya aeruginosa, and Parafossarulus striatulus) on the biomass of phytoplankton and epiphytic algae as well as on the growth of three species of submerged macrophytes (Hydrilla verticillata, Vallisneria natans, and one exotic submerged plant, Elodea nuttallii) in a 90‐day outdoor mesocosm experiment conducted on the shore of subtropical Lake Liangzihu, China. A structural equation model showed that the snail communities affected the submerged macrophytes by grazing phytoplankton and epiphytic algae (reduction in phytoplankton Chl‐a and epiphytic algal abundance), enhancing the biomass of submerged macrophytes. Highly branched macrophytes with high surfaces and morphologies and many microhabitats supported the most snails and epiphytic algae (the biomass of the snail communities and epiphytic algae on Hverticillata was greater than that on Vnatans), and snails preferred to feed on native plants. Competition drove the snails to change their grazing preferences to achieve coexistence.  相似文献   

4.
沉水植物化感作用对西湖湿地浮游植物群落的影响   总被引:5,自引:0,他引:5  
通过微宇宙实验,在控制光照和营养盐浓度的条件下分别研究了苦草(Vallisneria spiralis)、金鱼藻(Ceratophyllum demersum)和穗花狐尾藻(Myriophyllum spicatum)的化感作用对采集于杭州西湖湖西湿地的藻类密度、叶绿素a浓度、群落结构、多样性指数等的影响。其结果表明,3种沉水植物对微宇宙系统中的藻类都具有明显影响,藻类密度与叶绿素a浓度受到显著抑制,3个草-藻研究系统中藻类群落结构都发生了变化。在实验末期苦草组、金鱼藻组和穗花狐尾藻组中藻类总生物量(以细胞密度计)分别较初始值降低了37.06%、78.37%和83.40%。栅藻对3种沉水植物的化感作用敏感性较弱。藻类生物多样性方面,穗花狐尾藻系统中最高,其次是金鱼藻组,最后是苦草组,其Shannon-Wiener指数(H)分别为2.76、2.06和0.72,穗花狐尾藻组中H的显著高于苦草组(P0.05)。  相似文献   

5.

Aim

Decreasing in the diversity and distribution of native submerged plants have been widely observed in recent decades. Global underwater darkening, which is mainly caused by radiation dimming and a decrease in transparency due to, e.g. eutrophication, has emerged as a general trend that strongly hampers the growth of submerged plants in lakes by decreasing the light available for photosynthesis. However, few studies have attempted to compare the responses of native and invasive submerged plants to underwater darkening. In this study, we aimed to compare the effects of light attenuation on the growth and photosynthesis traits of native and invasive submerged plants.

Location

East China.

Method

Through field investigations and a mesocosm experiment, the responses of functional traits of two representative native [water thyme (Hydrilla verticillata), Eurasian watermilfoil (Myriophyllum spicatum)] and one invasive [Carolina fanwort (Cabomba caroliniana)] plant species to various environmental factors, notably to underwater light attenuation, were studied.

Results

Underwater photosynthetically active radiation (PAR) exerted a substantial effect on the relative coverage and abundance of the three studied submerged plants in their natural freshwater habitats. Invasive C. caroliniana showed relatively superior growth (total biomass and relative growth rate) and photosynthesis traits (maximum quantum yield of photosystem II Fv/Fm, chlorophyll a content, chlorophyll b content and the ratio of Chl a and b contents) compared to the two native plants under low underwater PAR conditions. In contrast, under high underwater PAR conditions, C. caroliniana showed the opposite response.

Main Conclusions

Light attenuation inhibits the growth of native submerged plants but facilitates the growth of invasive plant species. Restoration of freshwater lakes by reducing deterioration from underwater darkening (for instance, by reducing of external nutrients loading) may therefore constrain the growth and spread of the invasive C. caroliniana.  相似文献   

6.
Dong Xie  Dan Yu 《Hydrobiologia》2011,658(1):221-231
Size-related asexual reproduction of submersed macrophytes is still poorly understood. Here, we investigate how size-related auto-fragmentation in Myriophyllum spicatum L. responds to sediment nutrients and plant density. An experiment was carried out with sediments containing two different nutrient levels and with two levels of plant density. The results show that sediment nutrients and plant density brought about a strong dependency of auto-fragment production and the amount of total non-structural carbohydrate (TNC) storage in auto-fragments on individual plant size (total plant biomass). However, these two factors acted differently on size dependency. Sediment nutrients positively affected auto-fragment production and the amount of TNC in auto-fragments of M. spicatum. High concentrations of sediment nutrients significantly increased these two traits in absolute value and the value relative to plant size. Although the auto-fragment biomass and the amount of TNC in auto-fragments did not differ between density treatments when plant size was considered, the absolute values of these two traits were much larger in the low plant density treatment than in the high plant density treatment, which suggested an indirect negative effect of plant density on the auto-fragmentation of M. spicatum. In addition, higher percentages of large auto-fragments (>100 mg) were produced by plants that grew in nutrient poor sediment and low plant density environment than plants in nutrient rich sediment and high plant density environment. These results do not solely highlight a size-dependent effect, but also a size-independent effect of auto-fragment production and the amount of TNC in auto-fragments of M. spicatum. Furthermore, such size-independent effects can be explained by the significant biomass partitioning differences and the similar TNC-concentrations in auto-fragments under different environmental conditions.  相似文献   

7.
1. Recent experimental and field studies on temperate shallow lakes indicate that nitrogen may play a greater role in their functioning than previously thought. Several studies document that abundance and richness of submerged macrophytes, both central in shallow lake ecology, may decrease with increasing nitrogen loading, especially at high phosphorus levels. However, the role of nitrogen in warm lakes with fluctuating water regimes remains to be described in detail. 2. The effect of increasing nitrate and phosphate concentrations on submerged macrophyte growth was examined in a 3‐month mesocosm experiment conducted in summer in a shallow freshwater lake on the north western coast of Turkey with a Mediterranean climate. Twenty four field mesocosms, open to the sediment and atmosphere, were stocked with Myriophyllum spicatum shoots and small cyprinid fish. Three nitrate loadings in combination with two phosphate loadings were applied in a fourfold replicated design. 3. Mean ± SD nutrient concentrations maintained throughout the experiment were 0.55 ± 0.17, 2.2 ± 0.97, 9.2 ± 5.45 mg L?1 total nitrogen and 55 ± 19.2, 73 ± 22.9 μg L?1 total phosphorus. Mean periphyton biomass increased with increasing nutrient concentrations and peaked at the highest nitrogen and phosphorus loadings, while the mean phytoplankton biomass remained relatively low in all treatments. 4. Percent volume inhabited (% PVI) by macrophytes throughout the experiment and total macrophyte biomass at the end of the experiment did not differ among treatments. In addition to stocked M. spicatum, Ceratophyllum demersum and Potamogeton crispus appeared in the majority of the mesocosms. The plants grew continuously up to 50% PVI throughout the experiment and remained resilient to shading provided by periphyton and phytoplankton. 5. The mean summer air temperature in 2007 was 2.2 °C higher than the average of the last 32 years, which resulted in a water level decrease of 0.3 m in the mesocosms over three months. This might have counteracted the shading of submerged macrophytes provided by phytoplankton and periphyton. The results of the experiment are consistent with observations of higher macrophyte resilience to nutrient loading in Mediterranean lakes compared with northern temperate lakes.  相似文献   

8.
Zhonghua Wu  Dan Yu 《Hydrobiologia》2004,527(1):241-250
Two experiments were designed to investigate the effects of competition on growth and biomass allocation in Nymphoides peltata. First, competition between N. peltata and Zizania latifolia was assigned with the densities of N. peltata to Z. latifolia ratios of 4:0, 4:2, 4:4 and 4:8. The increase of density of Z. latifolia resulted in apparent decrease of total biomass, relative growth rate (RGR), leaf area ratio (LAR) and mean leaf area per plant of N. peltata. N. peltata allocated above-ground biomass to shoots and roots and decreased the ratios of above-ground to below-ground biomass (A b/B b) with increasing density of Z. latifolia. Second, competitions between N. peltata and emerged Z. latifolia, floating-leavedTrapa bispinosa and submerged Myriophyllum spicatum were studied in the mean time. Total biomass, A b/B b and mean leaf area per plant of N. peltata were higher when competing with floating-leaved T. bispinosa than in N. peltata growing in the community with submerged M. spicatum and emerged Z. latifolia. There were no significant differences in RGR, net assimilation rate (NAR) and LAR of N. peltata when growing with each of the competitor species. Our studies indicate that the growth of N. peltata is strongly inhibited by the presence of Z. latifolia, and N. peltata can show certain competitive advantages over T. bispinosa and M. spicatum.  相似文献   

9.
Invasive species are often hypothesized to have superior performance traits. We compared stress tolerance (as change in biomass) of the invasive macroalgae Codium fragile ssp. tomentosoides and Gracilaria vermiculophylla to the native macroalgae Fucus vesiculosus, Agardhiella subulata, Hypnea musciformis and Ulva curvata in Hog Island Bay, a shallow lagoon in Virginia, USA. We hypothesized that the success of the two aliens is due to their high tolerances of turbidity, sedimentation, desiccation, grazing and nutrient enrichment. Like many lagoons, Hog Island Bay is characterized by extensive intertidal mudflats, high turbidity and sedimentation, and high densities of omnivorous mud snails. Nutrient enrichment may also become a problem as land use practices in adjacent watersheds change. Contrary to our hypothesis, C. fragile was less resistant to sedimentation, desiccation and grazing than other algae and had low growth at all light and nutrient levels. This suggests that any superior performance of this invasive species compared to native algae is probably limited to microhabitats where stress is minimal and where bivalve shells facilitate recruitment and long-term persistence. In contrast, G. vermiculophylla was resistant to desiccation, burial and grazing, and was not negatively influenced by either high or low light or nutrient levels. These traits reflect the current success of G. vermiculophylla in already invaded lagoons and estuaries, and indicates that it will likely continue its spread in European and North American turbid and tidal soft-sediment systems.  相似文献   

10.
Nomenclature: follows Flora Europea (Tutin et al. 1964–1980). Since the extension of the irrigation system, the water regime of most of the permanent marshes of the Camargue (southern France) have been intensively controlled. Considerable quantities of nutrient rich Rhone water are pumped into these marshes, leading to lower salinities and a higher biomass production and consequently an increasing organic matter concentration of the sediments. Myriophyllum spicatum has become abundant in these permanent marshes since large quantities of freshwater entered these systems. It has displaced Potamogeton pectinatus in several of these marshes. The different factors likely to influence the distribution of P. pectinatus and M. spicatum were investigated experimentally. The impact of Cl- concentrations between 0 and 6 g l-1 on the biomass production of both species was tested. P. pectinatus appears to be more salt tolerant than M. spicatum. The influence of sediment quality on the biomass production of both species was investigated using six sediments differing in organic matter concentration. Compared to P. pectinatus, M. spicatum had a lower total biomass production when grown on sediments with low organic matter concentration (2–4% organic matter) and a higher biomass production on sediments with relatively high organic matter concentration (9–13% organic matter).Nitrogen addition to the sediments yielded an increased biomass production of P. pectinatus and M. spicatum. On some sediments M. spicatum needed higher concentrations of nitrogen than P. pectinatus to increase its biomass production.The creation of freshwater marshes by the introduction of irrigation water, resulting in lower salinities and an increase in sediment organic matter concentration, stimulates the biomass production of M. spicatum.As M. spicatum grows less well on poor sediments and at higher salinities it seems to be unable to displace P. pectinatus in more natural systems in the Camargue.  相似文献   

11.
Submerged macrophytes play a key role in maintaining a clear‐water phase and promoting biodiversity in shallow aquatic ecosystems. Since their abundance has declined globally due to anthropogenic activities, it is important to include them in aquatic ecosystem restoration programs. Macrophytes establishment in early spring is crucial for the subsequent growth of other warm‐adapted macrophytes. However, factors affecting this early establishment of submerged macrophytes have not been fully explored yet. Here, we conducted an outdoor experiment from winter to early spring using the submerged macrophytes Potamogeton crispus and Vallisneria spinulosa to study the effects of shading, nutrient loading, snail herbivory (Radix swinhoei), and their interactions on the early growth and stoichiometric characteristics of macrophytes. The results show that the effects strongly depend on macrophyte species. Biomass and number of shoots of P. crispus decreased, and internode length increased during low light conditions, but were not affected by nutrient loading. P. crispus shoot biomass and number showed hump‐shaped responses to increased snail biomass under full light. In contrast, the biomass of the plant linearly decreased with snail biomass under low light. This indicates an interaction of light with snail herbivory. Since snails prefer grazing on periphyton over macrophytes, a low density of snails promoted growth of P. crispus by removing periphyton competition, while herbivory on the macrophyte increased during a high density of snails. The growth of V. spinulosa was not affected by any of the factors, probably because of growth limitation by low temperature. Our study demonstrates that the interaction of light with snail herbivory may affect establishment and growth of submerged macrophytes in early spring. Macrophyte restoration projects may thus benefit from lowering water levels to increase light availability and making smart use of cold‐adapted herbivores to reduce light competition with periphyton.  相似文献   

12.
Question: Invasive alien plants can affect biomass production and rates of biogeochemical cycling. Do the direction and intensity of such effects depend upon the functional traits of native and alien species and upon the properties of the invaded habitat, with the same alien species having differing impacts in different habitats? Location: Lowlands of Switzerland. Methods: Fourteen grassland and wetland sites invaded by Solidago gigantea and widely differing in biomass production and soil P availability were surveyed. To determine whether the impact of the species was related to site fertility, we compared the invaded and native vegetation in terms of biomass, species composition, plant traits and soil properties. Results: S. gigantea generally increased the above‐ground biomass production of the vegetation and soil C content, while reducing nutrient concentrations in biomass and N availability in the soil. However, it had no significant effect on plant species richness, soil respiration, soil pH and P availability. Leaves of S. gigantea had a greater C content than those of native species; other leaf traits and root phosphatase activity did not differ significantly. Conclusions: Our results suggest that a conservative nutrient‐use strategy allows S. gigantea to invade a broad range of habitats. The observed effects of invasion did not vary according to biomass production of the invaded sites, but some effects did depend on soil P availability, being more pronounced at more P‐rich sites. Thus, the full range of invaded habitats should be considered in studying the potential impact of plant invasions on ecosystem processes.  相似文献   

13.
The aim of study was to bring out changes in the macrophyte vegetation, caused by eutrophication, short-term lowering of the water level and the following restoration of equilibrium in L. Verevi. Also biomass and N and P content of shoots of main submergent species were studied in 1999–2001, to follow the temporal and specific differences. Due to strong eutrophication, the type of the lake changed from a Myriophyllum-Potamogeton-Charophyta lake to a Ceratophyllum-Lemna trisulca lake in 1984–1988, obviously owing to the formation of loose organic-rich sediment. Water lowering by 0.7 m during summer months of 1998 facilitated mineralization of sediments, as a consequence of which a mass development of Ranunculus circinatus and a temporary increase in the abundance and biomass of other nutrient-demanding species took place during following years. Our data suggest differences in nutrient supply and release of submerged species and the need for more species-related approach to this group. The problem of nutrient supply of unrooted plants at the time of stratification arises. Regarding the increase of biomass of Ceratophyllum demersum in second half of summer, we suppose that one part of nutrients for this growth may derive from freshly decayed filamentous algae or vascular plants.  相似文献   

14.
树栖腹足类动物是红树林底栖动物的重要组成部分,其组成和分布受到红树植被的影响。因此,在红树林生态修复中,腹足类动物的恢复依赖于植被的发育。滨螺科(Littorinidae)锥滨螺属(Mainwaringia)动物是亚洲红树林的广布种,但针对其在红树林中的分布及种群特征的研究较少,对红树林植被恢复过程中锥滨螺属动物的恢复动态更是鲜有研究。调查了厦门下潭尾湿地秋茄(Kandelia obovata)红树林恢复初期,新记录种莱氏锥滨螺(Mainwaringia leithii)种群恢复的时间动态,并分析其与植被参数的关系。研究发现,红树林恢复初期,秋茄植被生长迅速,株高、冠幅、基径和覆盖度分别由0.5年生幼林的41.3 cm、25.0 cm、1.04 cm和25%增长为8年生样地的179.2 cm、76.7 cm、5.96 cm和95%。在秋茄胚轴种植6个月左右开始记录到莱氏锥滨螺的个体,其密度和生物量在1.5 a后达到最大(分别为136个/m2和1.86 g/m2),而后逐渐降低,种植3 a后秋茄林内莱氏锥滨螺仅零星分布。除8年生的样地,莱氏锥滨...  相似文献   

15.
Allelopathic inhibition of epiphytes by submerged macrophytes   总被引:1,自引:0,他引:1  
The hypothesis that epiphytes are more vulnerable to allelochemicals released by submerged macrophytes than phytoplankton was tested by measuring growth and photosystem (PS) II activity of three common epiphytic algae and cyanobacteria in coexistence with Myriophyllum spicatum using dialysis tubes. Results were compared with earlier experiments on planktonic species. Contrary to the planktonic species, the tested epiphytes, the green algae Stigeoclonium tenue, the diatom Gomphonema parvulum and the cyanobacterium Oscillatoria limosa, were not significantly inhibited by M. spicatum. Growth and PS II activity of O. limosa were even significantly enhanced by M. spicatum, but this effect disappeared under phosphorus-deficiency due to the allelopathically induced inhibition of the alkaline phosphatase activity or phosphorus leakage by the macrophytes. My findings of a lower vulnerability of epiphytes against allelopathic substances of submerged macrophytes are supported by results of a literature survey.  相似文献   

16.
Allelopathic effects of submerged macrophytes on the growth and photosynthesis of different unialgal cultures of planktonic cyanobacteria, a diatom, and a green alga were tested in coexistence experiments using dialysis cultures. The method applied allowed measurements under conditions similar to that in lakes but without nutrient and light limitation. Growth and photosynthesis were measured with a pulse amplitude modulated fluorometer as an increase of chl a fluorescence and activity of PSII, respectively. Eurasian water milfoil Myriophyllum spicatum L. and rigid hornwort Ceratophyllum demersum L. proved to inhibit the PSII activity and then growth of the investigated phytoplankton species, whereas sago pondweed Potamogeton pectinatus L. showed no effect. Growth inhibition was dependent on biomass of M. spicatum. Considerable differences between phytoplankton groups and among species of cyanobacteria were found regarding their response to M. spicatum. Members of the Oscillatoriales and Microcystis aeruginosa Kütz. emend. Elenkin were more sensitive than the cyanobacterium Aphanizomenon flos‐aquae Ralfs ex Born. et Flah., the diatom Stephanodiscus minutulus (Kütz) Cleve et Möller, and the green alga Scenedesmus armatus Chodat. A possible contribution of this result to changes in the phytoplankton succession of lakes after loss of macrophytes is discussed.  相似文献   

17.
The trace metal (Fe, Mn, Zn, Cu, Ni, Pb, Cd, Sr, and Cr) contents in the most common submerged and floating aquatic plants Ceratophyllum demersum L., Myriophyllum spicatum L., and Nymphoides flava Hill. of Provala Lake were evaluated. Considerable higher contents of iron, manganese, zinc, nickel, lead and strontium were found in submerged species than in the floating ones. The presence of cadmium and lead in plant tissues points to a certain degree of lake water pollution.  相似文献   

18.
Physiological integration may help clonal macrophytes invade or escape from existing communities. No studies have tested the above hypothesis in aquatic plants. In an outdoor pond experiment, we subjected clonal fragments of the submerged macrophyte Vallisneria spiralis L. to heterogeneous environments in which V. spiralis spread from bare habitats towards vegetated habitats occupied by Myriophyllum spicatum L. or V. spiralis spread from vegetated habitats towards bare habitats. V. spiralis stolons between ramets in bare habitats and in vegetated habitats were either intact or severed. We investigated the habitat selection of V. spiralis by examining the allocation of biomass and ramets to heterogeneous habitats during its vegetative spread phase. Results showed that the stolon connection had different effects on the habitat selection of V. spiralis with regard to invasion and escape. When V. spiralis spread from bare to vegetated habitats, in comparison to severing the stolon, the stolon connection eventually facilitated a 49% increase in biomass and a 27% increase in number of ramets allocated to vegetated habitats. However, when V. spiralis spread from vegetated to bare habitats, biomass and ramets allocated to bare habitats were not significantly changed by the stolon connection (only a 5% increase in biomass and a 6% increase in number of ramets). These results indicate that clonal integration facilitated V. spiralis not to escape from but invade into vegetated habitats. The study provides evidence that physiological integration is important for survival and tolerance of ramets in competitively stressful environments and can help clonal macrophytes coexist with other species.  相似文献   

19.
The presence of algae can greatly reduce the amount of light that reaches submerged macrophytes, but few experimental studies have been conducted to examine the effects of algae on biomass and structure of submerged macrophyte communities. We constructed communities with four submerged macrophytes (Hydrilla verticillata, Egeria densa, Ceratophyllum demersum, and Chara vulgaris) in three environments in which 0 (control), 50 and 100% of the water surface was covered by Spirogyra arcta. Compared to the control treatment, the 100% spirogyra treatment decreased biomass of the submerged macrophyte communities and of all the four macrophytes except C. demersum. Compared to the control and 50% treatments, the 100% treatment significantly increased relative abundance of C. demersum and decreased that of E. densa. Therefore, the presence of S. arcta can greatly affect the productivity and alter the structure of submerged macrophyte communities. To restore submerged macrophyte communities in conditions with abundant algae, assembling communities consisting of C. demersum or similar species may be a good practice.  相似文献   

20.
This study explores: (1) whether the abundance of macroinvertebrates differs between macrophytes differing in both morphological complexity and tolerance to nutrient enrichment; (2) whether the distribution of invertebrates between macrophytes is due to active habitat choice; and (3) whether invertebrates prefer structurally complex to simple macrophytes. Macroinvertebrate abundance was compared between two common soft-bottom plants of the Baltic Sea that are tolerant to eutrophication, Myriophyllum spicatum and Potamogeton pectinatus, and one common plant that is sensitive to eutrophication, Chara baltica. Both field sampling and habitat choice experiments were conducted. We recorded higher total macroinvertebrate abundance on the structurally complex M. spicatum than on the more simply structured P. pectinatus and C. baltica, but found no difference in macroinvertebrate abundance between P. pectinatus and C. baltica. In accordance with the field results, our experiment indicated that the crustacean Gammarus oceanicus actively chose M. spicatum over the other macrophytes. Besides, we found that G. oceanicus actively preferred complex to simply structured artificial plants, indicating that the animal distribution was at least partly driven by differences in morphological complexity between plant species. In contrast, the gastropod Theodoxus fluviatilis did not make an active habitat choice between the plants. Our findings suggest that human-induced changes in vegetation composition can affect the faunal community. Increased abundance of structurally complex macrophytes, for example, M. spicatum, can result in increased abundance of macroinvertebrates, particularly mobile arthropods that may actively choose a more structurally complex macrophyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号