首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A variety of cell surface adhesion molecules can exist as both transmembrane proteins and soluble circulating forms. Increases in the levels of soluble adhesion molecules have been correlated with a variety of inflammatory diseases, suggesting a pathological role. Although soluble forms are thought to result from proteolytic cleavage from the cell surface, relatively little is known about the proteases responsible for their release. In this report we demonstrate that under normal culture conditions, cells expressing vascular cell adhesion molecule 1 (VCAM-1) release a soluble form of the extracellular domain that is generated by metalloproteinase-mediated cleavage. VCAM-1 release can be rapidly simulated by phorbol 12-myristate 13-acetate (PMA), and this induced VCAM-1 shedding is mediated by metalloproteinase cleavage of VCAM-1 near the transmembrane domain. PMA-induced VCAM-1 shedding occurs as the result of activation of a specific pathway, as the generation of soluble forms of three other adhesion molecules, E-selectin, platelet-endothelial cell adhesion molecule 1, and intercellular adhesion molecule 1, are not altered by PMA stimulation. Using cells derived from genetically deficient mice, we identify tumor necrosis factor-alpha-converting enzyme (TACE or ADAM 17) as the protease responsible for PMA-induced VCAM-1 release, including shedding of endogenously expressed VCAM-1 by murine endothelial cells. Therefore, TACE-mediated shedding of VCAM-1 may be important for the regulation of VCAM-1 function at the cell surface.  相似文献   

2.
Preadipocyte factor 1 (Pref-1), an epidermal growth factor repeat containing transmembrane protein found in the preadipocytes, inhibits adipocyte differentiation in vitro and in vivo. Here, we examined the processing of membrane form of Pref-1A to release the 50-kDa soluble form that inhibits adipocyte differentiation. The ectodomain cleavage of Pref-1 is markedly enhanced by phorbol 12-myristate 13-acetate in a dose- and time-dependent manner. The basal and stimulated cleavage is inhibited by the broad metalloproteinase inhibitor GM6001, a fact that suggests that cleavage of membrane Pref-1A is dependent on a metalloproteinase. Next, we showed that release of soluble Pref-1A is inhibited by TAPI-0 and by a tissue inhibitor of metalloproteinase-3, TIMP-3, that can inhibit tumor necrosis factor alpha converting enzyme (TACE), but not by TIMP-1 or TIMP-2. On the other hand, overexpression of TACE increases Pref-1 cleavage to produce the 50-kDa soluble form. Furthermore, this cleavage was not detected in cells with TACE mutation or with TACE small interfering RNA. TACE-mediated shedding of Pref-1 ectodomain inhibits adipocyte differentiation of 3T3-L1 cells and in Pref-1-null mouse embryo fibroblasts transduced with Pref-1A. Identification of TACE as the major protease responsible for conversion of membrane-bound Pref-1 to the biologically active diffusible form provides a new insight into Pref-1 function in adipocyte differentiation.  相似文献   

3.
We examined the mechanism regulating intercellular cell adhesion molecule-1 (ICAM-1)-dependent monocyte transendothelial migration. Monocyte migration through endothelial cells expressing ICAM-1 alone was comparable to that of tumor necrosis factor-alpha-treated cells. Transmigration was reduced in ICAM-1 lacking the cytoplasmic tail and in tyrosine to alanine substitutions at Tyr-485 and Tyr-474. Tissue inhibitors of matrix metalloproteinases (TIMPs) -2 and -3 blocked transmigration, whereas TIMP-1 was ineffective. This profile suggested a role for membrane-type matrix metalloproteinases (MT-MMPs) in transmigration. Inhibitory antibodies and small interference RNA directed against MT1-MMP blocked transmigration, whereas overexpression of MT1-MMP in endothelial cells or monocytes promoted transmigration. MT1-MMP mediated the ectodomain cleavage of ICAM-1 that was blocked by TIMP-2 and -3. Overexpression of MT1-MMP rescued function in ICAM-1Y485A, and to a lesser extent in the cytoplasmic tail-deleted ICAM-1. In a binding assay, wild-type ICAM-1 bound to purified MT1-MMP while ICAM-1 mutants bound poorly. MT1-MMP co-localized with ICAM-1 at distinct structures in endothelial cells. MT1-MMP localization with cells expressing ICAM-1 mutations was reduced and diffused. These results indicate that the cytoplasmic tail of ICAM-1 regulates leukocyte transmigration through MT1-MMP interaction.  相似文献   

4.
The extracellular domains of many proteins, including growth factors, cytokines, receptors, and adhesion molecules, are proteolytically released from cells, a process termed "shedding." Tumor necrosis factor-alpha converting enzyme (TACE/ADAM-17) is a metalloprotease-disintegrin that sheds tumor necrosis factor-alpha and other proteins. To study the regulation of TACE-mediated shedding, we examined the effects of stimulation of cells on TACE localization and expression. Immunofluorescence microscopy revealed a punctate distribution of TACE on the surface of untreated cells, and stimulation of monocytic cells with lipopolysaccharide did not affect TACE staining. Phorbol 12-myristate 13-acetate (PMA), a potent inducer of shedding, decreased cell-surface staining for TACE. Surface biotinylation experiments confirmed and extended this observation; PMA decreased the half-life of surface-biotinylated TACE without increasing the turnover of total cell-surface proteins. Soluble fragments of TACE were not detected in the medium of cells that had down-regulated TACE, and TACE was not down-regulated when endocytosis was inhibited. Antibody uptake experiments suggested that cell-surface TACE was internalized in response to PMA. Surprisingly, a metalloprotease inhibitor prevented the PMA-induced turnover of TACE. Thus, PMA activates shedding and causes the down-regulation of a major "sheddase," suggesting that induced shedding may be regulated by a mechanism that decreases the amount of active TACE on the cell surface.  相似文献   

5.
Tumor necrosis factor-alpha converting enzyme (TACE/ADAM-17) is a metalloprotease disintegrin that cleaves a variety of membrane proteins, releasing ("shedding") their extracellular domains from cells. Most TACE-mediated shedding events occur at low basal rates that are enhanced by treatment of cells with a variety of stimuli. To study the mechanism of induced shedding, we developed a peptide-cleavage assay that measures the cellular TACE activity. In unstimulated cells, cleavage of a TNFalpha processing-site peptide was mediated mainly by enzymes other than TACE. However, stimulation of cells with phorbol-12-myristate-13-acetate (PMA) increased peptide cleavage in a TACE-dependent manner. PMA treatment did not increase the amount of TACE on the cell surface. Moreover, the cytoplasmic domain of TACE was not required for the induced activity. Based on these observations, induction of TACE-mediated shedding events occurs at least in part via an increase in the enzymatic activity of cellular TACE, independent of its cytoplasmic domain.  相似文献   

6.
Upon stimulation by histamine, human vascular endothelial cells (EC) shed a soluble form of tumour necrosis factor receptor 1 (sTNFR1) that binds up free TNF, dampening the inflammatory response. Shedding occurs through proteolytic cleavage of plasma membrane-expressed TNFR1 catalysed by TNF-α converting enzyme (TACE). Surface expressed TNFR1 on EC is largely sequestered into specific plasma membrane microdomains, the lipid rafts/caveolae. The purpose of this study was to determine the role of these domains in TACE-mediated TNFR1 shedding in response to histamine. Human umbilical vein endothelial cells derived EA.hy926 cells respond to histamine via H1 receptors to shed TNFR1. Both depletion of cholesterol by methyl-β-cyclodextrin and small interfering RNA knockdown of the scaffolding protein caveolin-1 (cav-1), treatments that disrupt caveolae, reduce histamine-induced shedding of membrane-bound TNFR1. Moreover, immunoblotting of discontinuous sucrose gradient fractions show that TACE, such as TNFR1, is present within low-density membrane fractions, concentrated within caveolae, in unstimulated EA.hy926 endothelial cells and co-immunoprecipitates with cav-1. Silencing of cav-1 reduces the levels of both TACE and TNFR1 protein and displaces TACE, from low-density membrane fractions where TNFR1 remains. In summary, we show that endothelial lipid rafts/caveolae co-localize TACE to surface expressed TNFR1, promoting efficient shedding of sTNFR1 in response to histamine.  相似文献   

7.
Proteolytic shedding is an important step in the functional down-regulation and turnover of most membrane proteins at the cell surface. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a multifunctional glycoprotein that has two Ig-like domains in its extracellular portion and functions in cell adhesion as an inducer of matrix metalloproteinase (MMP) expression in surrounding cells. Although the shedding of EMMPRIN is reportedly because of cleavage by metalloproteinases, the responsible proteases, cleavage sites, and stimulants are not yet known. In this study, we found that human tumor HT1080 and A431 cells shed a 22-kDa EMMPRIN fragment into the culture medium. The shedding was enhanced by phorbol 12-myristate 13-acetate and inhibited by TIMP-2 but not by TIMP-1, suggesting the involvement of membrane-type MMPs (MT-MMPs). Indeed, down-regulation of the MT1-MMP expression in A431 cells using small interfering RNA inhibited the shedding. The 22-kDa fragment was purified, and the C-terminal amino acid was determined. A synthetic peptide spanning the cutting site was cleaved by MT1-MMP in vitro. The cleavage site is located in the linker region connecting the two Ig-like domains. The N-terminal Ig-like domain is important for the MMP inducing activity of EMMPRIN and for cell-cell interactions, presumably through its ability to engage in homophilic interactions, and the 22-kDa fragment retained the ability to augment MMP-2 expression in human fibroblasts. Thus, the MT1-MMP-dependent cleavage eliminates the functional N-terminal domain of EMMPRIN from the cell surface, which is expected to down-regulate its function. At the same time, the released 22-kDa fragment may mediate the expression of MMPs in tumor tissues.  相似文献   

8.
9.
Ectodomain shedding of cell surface membrane-anchoring proteins is an important process in a wide variety of physiological events(1, 2). Tumor necrosis factor alpha (TNF-alpha) converting enzyme (TACE) is the first discovered mammalian sheddase responsible for cleavage of several important surface proteins, including TNF-alpha, TNF p75 receptor, L-selectin, and transforming growth factor-a. Phorbol myristate acetate (PMA) has long been known as a potent agent to enhance ectodomain shedding. However, it is not fully understood how PMA activates TACE and induces ectodomain shedding. Here, we demonstrate that PMA induces both reactive oxygen species (ROS) generation and TNF p75 receptor shedding in Mono Mac 6 cells, a human monocytic cell line, and l-selectin shedding in Jurkat T-cells. ROS scavengers significantly attenuated PMA-induced TNF p75 receptor shedding. Exogenous H2O2 mimicked PMA-induced enhancement of ectodomain shedding, and H2O2-induced shedding was blocked by TAPI, a TACE inhibitor. Furthermore, both PMA and H2O2 failed to cause ectodomain shedding in a cell line that lacks TACE activity. By use of an in vitro TACE cleavage assay, H2O2 activated TACE that had been rendered inactive by the addition of the TACE inhibitory pro-domain sequence. We presume that the mechanism of TACE activation by H2O2 is due to an oxidative attack of the pro-domain thiol group and disruption of its inhibitory coordination with the Zn++ in the catalytic domain of TACE. These results demonstrate that ROS production is involved in PMA-induced ectodomain shedding and implicate a role for ROS in other shedding processes.  相似文献   

10.
In this study, we present multiple lines of evidence to support a critical role for heparin-bound EGF (epidermal growth factor)-like growth factor (HB-EGF) and tumor necrosis factor-alpha-converting enzyme (TACE) (ADAM17) in the transactivation of EGF receptor (EGFR), ERK phosphorylation, and cellular proliferation induced by the 5-HT(2A) receptor in renal mesangial cells. 5-hydroxy-tryptamine (5-HT) resulted in rapid activation of TACE, HB-EGF shedding, EGFR activation, ERK phosphorylation, and longer term increases in DNA content in mesangial cells. ERK phosphorylation was attenuated by 1) neutralizing EGFR antibodies and the EGFR kinase inhibitor, AG1478, 2) neutralizing HB-EGF, but not amphiregulin, antibodies, heparin, or CM197, and 3) pharmacological inhibitors of matrix-degrading metalloproteinases or TACE small interfering RNA. Exogenously administered HB-EGF stimulated ERK phosphorylation. Additionally, TACE was co-immunoprecipitated with HB-EGF. Small interfering RNA against TACE also blocked 5-HT-induced increases in ERK phosphorylation, HB-EGF shedding, and DNA content. In aggregate, this work supports a pathway map that can be depicted as follows: 5-HT --> 5-HT(2A) receptor --> TACE --> HB-EGF shedding --> EGFR --> ERK --> increased DNA content. To our knowledge, this is the first time that TACE has been implicated in 5-HT-induced EGFR transactivation or in proliferation induced by a G protein-coupled receptor in native cells in culture.  相似文献   

11.
Tumor necrosis factor-alpha (TNFalpha), a potent pro-inflammatory cytokine, is released from cells by proteolytic cleavage of a membrane-anchored precursor. The TNF-alpha converting enzyme (TACE; a disintegrin and metalloprotease17; ADAM17) is known to have a key role in the ectodomain shedding of TNFalpha in several cell types. However, because purified ADAMs 9, 10, and 19 can also cleave a peptide corresponding to the TNFalpha cleavage site in vitro, these enzymes are considered to be candidate TNFalpha sheddases as well. In this study we used cells lacking ADAMs 9, 10, 17 (TACE), or 19 to address the relative contribution of these ADAMs to TNFalpha shedding in cell-based assays. Our results corroborate that ADAM17, but not ADAM9, -10, or -19, is critical for phorbol ester- and pervanadate-stimulated release of TNFalpha in mouse embryonic fibroblasts. However, overexpression of ADAM19 increased the constitutive release of TNFalpha, whereas overexpression of ADAM9 or ADAM10 did not. This suggests that ADAM19 may contribute to TNFalpha shedding, especially in cells or tissues where it is highly expressed. Furthermore, we used mutagenesis of TNFalpha to explore which domains are important for its stimulated processing by ADAM17. We found that the cleavage site of TNFalpha is necessary and sufficient for cleavage by ADAM17. In addition, the ectodomain of TNFalpha makes an unexpected contribution to the selective cleavage of TNFalpha by ADAM17: it prevents one or more other enzymes from cleaving TNFalpha following PMA stimulation. Thus, selective stimulated processing of TNFalpha by ADAM17 in cells depends on the presence of an appropriate cleavage site as well as the inhibitory role of the TNF ectodomain toward other enzymes that can process this site.  相似文献   

12.
Tumor necrosis factor-alpha converting enzyme (TACE or ADAM17) is a member of the ADAM (a disintegrin and metalloproteinase) family of type I membrane proteins and mediates the ectodomain shedding of various membrane-anchored signaling and adhesion proteins. TACE is synthesized as an inactive zymogen, which is subsequently proteolytically processed to the catalytically active form. We have identified the proprotein-convertases PC7 and furin to be involved in maturation of TACE. This maturation is negatively influenced by the phorbol ester phorbol-12-myristate-13-acetate (PMA), which decreases the cellular amount of the mature form of TACE in PMA-treated HEK293 and SH-SY5Y cells. Furthermore, we found that stimulation of protein kinase C or protein kinase A signaling pathways did not influence long-term degradation of mature TACE. Interestingly, PMA treatment of furin-deficient LoVo cells did not affect the degradation of mature TACE. By examination of furin reconstituted LoVo cells we were able to exclude the possibility that PMA modulates furin activity. Moreover, the PMA dependent decrease of the mature enzyme form is specific for TACE, as the amount of mature ADAM10 was unaffected in PMA-treated HEK293 and SH-SY5Y cells. Our results indicate that the activation of TACE by the proprotein-convertases PC7 and furin is very similar to the maturation of ADAM10 although there is a significant difference in the cellular stability of the mature enzyme forms after phorbol ester treatment.  相似文献   

13.
ICAM-1, a membrane-bound receptor, is released as soluble ICAM-1 in inflammatory diseases. To delineate mechanisms regulating ICAM-1 cleavage, studies were performed in endothelial cells (EC), human embryonic kidney (HEK)-293 cells transfected with wild-type (WT) ICAM-1, and ICAM-1 containing single tyrosine-to-alanine substitutions (Y474A, Y476A, and Y485A) in the cytoplasmic region. Tyrosine residues at 474 and 485 become phosphorylated upon ICAM-1 ligation and associate with signaling modules. Cleavage was assessed by using an antibody against the cytoplasmic tail of ICAM-1, which recognizes intact ICAM-1 and the 7-kDa membrane-bound fragment remaining after cleavage. Cleavage in HEK-293 WT cells was accelerated by phorbol ester PMA, whereas in EC it was induced by tumor necrosis factor-. In both cell types, a 7-kDa ICAM-1 remnant was detected. Tyrosine phosphatase inhibitors dephostatin and sodium orthovanadate augmented cleavage. PD-98059 (MEK kinase inhibitor), geldanamycin and PP2 (Src kinase inhibitors), and wortmannin (phosphatidylinositol 3-kinase inhibitor) dose-dependently inhibited cleavage in both cell types. SB-203580 (p38 inhibitor) was more effective in EC, and D609 (PLC inhibitor) mostly affected cleavage in HEK-293 cells. Cleavage was drastically decreased in Y474A and Y485A, whereas it was marginally reduced in Y476A. Surprisingly, phosphorylation was not detectable on the 7-kDa fragment of ICAM-1. These results implicate distinct pathways in the cleavage process and suggest a preferred signal transmission route for ICAM-1 shedding in the two cell systems tested. Tyrosine residues Y474 and Y485 within the cytoplasmic sequence of ICAM-1 regulate the cleavage process. ectodomain shedding; signaling; tyrosine phosphorylation  相似文献   

14.
Epithin/PRSS14, a type II transmembrane serine protease, plays critical roles in cancer metastasis. Previously, we have reported that epithin/PRSS14 undergoes ectodomain shedding in response to phorbol myristate acetate (PMA) stimulation. In this study, we show that transforming growth factor-β (TGF-β) induces rapid epithin/PRSS14 shedding through receptor mediated pathway in 427.1.86 thymoma cells. Tumor necrosis factor-α converting enzyme (TACE) is responsible for this shedding. Amino acid sequence encompassing the putative shedding cleavage site of epithin/PRSS14 exhibit strong homology to the cleavage site of l-selectin, a known TACE substrate. TACE inhibitor, TAPI-0 and TACE siRNA greatly reduced TGF-β-induced epithin/PRSS14 shedding. TGF-β treatment induces translocation of intracellular pool of TACE to the membrane where epithin/PRSS14 resides. These findings suggest that TGF-β induces epithin/PRSS14 shedding by mediating translocation of epithin/PRSS14 sheddase, TACE, to the membrane.  相似文献   

15.
The effects of several cytokines and phorbol myristate acetate (PMA) on LFA-1 and ICAM-1 expression on a human eosinophilic leukemia cell line, EoL-3, were investigated and compared with those of a human monocytic leukemia cell line, U937. EoL-3 cells expressed large amounts of LFA-1 and small amounts of ICAM-1, and their expression was regulated similarly in EoL-3 cells and U937 cells. Interferon-gamma (IFN-gamma) enhanced ICAM-1 expression but not LFA-1 expression, and PMA augmented both LFA-1 and ICAM-1 expression. IFN-gamma and PMA showed an additive effect on ICAM-1 expression. These results collectively suggest that expression of LFA-1 and ICAM-1 is regulated differently and that IFN-gamma and PMA regulate the expression through different mechanisms. PMA but not IFN-gamma induced homotypic adhesion of EoL-3 and U937 cells, suggesting that PMA but not IFN-gamma activated the adhesive function of these cells. Staurosporin, an inhibitor of protein kinases (PKs), partly suppressed IFN-gamma- and PMA-augmented expression of ICAM-1 on EoL-3 and U937 cells, but did not affect PMA-augmented LFA-1 expression, suggesting that staurosporin-sensitive PKs are involved in IFN-gamma- and PMA-augmented ICAM-1 expression but not in PMA-augmented LFA-1 expression. The role of protein kinase C (PK-C) in these mechanisms was not revealed because a PK-C inhibitor, H-7, did not show any definitive effect on IFN-gamma- and PMA-induced expression of LFA-1 and ICAM-1. Moreover, cyclic AMP (cAMP)- and cGMP-dependent pathways were not shown to be involved in the augmentation of the expression of these molecules.  相似文献   

16.
This study shows that the high affinity alpha-chain of the interleukin (IL)-15 receptor exists not only in membrane-anchored but also in soluble form. Soluble IL-15Ralpha (sIL-15Ralpha) can be detected in mouse sera and cell-conditioned media by enzyme-linked immunosorbent assay and by immunoprecipitation and Western blotting. This protein has a molecular mass of about 30 kDa because of the presence of a single N-glycosylation site, which is reduced to 26 kDa after N-glycosidase treatment. Transmembrane IL-15Ralpha is constitutively converted into its soluble form by proteolytic cleavage that involves tumor necrosis factor-alpha-converting enzyme (TACE), and this process is further enhanced by phorbol 12-myristate 13-acetate (PMA) stimulation. The hydroxamate GW280264X, which is capable of blocking TACE and the closely related disintegrin-like metalloproteinase 10 (ADAM10), effectively inhibited both spontaneous and PMA-inducible cleavage of IL-15Ralpha, whereas GI254023X, which preferentially blocks ADAM10, was ineffective. Overexpression of TACE but not ADAM10 in COS-7 cells enhanced the constitutive and PMA-inducible cleavage of IL-15Ralpha. Moreover, murine fibroblasts deficient in TACE but not ADAM10 expression exhibited a significant reduction in the spontaneous and inducible IL-15Ralpha shedding, whereas a reconstitution of TACE in these cells restored the release of sIL-15Ralpha, thereby suggesting that TACE-mediated proteolysis may represent a major mechanism for sIL-15Ralpha generation in mice. The existence of natural sIL-15Ralpha offers novel insights into the complex biology of IL-15 and envisages a new level for therapeutic intervention.  相似文献   

17.
Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology.  相似文献   

18.
19.
Intercellular adhesion molecule-1 (ICAM-1) on the surface of cultured umbilical vein and saphenous vein endothelial cells was upregulated between 2.5- and 40-fold by rIL-1, rTNF, LPS and rIFN gamma corresponding to up to 5 X 10(6) sites/cell. Endothelial cell ICAM-1 was a single band of 90 kD in SDS-PAGE. Purified endothelial cell ICAM-1 reconstituted into liposomes and bound to plastic was an excellent substrate for both JY B lymphoblastoid cell and T lymphoblast adhesion. Adhesion to endothelial cell ICAM-1 in planar membranes was blocked completely by monoclonal antibodies to lymphocyte function associated antigen-1 (LFA-1) or ICAM-1. Adhesion to artificial membranes was most sensitive to ICAM-1 density within the physiological range found on resting and stimulated endothelial cells. Adhesion of JY B lymphoblastoid cells, normal and genetically LFA-1 deficient T lymphoblasts and resting peripheral blood lymphocytes to endothelial cell monolayers was also assayed. In summary, LFA-1 dependent (60-90% of total adhesion) and LFA-1-independent basal adhesion was observed and the use of both adhesion pathways by different interacting cell pairs was increased by monokine or lipopolysaccharide stimulation of endothelial cells. The LFA-1-dependent adhesion could be further subdivided into an LFA-1/ICAM-1-dependent component which was increased by cytokines and a basal LFA-1-dependent, ICAM-1-independent component which did not appear to be affected by cytokines. We conclude that ICAM-1 is a regulated ligand for lymphocyte-endothelial cell adhesion, but at least two other major adhesion pathways exist.  相似文献   

20.
We examined the role of cytosolic phospholipase A2 (cPLA2) during human eosinophil adherence to ICAM-1- or VCAM-1-coated plates. IL-5-stimulated eosinophils adhered to ICAM-1 through the beta 2 integrin CD11b/CD18, while nonstimulated eosinophils did not. By contrast, nonstimulated eosinophils adhered to VCAM-1 through the beta 1-integrin VLA-4/CD29. Both IL-5-induced adhesion to ICAM-1 and spontaneous adhesion to VCAM-1 corresponded temporally to cPLA2 phosphorylation, which accompanied enhanced catalytic activity of cPLA2. The structurally unrelated cPLA2 inhibitors, arachidonyl trifluoromethylketone and surfactin, significantly inhibited eosinophil adhesion to ICAM-1 and VCAM-1 in a concentration-dependent manner. Inhibition of secretory PLA2, 5-lipoxygenase, or cyclooxygenase did not affect eosinophil adhesion. Addition of arachidonic acid to eosinophils after cPLA2 inhibition with arachidonyl trifluoromethylketone or surfactin did not reverse the blockade of adhesion to ICAM-1 or VCAM-1. However, CV-6209, a receptor-specific antagonist of platelet-activating factor, inhibited all integrin-mediated adhesion. The activated conformation of CD11b as identified by the mAb, CBRM1/5, as well as quantitative surface CD11b expression were up-regulated after IL-5 stimulation. However, cPLA2 inhibition neither prevented CBRM1/5 expression nor blocked surface Mac-1 up-regulation caused by IL-5. Our data suggest that cPLA2 activation and its catalytic product platelet-activating factor play an essential role in regulating beta 1 and beta 2 integrin-dependent adhesion of eosinophils. This blockade occurs even in the presence of up-regulated eosinophil surface integrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号