首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiology of p16INK4A-mediated G1 proliferative arrest   总被引:11,自引:0,他引:11  
Phosphorylation of the product of the retinoblastoma susceptibility gene (Rb) physiologically inactivates its growth-suppressive properties. Rb phosphorylation is mediated by cyclin-dependent kinases (CDKs), whose activity is enhanced by cyclins and inhibited by CDK inhibitors. p16INK4A is a member of a family of inhibitors specific for CDK4 and CDK6. p16INK4A is deleted and inactivated in a wide variety of human malignancies, including familial melanomas and pancreatic carcinoma syndromes, indicating that it is an authentic human tumor suppressor. Although one mechanism for its tumor suppression may be prevention of Rb phosphorylation, thereby causing G1 arrest, many normal cell types express p16INK4A, and are still able to traverse the cell cycle. In a search for other mechanisms, we have found that p16INK4A is required for p53-independent G1 arrest in response to DNA-damaging agents, including topoisomerase I and II inhibitors. Thus, like other tumor suppressors, p16INK4A plays an essential role in a DNA-damage checkpoint that leads to cell cycle arrest.  相似文献   

2.
Myogenic differentiation is characterized by permanent and irreversible cell cycle withdrawal and increased resistance to apoptosis. These functions correlate with changes in expression and activity of several cyclin-dependent kinase inhibitors, including p18, p21, and p27. In this study, we examined the requirements for p18, p21, and p27 in initiating growth arrest in multinucleated myotubes under differentiation conditions and in maintaining terminal arrest upon restimulation of differentiated myotubes with mitogenic signals. Under differentiation conditions, only p27(-/-) or p18(-/-)p27(-/-) myotubes are capable of reentering the cell cycle and synthesizing DNA at a very low frequency. Escape from cell cycle arrest was significantly greater in p18(-/-)p27(-/-) myotubes than in p27(-/-) myotubes. Stimulation of differentiated cultures with a mitogen-rich growth medium enhances p18(-/-)p27(-/-) myotube proliferation to encompass approximately half of the nuclei. p18(-/-)p21(-/-) and p21(-/-)p27(-/-) myotubes remain terminally arrested. Nuclei within individual restimulated p18(-/-)p27(-/-) myotubes can be found in all phases of the cell cycle, and a myotube can be multiphasic without any obvious deleterious effects. Increasing the time of differentiation or serum stimulation of p18(-/-)p27(-/-) myotubes neither increases the proliferation index of the myotube nuclei, nor does it alter the percentage of nuclei in each of the cell cycle phases. During the first 24 h of serum stimulation, the p18(-/-)p27(-/-) myotube nuclei that escape G0 arrest will rearrest in either S or G2 phase, without either mitosis or endoreplication. Apoptosis is increased in restimulated p18(-/-)p27(-/-) myotube nuclei, but is not specific for any cell cycle phase. These results suggest a collaborative role for p18 and p27 in initiating and maintaining G0 arrest during myogenic differentiation. While p18 and p27 appear to be essential in initiating G0 arrest in a proportion of postmitotic myotube nuclei, there must be another cell cycle inhibitor protein that functions with p18 and p27 in maintaining terminal arrest. We propose that the combined rate-limiting expressions of p18, p27, and this other inhibitor determine whether the myotube nuclei will remain postmitotic, or reenter the cell cycle, and if the nuclei escape G0 arrest, in which phase of the cell cycle the nuclei will ultimately rearrest.  相似文献   

3.
4.
Li J  Byeon IJ  Ericson K  Poi MJ  O'Maille P  Selby T  Tsai MD 《Biochemistry》1999,38(10):2930-2940
Since the structures of several ankyrin-repeat proteins including the INK4 (inhibitor of cyclin-dependent kinase 4) family have been reported recently, the detailed structures and the functional roles of the loops have drawn considerable interest. This paper addresses the potential importance of the loops of ankyrin-repeat proteins in three aspects. First, the solution structure of p18INK4C was determined by NMR, and the loop structures were analyzed in detail. The loops adapt nascent antiparallel beta-sheet structures, but the positions are slightly different from those in the crystal structure. A detailed comparison between the solution structures of p16 and p18 has also been presented. The determination of the p18 solution structure made such detailed comparisons possible for the first time. Second, the [1H,15N]HSQC NMR experiment was used to probe the interactions between p18INK4C and other proteins. The results suggest that p18INK4C interacts very weakly with dna K and glutathione S-transferase via the loops. The third aspect employed site-specific mutagenesis and functional assays. Three mutants of p18 and 11 mutants of p16 were constructed to test functional importance of loops and helices. The results suggest that loop 2 is likely to be part of the recognition surface of p18INK4C or p16INK4A for CDK4, and they provide quantitative functional contributions of specific residues. Overall, our results enhance understanding of the structural and functional roles of the loops in INK4 tumor suppressors in particular and in ankyrin-repeat proteins in general.  相似文献   

5.
6.
Cell cycle progression is under the control of cyclin-dependent kinases (cdks), the activity of which is dependent on the expression of specific cdk inhibitors. In this paper we report that the two cdk inhibitors, p27(Kip1) and p18(INK4c), are differently expressed and control different steps of human B lymphocyte activation. Resting B cells contain large amounts of p27(Kip1) and no p18(INK4c). In vitro stimulation by Staphylococcus aureus Cowan 1 strain or CD40 ligand associated with IL-10 and IL-2 induces a rapid decrease in p27(Kip1) expression combined with cell cycle entry and progression. In contrast, in vitro Ig production correlates with specific expression of p18(INK4c) and early G(1) arrest. This G(1) arrest is associated with inhibition of cyclin D3/cdk6-mediated retinoblastoma protein phosphorylation by p18(INK4c). A similar contrasting pattern of p18(INK4c) and p27(Kip1) expression is observed both in B cells activated in vivo and in various leukemic cells. Expression of p18(INK4c) was also detected in various Ig-secreting cell lines in which both maximum Ig secretion and specific p18(INK4c) expression were observed during the G(1) phase. Our study shows that p27(Kip1) and p18(INK4c) have different roles in B cell activation; p27(Kip1) is involved in the control of cell cycle entry, and p18(INK4c) is involved in the subsequent early G(1) arrest necessary for terminal B lymphocyte differentiation.  相似文献   

7.
8.
9.
Chen CJ  Makino S 《Journal of virology》2004,78(11):5658-5669
Mouse hepatitis virus (MHV) replication in actively growing DBT and 17Cl-1 cells resulted in the inhibition of host cellular DNA synthesis and the accumulation of infected cells in the G0/G1 phase of the cell cycle. UV-irradiated MHV failed to inhibit host cellular DNA synthesis. MHV infection in quiescent 17Cl-1 cells that had been synchronized in the G0 phase by serum deprivation prevented infected cells from entering the S phase after serum stimulation. MHV replication inhibited hyperphosphorylation of the retinoblastoma protein (pRb), the event that is necessary for cell cycle progression through late G1 and into the S phase. While the amounts of the cellular cyclin-dependent kinase (Cdk) inhibitors p21Cip1, p27Kip1, and p16INK4a did not change in infected cells, MHV infection in asynchronous cultures induced a clear reduction in the amounts of Cdk4 and G1 cyclins (cyclins D1, D2, D3, and E) in both DBT and 17Cl-1 cells and a reduction in Cdk6 levels in 17Cl-1 cells. Infection also resulted in a decrease in Cdk2 activity in both cell lines. MHV infection in quiescent 17Cl-1 cells prevented normal increases in Cdk4, Cdk6, cyclin D1, and cyclin D3 levels after serum stimulation. The amounts of cyclin D2 and cyclin E were not increased significantly after serum stimulation in mock-infected cells, whereas they were decreased in MHV-infected cells, suggesting the possibility that MHV infection may induce cyclin D2 and cyclin E degradation. Our data suggested that a reduction in the amounts of G1 cyclin-Cdk complexes in MHV-infected cells led to a reduction in Cdk activities and insufficient hyperphosphorylation of pRb, resulting in inhibition of the cell cycle in the G0/G1 phase.  相似文献   

10.
p18INK4C属于细胞周期蛋白激酶抑制剂,其突变或缺失与某些肿瘤的发生密切相关,如T细胞白血病,但目前关于p18调控T细胞发育及功能的研究还鲜有报道,其调控机制仍不明确.本研究利用p18基因敲除(p18KO)小鼠,系统地研究了胸腺中T细胞的早期发育及成熟T细胞的增殖和活化功能,并利用逆转录病毒的方法在Lin?造血干祖细胞上过表达p18,移植4个月后检测其对T细胞的影响.结果表明,p18的缺失对胸腺T细胞的早期发育影响不明显,但随着p18KO小鼠周龄的增加会促进CD4+CD8+双阳性T细胞的数量,此外,p18还通过影响CD3+成熟T细胞的细胞周期进程及IFN-?,GATA3,Tbx21和Foxp3等的表达增强脾脏T细胞的增殖和活化;进一步在造血干祖细胞上过表达p18后会影响T细胞的发育和成熟,进而纠正T细胞在数量上的异常.本研究阐释了p18在T细胞早期发育及后期活化中的调控机制,并证实可通过在干祖细胞水平改变p18的表达进而影响T细胞的分化,这对p18调控T细胞功能异常及参与T细胞白血病的发生提供了新的理论依据和重要的研究价值.  相似文献   

11.
Coccidia are obligate intracellular protozoan parasites responsible for human and veterinary diseases. Eimeria tenella, the aetiologic agent of caecal coccidiosis, is a major pathogen of chickens. In Toxoplasma gondii, some kinases from the rhoptry compartment (ROP) are key virulence factors. ROP kinases hijack and modulate many cellular functions and pathways, allowing T. gondii survival and development. E. tenella's kinome comprises 28 putative members of the ROP kinase family; most of them are predicted, as pseudokinases and their functions have never been characterised. One of the predicted kinase, EtROP1, was identified in the rhoptry proteome of E. tenella sporozoites. Here, we demonstrated that EtROP1 is active, and the N‐terminal extension is necessary for its catalytic kinase activity. Ectopic expression of EtROP1 followed by co‐immunoprecipitation identified cellular p53 as EtROP1 partner. Further characterisation confirmed the interaction and the phosphorylation of p53 by EtROP1. E. tenella infection or overexpression of EtROP1 resulted both in inhibition of host cell apoptosis and G0/G1 cell cycle arrest. This work functionally described the first ROP kinase from E. tenella and its noncanonical structure. Our study provides the first mechanistic insight into host cell apoptosis inhibition by E. tenella. EtROP1 appears as a new candidate for coccidiosis control.  相似文献   

12.
Li J  Poi MJ  Qin D  Selby TL  Byeon IJ  Tsai MD 《Biochemistry》2000,39(4):649-657
We report the first detailed structure-function analyses of p18INK4C (p18), which is a homologue of the important tumor suppressor p16INK4A (p16). Twenty-four mutants were designed rationally. The global conformations of the mutants were characterized by NMR, while the function was assayed by inhibition of cyclin-dependent kinase 4 (CDK4). Most of these mutants have unperturbed global structures, thus the changes in their inhibitory abilities can be attributed to the mutated residues. The important results are summarized as follows: (a) some residues at loops 1 and 2, but not 3, are important for the inhibitory function of p18, similar to the results for p16; (b) two residues at the first helix-turn-helix motif and two at the third are important for inhibition; (c) while the results generally agree with the prediction based on the crystal structures of p16-CDK6 and p19-CDK6 binary complexes, there are significant differences in a few residues, suggesting that the interactions in the binary complexes may not accurately represent the interactions in the ternary complexes (in the presence of cyclin D2); (d) most importantly, the extra loop of p18 appears to contribute to the function of p18, even though the crystal structure of the p19INK4D-CDK6 complex indicates no interactions involving this loop; (e) detailed analyses of the crystal structures and the functional results suggest that there are notable differences in the interactions between different members of the INK4 family and CDKs.  相似文献   

13.
Fucoxanthin, a natural carotenoid, has been reported to have antitumorigenic activity in mouse colon, skin and duodenum models. The present study was designed to evaluate the molecular mechanisms of fucoxanthin against colon cancer using the human colon adenocarcinoma cell lines. Fucoxanthin reduced the viability of WiDr cells in a dose-dependent manner accompanied by the induction of cell cycle arrest during the G0/G1 phase at 25 microM and apoptosis at 50 microM. Fucoxanthin at 25 microM inhibited the phosphorylation of the retinoblastoma protein (pRb) at Ser780 and Ser807/811 24 h after treatment without changes in the protein levels of the D-types of cyclin and cyclin-dependent kinase (cdk) 4, whose complexes are responsible for the phosphorylation of pRb at these sites. A cdk inhibitory protein, p21WAF1/Cip1 increased 24 h after the treatment with 25 microM of fucoxanthin, but not p27Kip1. In addition, the mRNA of p21WAF1/Cip1 also increased in a dose-dependent manner. According to the experiments using the isogenic human colon adenocarcinoma cell lines, fucoxanthin failed to induce G0/G1 arrest in the p21-deficient HCT116 cells, but not in HCT116 wild-type cells. All of these findings showed that fucoxanthin inhibited proliferation of colon cancer cells. The inhibitory mechanism is due to the cell cycle arrest during the G0/G1 phase mediated through the up-regulation of p21WAF1/Cip1, which may be related to the antitumorigenic activity.  相似文献   

14.
Studies have shown that polycystin-1, encoded by PKD1, the major ADPKD, may have a central role in regulating both apoptosis and proliferation, which could prevent the malignant transformation of affected cells. However, as a putative tumor suppressor, direct studies on the possibility that polycystin-1 may play a role in cancer cells' biological properties have not yet been reported. We have demonstrated that the apoptosis of cancer cells was induced by overexpression of polycystin-1. After transfection with polycystin-1, three cancer cell lines, HepG2, A549, and SW480, showed significantly increased apoptosis compared with the respective control groups. This was accompanied by cell cycle arrest at G(0)/G(1) phase, whereas cell proliferation was not significantly affected. Overexpression of polycystin-1 induces apoptosis in cancer cells, at least partially, through Wnt and a caspase-dependent pathway.  相似文献   

15.
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. The long-term effect of progestins on T-47D breast cancer cells is inhibition of cellular proliferation. This is accompanied by decreased G(1) cyclin-dependent kinase (CDK) activities, redistribution of the CDK inhibitor p27(Kip1) among these CDK complexes, and alterations in the elution profile of cyclin E-Cdk2 upon gel filtration chromatography, such that high-molecular-weight complexes predominate. This study aimed to determine the relative contribution of CDK inhibitors to these events. Following progestin treatment, the majority of cyclin E- and D-CDK complexes were bound to p27(Kip1) and few were bound to p21(Cip1). In vitro, recombinant His(6)-p27 could quantitatively reproduce the effects on cyclin E-Cdk2 kinase activity and the shift in molecular weight observed following progestin treatment. In contrast, cyclin D-Cdk4 was not inhibited by His(6)-p27 in vitro or p27(Kip1) in vivo. However, an increase in the expression of the Cdk4/6 inhibitor p18(INK4c) and its extensive association with Cdk4 and Cdk6 were apparent following progestin treatment. Recombinant p18(INK4c) led to the reassortment of cyclin-CDK-CDK inhibitor complexes in vitro, with consequent decrease in cyclin E-Cdk2 activity. These results suggest a concerted model of progestin action whereby p27(Kip1) and p18(INK4c) cooperate to inhibit cyclin E-Cdk2 and Cdk4. Since similar models have been developed for growth inhibition by transforming growth factor beta and during adipogenesis, interaction between the Cip/Kip and INK4 families of inhibitors may be a common theme in physiological growth arrest and differentiation.  相似文献   

16.
ECRG1 is a novel candidate of tumor suppressor gene identified from human esophagus. To study the biological role of ECRG1 gene, we performed a GAL4-based yeast two-hybrid screen of a human fetal liver cDNA library. Using the ECRG1 cDNA as bait, we identified two putative clones as associated proteins, Miz-1 and FLNA (Filamin A). The interaction of ECRG1 and Miz-1 was confirmed by glutathione-S-transferase (GST)-pull-down assays in vitro and co-immunoprecipitation experiments in vivo. ECRG1 was co-localized with Miz-1 in nucleus, as shown by confocal microscopy. Transfection of ECRG1 gene into the esophageal cancer (EC) cells inhibited cell proliferation and induced G1 phase arrest of cell cycle. In the co-transfection of ECRG1 and Miz-1 assays, we found inhibition of cell proliferation and G1/S phase in EC cells, but the levels of cell proliferation inhibition and G1/S phase arrest were more strongly compared with the transfection of ECRG1 or Miz-1 alone. In addition, the interaction of ECRG1 and Miz-1 could induce expression of P15(INK4b) gene in esophageal cancer 9706 (EC9706) cells. However, the transfection of ECRG1 or Miz-1 alone was not revealed the expressions of P15(INK4b) gene. When antisense ECRG1 interdicted expression of endogenous ECRG1 in Balb/c-3T3 cells, Transfection of Miz-1 couldn't induce P15(INK4b) expression. The results provide evidences that ECRG1 and Miz-1 in EC cells may be acting as a co-functional protein associated with regulation of cell cycle and induction of P15(INK4b) expression. It suggests that ECRG1 may inhibit tumor cell growth by affecting cell cycle, and that expression of P15(INK4b) may be likely to enhance G1 cell cycle arrest during the interaction of ECRG1 and Miz-1. The physical interaction of ECRG1 and Miz-1 may play an important role in carcinogenesis of EC.  相似文献   

17.
18.
ObjectivesKeloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids.Materials and MethodsWe evaluated the expression of PLK4 in keloids and adjacent normal skin tissue samples. Then, we established PLK4 knockdown and overexpression cell lines in keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), respectively, to investigate the roles of PLK4 in the regulation of proliferation, migration, invasion, apoptosis, and cell cycle in KFs. Centrinone B (Cen‐B), a highly selective PLK4 inhibitor, was used to inhibit PLK4 activity in KFs to evaluate the therapeutic effect on KFs.ResultsWe discovered that PLK4 was overexpressed in keloid dermal samples and KFs compared with adjacent normal skin samples and NFs derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by Cen‐B suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase in vitro.ConclusionsThese findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.

Keloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids. Here, we discovered that PLK4 is a potential target for the treatment of keloids. PLK4 was overexpressed in keloid dermal samples and keloid fibroblasts (KFs) compared with adjacent normal skin samples and normal skin fibroblasts derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by a highly selective inhibitor, centrinone B (Cen‐B), suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase via the p53/p21/Cyclin D1 pathway in vitro. These findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.  相似文献   

19.
We have developed a series of novel photosensitizers which have potential for anticancer photodynamic therapy (PDT). Photosensitizers include zinc phthalocyanine tetra-sulphonic acid and a family of derivatives with amino acid substituents of varying alkyl chain length and degree of branching. Subcellular localization of these photosensitizers at the phototoxic IC(50) concentration in human cervical carcinoma cells (SiHa Cells) was similar to that of the lysosomal dye Lucifer Yellow. Subsequent nuclear relocalization was observed following irradiation with 665nm laser light. The PDT response was characterized using the Sulforhodamine B cytotoxicity assay. Flow cytometry was used for both DNA cell cycle and dual Annexin V-FITC/propidium iodide analysis. Phototoxicity of the derivatives was of the same order of magnitude as for tetrasulphonated phthalocyanine but with an overall trend of increased phototoxicity with increasing amino acid chain length. Our results demonstrate cell death, inhibition of cell growth, and G(0)/G(1) cell cycle arrest during the phthalocyanine PDT-mediated response.  相似文献   

20.
Xiang T  Li L  Yin X  Yuan C  Tan C  Su X  Xiong L  Putti TC  Oberst M  Kelly K  Ren G  Tao Q 《PloS one》2012,7(1):e29783

Background

Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear.

Methodology/Principal Findings

We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90%) and 53 of 66 (80%) primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells.

Conclusions/Significance

UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号