首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Transforming growth factor beta (TGF-beta) activates Ras/MAPK signaling in many cell types. Because TGF-beta and BMP-2 exert similar effects, we examined if this signaling is stimulated by both factors and analyzed the relationship between this signaling and the Smads in osteoblasts. BMP-2 and TGF-beta stimulated Ras, MAPK, and AP-1 activities. The DNA binding activities of c-Fos, FosB/Delta FosB, Fra-1, Fra-2, and JunB were up-regulated whereas JunD activity was decreased. c-Fos, FosB/Delta FosB, and JunB were associated with Smad4. The stimulation of AP-1 by BMP-2 and TGF-beta was dependent on Smad signaling, and anti-Smad4 antibody interfered with AP-1 activity. Thus, BMP-2 and TGF-beta activate both Ras/MAPK/AP-1 and Smad signaling in osteoblasts with Smads modulating AP-1 activity. To determine the roles of MAPK in BMP-2 and TGF-beta function, we analyzed the effect of ERK and p38 inhibitors on the regulation of bone matrix protein expression and JunB and JunD levels by these two factors. ERK and p38 mediated TGF-beta suppression of osteocalcin and JunD as well as stimulation of JunB. p38 was essential in BMP-2 up-regulation of type I collagen, fibronectin, osteopontin, osteocalcin, and alkaline phosphatase activity whereas ERK mediated BMP-2 stimulation of fibronectin and osteopontin. Thus, ERK and p38 differentially mediate TGF-beta and BMP-2 function in osteoblasts.  相似文献   

5.
6.
7.
8.
9.
We examined by immunocytochemistry the localization of the AP-1 family proteins c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, and Fra-2 in rat incisor ameloblasts. Most of the antibodies against AP-1 family proteins, except for c-Fos-specific antibody, labeled ameloblast nuclei. The labeling intensity of the c-Jun, JunD, and Fra-2 antibodies was stronger than that of JunB, FosB, and Fra-1. Antibody reactivities of c-Jun, JunD, and Fra-2 were greatly enhanced during or after the transition zone. Furthermore, c-Jun antibodies labeled maturation ameloblasts in a cyclic pattern, which was correlated with ameloblast modulation. Disruption of ameloblast modulation by colchicine injection resulted in greatly decreased reactivity of the c-Jun antibody in the ameloblast nuclei of the maturation zone. Phospho-specific antibodies to c-Jun labeled ameloblast nuclei only weakly throughout the secretion, transition, and maturation zones. These results suggest that the stage-specific localization of AP-1 in ameloblasts is closely related to tooth enamel formation.  相似文献   

10.
11.
We demonstrated previously that c-Jun, JunB and c-Fos RNA were dysregulated in metastatic melanoma cells compared with normal human melanocytes. The purpose of this study was to evaluate the distribution in composition of AP-1 dimers in human melanoma pathogenesis. We investigated AP-1 dimer pairing in radial growth phase-like (RGP) (w3211) and vertical growth phase-like (VGP) (w1205) human melanoma cells and metastatic cell lines (cloned from patients, c83-2c, c81-46A, A375, respectively) compared with melanocytes using electrophoretic mobility shift assay (EMSA), Western blot and transfection analyses. There are progressive variations in AP-1 composition in different melanoma cell lines compared with normal melanocytes, in which c-Jun, JunD and FosB were involved in AP-1 complexes. In w3211, c-Jun, JunD and Fra-1 were involved in AP-1 binding, while in w1205, overall AP-1 binding activity was decreased significantly and supershift binding was detected only with JunD antibodies. In metastatic c81-46A and A375 cells, only JunD was involved in AP-1 binding activity, but in a third (c83-2c) c-Jun, JunD and Fra-1 were present. Western blot evaluation detected c-Jun in melanocytes and w3211, but this component was decreased significantly or was not detectable in w1205, c81-46A and A375 cells. In contrast, JunD protein was elevated in c81-46A and c83-2c cells compared with melanocytes and RGP and VGP cell lines. Normal melanocytes and c83-2c cells (which have c-Jun involved in AP-1 binding), transfected with c-Jun antisense and treated with cisplatin, showed higher viability compared with untransfected cells, while in c81-46A cells (in which only JunD is detectable) no change in cell viability was observed following treatment with cisplatin and c-jun antisense transfection. A dominant-negative c-Jun mutant (TAM67) significantly increased the soft agar colony formation of w3211 and c83-2c cells. These results suggest that components of AP-1, especially c-Jun, may offer a new target for the prevention or treatment of human melanoma progression.  相似文献   

12.
Deletion analysis of the human PRL promoter in endometrial stromal cells decidualized in vitro revealed a 536-bp enhancer located between nucleotide (nt) -2,040 to -1,505 in the 5'-flanking region. The 536-bp enhancer fragment ligated into a thymidine kinase (TK) promoter-luciferase reporter plasmid conferred enhancer activity in decidual-type cells but not nondecidual cells. DNase I footprint analysis of decidualized endometrial stromal cells revealed three protected regions, FP1-FP3. Transfection of overlapping 100-bp fragments of the 536-bp enhancer indicated that FP1 and FP3 each conferred enhancer activity. Gel shift assays indicated that both FP1 and FP3 bind activator protein 1 (AP-1), and JunD and Fra-2 are components of the AP-1 complex in decidual fibroblasts. Mutation of the AP-1 binding site in either FP1 or FP3 decreased enhancer activity by approximately 50%, while mutation of both sites almost completely abolished activity. Coexpression of the 536-bp enhancer and A-fos, a dominant negative to AP-1, decreased enhancer activity by approximately 70%. Conversely, coexpression of Fra-2 in combination with JunD or c-Jun and p300 increased enhancer activity 6- to 10-fold. Introduction of JunD and Fra-2 into nondecidual cells is sufficient to confer enhancer activity. JunD and Fra-2 protein expression was markedly increased in secretory phase endometrium and decidua of early pregnancy (high PRL content) compared with proliferative phase endometrium (no PRL). These investigations indicate that the 5'-flanking region of the human PRL gene contains a decidua-specific enhancer between nt -2,040/-1,505 and AP-1 binding sites within this enhancer region are critical for activity.  相似文献   

13.
14.
15.
16.
17.
18.
Emerging evidence has suggested a critical role for activator protein-1 (AP)-1 in regulating various cellular functions. The goal of this study was to investigate the effects of Helicobacter pylori and mitogen-activated protein kinases (MAPK) on AP-1 subcomponents expression and AP-1 DNA-binding activity in gastric epithelial cells. We found that H. pylori infection resulted in a time- and dose-dependent increase in the expression of the proteins c-Jun, JunB, JunD, Fra-1, and c-Fos, which make up the major AP-1 DNA-binding proteins in AGS and MKN45 cells, while the expression levels of Fra-2 and FosB remained unchanged. Helicobacter pylori infection and MAPK inhibition altered AP-1 subcomponent protein expression and AP-1 DNA-binding activity, but did not change the overall subcomponent composition. Different clinical isolates of H. pylori showed various abilities to induce AP-1 DNA binding. Mutation of cagA, cagPAI, or vacA, and the nonphosphorylateable CagA mutant (cagA(EPISA)) resulted in less H. pylori-induced AP-1 DNA-binding activity, while mutation of the H. pylori flagella had no effect. extracellular signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) each selectively regulated AP-1 subcomponent expression and DNA-binding activity. These results provide more insight into how H. pylori and MAPK modulate AP-1 subcomponents in gastric epithelial cells to alter the expression of downstream target genes and affect cellular functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号