首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied airway wall temperature (Taw) during dry air challenge of the canine lung periphery. We measured collateral resistance (Rcs) before and after periods of elevated airflow using a wedged bronchoscope technique. As flow rate increased, Taw dropped and postchallenge Rcs rose. A significant negative correlation was found between Taw recorded during challenge and Rcs observed 5 min after challenge. Repetitive dry air challenge produced similar changes in Rcs and Taw. However, responses to warm moist air were significantly lower than consecutive responses to dry air. Taw was significantly lower during dry air challenge than during moist air challenge. Indomethacin (5 mg/kg) and atropine (1 mg/kg) reduced responses to dry airflow challenge. Indomethacin did not affect Taw during the challenge, whereas atropine reduced the fall in Taw. We conclude that temperature correlates negatively with peripheral lung tone 5 min after dry air challenge. This correlation holds under conditions where airflow is increased, air is humidified, or atropine is administered. The dissociation between Taw and physiological response after indomethacin likely reflects a decrease in mediators released during challenge.  相似文献   

2.
We studied the effects of the flow of dry air on collateral tone in the lung periphery. A bronchoscope was wedged in sublobar segments of anesthetized dogs, and measurements of collateral resistance (Rcs) were recorded before and after flow was increased from 200 to 2,000 ml/min for a 5-min period. Five minutes after exposure was completed, Rcs increased by an average of 117 +/- 25.2% (SE) over control. Maximum Rcs occurred 5 min after the challenge was concluded and required 48 +/- 10.5 min to return to base line. When flow rate was held constant and exposure period varied, Rcs increased with increased stimulus duration. With exposure times held constant, the response of the collateral system was positively associated with changes in stimulus strength (flow rate). No refractory period was observed with repetitive challenges. Finally, when dry air (delivered at 22 degrees C) and conditioned air (i.e., delivered at 28 degrees C; relative humidity = 80%) challenges were alternated in the same wedged segment, dry air produced a mean increase in Rcs of 93.2%, whereas challenge with warm moist air increased Rcs only 33.5%. Regardless of which challenge was presented first, dry air consistently produced a greater constrictor response. This response is similar to that observed in cold air- and exercise-induced asthma and indicates that the lung periphery in dogs, like larger airways in asthmatic subjects, has the potential to increase tone when exposed to dry air. Peripheral airways in dogs thus constitute a model that can be used for the investigation of exercise-induced asthma.  相似文献   

3.
We studied the mechanism by which Na2EDTA, a divalent cation chelator, induces bronchoconstriction in the lung periphery of mongrel dogs as a model of nonspecific small airway hyperresponsiveness. Using a wedged bronchoscope technique, we measured collateral system resistance (Rcs) before and after challenges with aerosolized Na2EDTA. An isotonic solution (4% Na2EDTA, 0.28 osmol/kg) increased Rcs 91 +/- 21%. Na2EDTA increased Rcs in a dose-dependent fashion after challenges of increasing concentration (0, 1, 3, and 6%) or duration (15, 30, 60, and 90 s) with 6% Na2EDTA. Atropine (1 mg/kg iv) significantly (P = 0.01) attenuated the response to an aerosol challenge with distilled H2O. Atropine did not significantly (P = 0.35) alter the response to a challenge with 4% Na2EDTA. Challenge with 6% Na2EDTA (0.42 osmol/kg) increased Rcs to a significantly greater (P less than 0.01) extent than did challenge with 6% CaNa2EDTA (0.37 osmol/kg, 250 +/- 55 vs. 29 +/- 11%, respectively). We conclude that Na2EDTA induces bronchoconstriction in the canine lung periphery in a dose-dependent fashion. As suggested by the Na2EDTA-CaNa2EDTA comparison, hyperosmolality of the solution alone cannot explain this phenomenon. The mechanism does not depend on muscarinic activity and appears to involve chelation of calcium.  相似文献   

4.
Tonic beta-sympathetic activity in the lung periphery in anesthetized dogs   总被引:1,自引:0,他引:1  
The present study was undertaken to determine whether beta-adrenoceptors could be physiologically detected in the lung periphery and whether they were under tonic stimulation in the resting state in anesthetized dogs. A fiberoptic bronchoscope was wedged in a sublobar segment of lung in anesthetized male mongrel dogs for measurement of resistance through the collateral system (Rcs). beta-Agents were delivered locally as aerosols through the bronchoscope, and the response was evaluated by changes in Rcs. Distilled water alone produced a mean increase of 8.5 +/- 2.43% (SE) in Rcs at 2 min in six dogs, whereas dl-isoproterenol produced a mean decrease of 8.9 +/- 2.10% (P less than 0.03), thus demonstrating the presence of submaximally stimulated beta-receptors. To test whether the beta-receptors were under tonic stimulation, we compared the effect of aerosolized d- and dl-propranolol in 5 dogs. d-Propranolol that lacks significant beta-blocking activity and dl-propranolol both produced large transient increases in Rcs. However, with d-propranolol, Rcs had returned to base line at 15 min, whereas with dl-propranolol Rcs remained elevated at a mean of 20% above base line for greater than 2 h (P less than 0.01). Local timolol aerosol also produced a sustained increase in Rcs. After pretreatment with reserpine or after bilateral adrenalectomy, both d- and dl-propranolol still produced large transient increases in Rcs, but dl-propranolol no longer produced a sustained increase. Neither isoproterenol nor atropine affected Rcs in the presence of dl-propranolol, nor did pretreatment with atropine affect the response of Rcs to dl-propranolol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Hypocapnia-induced constriction of peripheral airways may be important in regulating the distribution of ventilation in pathological conditions. We studied the response of the peripheral lung to hypocapnia in anesthetized, paralyzed, mechanically ventilated dogs using the wedged bronchoscope technique to measure resistance of the collateral system (Rcs). A 5-min hypocapnic challenge produced a 161 +/- 19% (mean +/- SE) increase in Rcs. The magnitude of this response was not diminished with repeated challenge or by atropine sulfate (1 mg base/kg iv), chlorpheniramine maleate (5 mg base/kg iv), or indomethacin (5 mg/kg iv). The response was reduced by 75% by isoproterenol (5 micrograms/kg iv) (P less than 0.01) and reduced by 80% by nifedipine (20 micrograms/kg iv) (P less than 0.05). During 30-min exposure to hypocapnia the maximum constrictor response occurred at 4-5 min, after which the response attenuated to approximately 50% of the maximum response (mean = 53%, range 34-69%). Further 30-min challenges with hypocapnia resulted in significantly decreased peak responses, the third response being 50% of the first (P less than 0.001). The inability of indomethacin or propranolol to affect the tachyphylaxis or attenuation of the response suggests that neither cyclooxygenase products nor beta-adrenergic activity was involved. Hence, hypocapnia caused a prompt and marked constrictor response in the peripheral lung not associated with cholinergic mechanisms or those involving histamine H1-receptors or prostaglandins. With prolonged exposure to hypocapnia there was gradual attentuation of the constrictor response with continued exposure and tachyphylaxis to repeated exposure both of which would tend to diminish any compensatory effect of hypocapnic airway constriction on the distribution of ventilation.  相似文献   

6.
The actions of specific humoral mediators in the immediate response of the canine peripheral airways to antigen challenge are not well understood. Using a method which allows localized exposure of the peripheral lung to antigen, we investigated the role of locally released thromboxane A2 (TxA2) in the immediate response of collateral airways to aerosolized antigen. In dogs with native sensitivity to Ascaris suum antigen, resistance to flow through the collateral system (Rcs) was measured using a wedged bronchoscope technique. Local administration of antigen aerosol (25 microliters, 1:10,000 dilution) produced a gradual increase in Rcs which reached a maximum of 365% of base line in 4-8 min. Analysis of bronchoalveolar lavage fluid obtained from the exposed segment at the peak of the response demonstrated significantly more TxB2 compared with control lavage samples (41.8 +/- 7.8 pg/ml vs. 27.9 +/- 8.3; P less than 0.025). After inhibition of thromboxane synthase with UK-37,248 (3 mg/kg iv) or OKY-046 (5 mg/kg iv), the increase in Rcs was significantly reduced at 40 s (P less than 0.001) and 2 min (P less than 0.01) after antigen delivery, and the maximal increase was attenuated by 41% (P less than 0.005). In contrast, the magnitude and time course of the airway response to aerosols of a stable thromboxane analog (U-46619) were not affected by blockade. Despite a similar attenuation (42%) of the maximal increase in Rcs by sodium meclofenamate (3 mg/kg iv), this cyclooxygenase inhibitor had no effect on the time course of the antigenic response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We studied the effects of neutrophil activation on collateral ventilation and peripheral lung reactivity in anesthetized dogs. A fiberoptic bronchoscope was wedged into a segmental airway under direct vision. Ventilation beyond the obstruction thus occurred only through collateral channels. Through one lumen of a double-lumen catheter threaded through the suction port of a bronchoscope, 5% CO2 in air was infused at a known constant rate (V coll). Through the other lumen, pressure at the tip of the bronchoscope was monitored (Pb). For measurements of resistance to flow through the collateral system (Rcs), the ventilation was stopped at functional residual capacity (FRC). Histamine was delivered through the bronchoscope to the obstructed lung segment in the form of an aerosol mist generated by an ultrasonic nebulizer. Measurements of Rcs were used as a parameter of the peripheral lung reactivity to histamine challenge. Within one hour after intravenous infusion of phorbol myristate acetate (PMA), a neutrophil activator, the reactivity to histamine significantly increased. After this, Rcs increased even without histamine challenge. This increase may have been due to an edematous injury of lung caused by PMA. The nature of the injury was confirmed by wet to dry weight ratios. In the other group, the white cell count dropped below 1000 per cu. mm. after intravenous infusion of nitrogen mustard. The same experimental protocols were followed. The Rcs did not increase even with histamine challenge. Our results suggested that substances such as oxygen radicals and arachidonic acid metabolites, which can be released by activated neutrophils, may not not only increase peripheral lung reactivity, but may also induce pulmonary edema.  相似文献   

8.
Magnesium sulfate has been shown to be effective clinically as a bronchodilator, but its mechanism of action is unknown. We used a wedged bronchoscope technique to study the ability of MgSO4 at clinically relevant concentrations to attenuate hypocapnia-, acetylcholine- (ACh), and dry air-induced bronchoconstriction in the canine lung periphery. Control experiments demonstrated that consecutive challenges of either hypocapnia or ACh resulted in greater collateral system resistance (Rcs) after the second challenge compared with the first. Intravenous infusion of MgSO4 diminished the maximum response to a second hypocapnic challenge (Rcs = 1.59 +/- 0.29 cmH2O.ml-1.s prechallenge vs. 1.12 +/- 0.20 postchallenge) but had no effect on either ACh- or dry air-induced bronchoconstriction. Serum magnesium levels before MgSO4 administration were 1.59 +/- 0.04 meq/l and rose to 6.20 +/- 0.13 during the infusion. Previous studies demonstrated that nifedipine, like MgSO4 in this study, attenuates hypocapnia-induced bronchoconstriction in the canine lung periphery but has no effect on ACh- or dry air-induced bronchoconstriction. We conclude that these results are consistent with the idea that, like nifedipine, magnesium acts in the airway as a voltage-sensitive calcium channel blocker.  相似文献   

9.
We examined the role of cyclooxygenase-derived metabolites and epithelial cells in airflow-induced bronchospasm. Male dogs were anesthetized and collateral system resistance (Rcs) was measured with the wedged-bronchoscope technique. A 2-min high flow challenge with dry air in nine animals produced a mean increase in Rcs of 69 +/- 13% (SE). After treatment with indomethacin (5 mg/kg), the response was significantly attenuated; Rcs increased only 40 +/- 8%. Bronchoalveolar lavage performed 5 min after a dry air challenge yielded fluid with greater concentrations of prostaglandin D2 (PGD2) and thromboxane B2 than samples from unchallenged segments. Challenge with humidified air produced a smaller physiological response than did challenge with dry air. Lavage samples obtained after dry challenge had greater concentrations of PGD2 than samples taken after challenge with humidified air. After dry air challenge, epithelial cells in lavage fluid were increased by 454 and 515% when compared with control and humidified air challenge, respectively. Significant correlations were found between epithelial cell number and PGD2 recovered in lavage fluid after dry air challenges. We conclude that both epithelial cells and prostaglandins play an important role in peripheral lung responses to dry air.  相似文献   

10.
We studied the effects of antigen aerosol challenge on the airways of the canine peripheral lung and examined the roles of cyclooxygenase products, histamine, and cholinergic activity in the responses. One-minute deliveries of 1:10,000 or 1:100,000 concentrations of Ascaris suum antigen aerosol through a wedged bronchoscope resulted in mean maximal increases in collateral system resistance (Rcs) of 415 and 177%, respectively, after 4-8 min. Repeated antigen challenge (1:100,000) resulted in significantly decreased responsiveness to antigen after the initial exposure (P less than 0.005). Bronchoalveolar lavage fluid obtained from the isolated, challenged segment had a significant increase in mean (+/- SE) prostaglandin D2 (PGD2) concentration vs. control (222.0 +/- 65.3 vs. 72.7 +/- 19.5 pg/ml; P less than 0.05); histamine concentrations were variable and not significantly different (4.1 +/- 2.6 vs. 1.2 +/- 0.2 ng/ml; P greater than 0.05). In nine experiments, cyclooxygenase inhibition significantly attenuated the antigen-induced increase in Rcs by 53.4% (P less than 0.001), and the concentration of PGD2 in lavage fluid was reduced by 96.0% (P less than 0.01). Blockade of histamine H1-receptors (n = 8) or cholinergic receptors (n = 7) did not significantly affect the airway response (P greater than 0.05). These data indicate that the canine peripheral lung responds in a dose-dependent manner to antigen aerosol challenge and exhibits characteristics of antigen tachyphylaxis. Results also suggest that cyclooxygenase products play a central role in the acute bronchoconstrictive response of the lung periphery.  相似文献   

11.
Because it is relatively insoluble, the oxidant gas O3 may penetrate to small peripheral airways when it is inhaled. Increased responsiveness in large airways after O3 breathing has been associated with the presence of inflammatory cells. To determine whether O3 produces prolonged hyperresponsiveness of small airways associated with the presence of inflammatory cells, we exposed the peripheral lungs of anesthetized dogs to 1.0 ppm O3 for 2 h using a wedged bronchoscope technique. A contralateral sublobar segment was simultaneously exposed to air as a control. In the O3-exposed segments, collateral resistance (Rcs) was increased within 15 min and remained elevated approximately 150% throughout the 2-h exposure period. Fifteen hours later, the base-line Rcs of the O3-exposed sublobar segments was significantly elevated, and these segments demonstrated increased responsiveness to aerosolized acetylcholine (100 and 500 micrograms/ml). There were no differences in neutrophils, mononuclear cells, or mast cells (numbers or degree of mast cell degranulation) between O3 and air-exposed airways at 15 h. The small airways of the lung periphery thus are capable of remaining hyperresponsive hours after cessation of localized exposure to O3, but this does not appear to be dependent on the presence of inflammatory cells in the small airway wall.  相似文献   

12.
In previous studies, we demonstrated that local exposures to the lung periphery to 0.1 ppm ozone (O3) produce increases in resistance to flow through the collateral system (Rcs) which are prevented by vagotomy, and the local exposures to 1.0 ppm O3 produces increases in Rcs which are only partially mediated by the parasympathetic system. In the present studies, we evaluated the effects of short exposures to O3 on reactions to H2O and histamine in anesthetized male dogs when no residual effects of the O3 exposures could be detected. For this purpose a fiber-optic bronchoscope was wedged in a segmental airway of anesthetized dogs and was used to deliver O3, aerosols of H2O, histamine (1.5 X 10(-4) mg), and atropine (0.1 mg). Measurements of Rcs were used to monitor responses to these agents. Responses to three successive challenges with H2O and with histamine were not different from each other. A 30-min exposure to 0.1 ppm O3 between the first and second challenge did not alter responses to histamine or H2O. However, a 10-min exposure to 1.0 ppm O3 resulted in a significant increase in responses to both H2O and histamine. No correlation was noted between the magnitude of response to O3 and the increase in response to histamine or H2O following O3 exposure. Parasympathetic blockade (atropine or bilateral cervical vagotomy) abolished the increase in response to H2O but not the increase in response to histamine following exposure to 1.0 ppm O3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Intratracheally injected or aerosolized ET-1 induced quick and long-lasting bronchoconstriction of anesthetized mongrel dogs, thus increasing respiratory resistance(Rrs) with concomitantly decreasing dynamic compliance(Cdyn). As collateral resistance(Rcs) was measured postexposure to aerosolized ET-1 using wedged bronchoscope technique, ET-1 increased Rcs in a dose and time dependent manner. The increase attained maximal in 2 min and then, gradually declined. When the dogs were pretreated with the intravenous injection of 0.1 micrograms/kg ICI 198615, an inhibitor of lipoxygenase, the constrictive response was slowed down. Essentially similar results were also observed with the intravenous injection of 5 mg/kg indomethacin. Our observations suggest that the early phase of the ET-1 induced bronchoconstriction is mediated by eicosanoid metabolites.  相似文献   

14.
A comparison of the dose-response behavior of canine airways and parenchyma   总被引:1,自引:0,他引:1  
We compared the histamine responsiveness of canine airways and parenchymal tissues in six anesthetized paralyzed open-chest mongrel dogs, partitioning total lung resistance (RL) into airway resistance (Raw) and tissue viscance (Vti). Pressure was measured during tidal breathing (frequency was 0.3 Hz) at the trachea and in three alveolar regions by use of alveolar capsules. Measurements were taken before and after the delivery of increasing concentrations of aerosolized histamine (0.1-30 mg/ml). We found that Vti accounted for 78 +/- 8% of RL under base-line conditions; this proportion remained relatively constant throughout the histamine concentration-response curve. There was a significant correlation between percent change in Vti and percent change in Raw at all levels of histamine-induced constriction (P less than 0.001). Moreover, the sensitivity of the tissues and airways (defined as the concentration of histamine required to double resistance) was remarkably similar. We conclude that, at this frequency of ventilation, Vti accounts for the major portion of RL both under base-line conditions and after histamine-induced constriction. Although increases in RL cannot be attributed solely to events occurring in the airways, the close correlation between changes in Raw and Vti and the similar sensitivities of the two support the use of indexes reflecting changes in airway caliber as an indicator of overall lung histamine responsiveness.  相似文献   

15.
This study examined the effect of acute endotoxemia on hypoxic pulmonary vasoconstriction (HPV) in awake sheep. Thirteen sheep were chronically instrumented with Silastic catheters in the pulmonary artery, left atrium, jugular vein, and carotid artery; with a Swan-Ganz catheter in the main pulmonary artery; with a chronic lung lymph fistula; and with a tracheostomy. Base-line HPV was determined by measuring the change in pulmonary vascular resistance (PVR) while sheep breathed 12% O2 for 7 min. Concentrations of immunoreactive 6-keto-PGF1 alpha and thromboxane B2 (TXB2) were measured in lung lymph during the hypoxic challenge. Escherichia coli endotoxin (0.2-0.5 micrograms/kg) was infused intravenously. Four hours after endotoxemia, HPV was measured. In five sheep, meclofenamate was infused at 4.5 h after endotoxemia and HPV measured again. During the base-line hypoxic challenge, PVR increased by 36 +/- 9% (mean +/- SE). There was no significant change in lung lymph 6-keto-PGF1 alpha or TXB2 levels with hypoxia. Twelve of the 13 sheep showed a decrease in HPV 4 h after endotoxemia; the mean change in PVR with hypoxia was -8 +/- 5%, which was significantly (P less than 0.05) reduced compared with base-line HPV. The infusion of meclofenamate at 4.5 h after endotoxin did not restore HPV.  相似文献   

16.
The effects of three increasing doses of platelet-activating factor (PAF) on airway caliber and methacholine bronchial responsiveness were studied. On separate occasions nine normal subjects inhaled a single cumulative provocation concentration of methacholine (control) causing a 40% fall (PC40 Vp30) in maximum expiratory flow rate at 70% of base-line vital capacity below total lung capacity during a partial forced expiratory maneuver or 100 or 200 micrograms PAF, and seven subjects inhaled a further dose of 400 micrograms PAF. Methacholine responsiveness was measured before, at 3 and 7 h, then on days 1, 2, 3, 4, 7, 10, and 14 after each challenge. The maximum falls in Vp30 appeared dose dependent, but a significant difference between the magnitude of the responses was only observed between the 400- and 100-micrograms PAF dose (P less than 0.05). During the control period repeated methacholine challenges resulted in a progressive increase in cumulative provocation concentration of an agonist causing a 20% fall in forced expiratory volume in 1 s from base line, reaching significance on days 1 and 2 (2.44- and 2.4-fold of base line, respectively, P less than 0.01) before returning to base line on day 7. No difference was seen in methacholine responsiveness after any of the three doses of PAF compared with that after the control. We conclude that PAF causes dose-dependent bronchoconstriction but does not change airways responsiveness to methacholine and that repeated high-dose methacholine challenge leads to loss of responsiveness to this agonist.  相似文献   

17.
We investigated the effect of eliminating the bronchial circulation on recovery time from intravenous histamine challenge in canine lung periphery. Results from animals with intact bronchial circulations were compared with a second group in which the left lower lobe was isolated in situ. The pulmonary artery to this lobe was perfused and a bronchoscope was wedged in a small airway, which provided an index of resistance to airflow through the collateral system. The lobe was challenged with intravenous histamine, and the time constant of recovery (tau) from bronchoconstriction was measured. With or without pulmonary blood flow, elimination of the bronchial circulation increased tau 44.4 and 48.5%, respectively. This increase was similar to that found by stopping pulmonary blood flow alone (56.5%). Histamine challenges were also performed in sympathectomized or vagotomized animals with intact bronchial circulations. Neither of these conditions increased tau. We conclude that blood flow through the bronchial circulation affects the recovery time from intravenous histamine challenge in the lung periphery to a degree similar to that of the pulmonary circulation.  相似文献   

18.
Previous studies have shown that lung challenge with smooth muscle agonists increases tissue viscance (Vti), which is the pressure drop between the alveolus and the pleura divided by the flow. Passive inflation also increases Vti. The purpose of the present study was to measure the changes in Vti during positive end-expiratory pressure- (PEEP) induced changes in lung volume and with a concentration-response curve to methacholine (MCh) in rabbits and to compare the effects of induced constriction vs. passive lung inflation on tissue mechanics. Measurements were made in 10 anesthetized open-chest mechanically ventilated New Zealand male rabbits exposed first to increasing levels of PEEP (3-12 cmH2O) and then to increasing concentrations of MCh aerosol (0.5-128 mg/ml). Lung elastance (EL), lung resistance (RL), and Vti were determined by adjusting the equation of motion to tracheal and alveolar pressures during tidal ventilation. Our results show that under baseline conditions, Vti accounted for a major proportion of RL; during both passive lung inflation and MCh challenge this proportion increased progressively. For the same level of change in EL, however, the increase in Vti was larger during MCh challenge than during passive inflation; i.e., the relationship between energy storage and energy dissipation or hysteresivity was dramatically altered. These results are consistent with a MCh-induced change in the intrinsic rheological properties of lung tissues unrelated to lung volume change per se. Lung tissue constriction is one possible explanation.  相似文献   

19.
To determine whether tracheal narrowing accompanies histamine-induced bronchoconstriction and whether a cholinergic reflex is involved in the tracheal and bronchial responses, we determined specific pulmonary resistance between the carina and the pleura (sRL) and tracheal volume (Vtr) with an indicator-dilution technique in conscious sheep. Immediately postdelivery of histamine aerosol (7.5 mg histamine base) mean sRL increased by 223% (P less than 0.05), and mean Vtr decreased by 25% (P less than 0.05). The duration of the changes was similar, with a return to base-line values within 60 min. With increasing doses of histamine up to 30 mg, there was a corresponding increase in mean sRL, whereas the maximum effect on Vtr was already reached after 7.5 mg of histamine. Atropine (0.2 mg/kg iv) increased mean Vtr by 77% (P less than 0.05) and blunted the histamine effects on sRL, whereas the histamine effects on Vtr were abolished. Intravenous histamine or carbachol aerosol had similar effects on sRL and Vtr. We conclude that in conscious sheep 1) histamine produces both tracheal and bronchial constriction with a similar time course, 2) there is a base-line vagal tone in the trachea and not the bronchi, 3) the cholinergic reflex component of histamine-induced constriction is greater in the trachea than the bronchi, and 4) this difference between the trachea and bronchi is not due to differential aerosol deposition or cholinergic responsiveness.  相似文献   

20.
The purpose of this study was to determine the role of thromboxane and prostacyclin in modulating pulmonary hemodynamics during maximal cardiopulmonary stress in the healthy lung. We studied 11 yearling sheep in paired studies during progressive maximal treadmill exercise with and without meclofenamate (n = 5), ibuprofen (n = 6), or UK38485 (n = 2). We also studied five sheep during hypoxia and hypoxic exercise, and six sheep during prolonged steady-state treadmill exercise for 45-60 min with and without drug treatment. We measured the metabolites of thromboxane A2 (thromboxane B2, TxB2) and prostacyclin (6-ketoprostaglandin F1 alpha, 6-keto-PGF1 alpha) in blood plasma and lung lymph in each protocol. We found that progressive exercise significantly reduced pulmonary vascular resistance but that cyclooxygenase or thromboxane synthesis blockade did not alter the change. Plasma TxB2 rose minimally but significantly during maximal exercise, but 6-keto-PGF1 alpha did not change. During continuous hypoxia, exercise reduced pulmonary vascular resistance nearly to base-line levels, but the degree of reduction was also unchanged by drug treatment. There were also no significant changes in lymph or plasma TxB2 or 6-keto-PGF1 alpha during 45-60 min of continuous moderate exercise. We conclude that neither TxB2 nor prostacyclin modulate pulmonary hemodynamics in the normal lung during maximal exercise, prolonged moderate exercise, or exercise-induced reductions in vascular resistance during hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号