首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testicular aging is usually studied using sperm and quantitative hormone analysis. Testicular samples are obviously difficult to obtain from a control aging population. Body donations from the Anatomy Department of the Saint-Peres University provided access to testicular samples from deceased men between the ages of 53 to 102 years. We present the first results of a semiquantitative histological morphometric study of testicular aging. We studied a series of 39 subjects. After removal of the sample within the first 24 hours, several investigations were conducted. Macroscopic examination (volume, weight) was followed by histological examination and computer-assisted morphometric analysis: N.I.H images based on the following parameters: (i) transverse sections of the seminiferous tubules (total surface, thickness of the basal membrane, and nuclear density of Sertoli cells, spermatogonia, spermatocytes and spermatozoids; (ii) histological sections were studied for interstitial tissue, number of clusters and the surface occupied by Leydig cells (percentage per parenchyma area), their appearance, size and nuclear density were determined; (iii) this study was completed by visual count of the various cell types in the seminiferous epithelium. The results obtained on a series of 39 subjects aged from 53 to 102 showed various alterations, such as thickening of the tunica albuginea and basal membrane and intertubule hyalinization. The most frequent histological pattern of the aging testis is a mosaic of various seminiferous tubule lesions varying from tubules with complete although reduced spermatogenesis to entirely sclerosed tubules. Individual variations are extremely marked with major alterations of spermatogenesis as early as 60 years old, with atrophied Leydig cells and, on the contrary, preserved spermatogenesis until the age of 95 years.  相似文献   

2.
We describe here morphological and functional analyses of the spermatogenic process in sexually mature white-lipped peccaries. Ten sexually mature male animals, weighing approximately 39 kg were studied. Characteristics investigated included the gonadosomatic index (GSI), relative frequency of stages of the cycle of seminiferous epithelium (CSE), cell populations present in the seminiferous epithelium in stage 1 of CSE, intrinsic rate of spermatogenesis, Sertoli cell index, height of seminiferous epithelium and diameter of seminiferous tubules, volumetric proportion of components of the testicular parenchyma and length of seminiferous tubules per testis and per gram of testis. The GSI was 0.19%, relative frequencies of pre-meiotic, meiotic and post-meiotic phases were, respectively 43.6%, 13.8% and 42.6%, general rate of spermatogenesis was 25.8, each Sertoli cell supported an average 18.4 germinative cells, height of seminiferous epithelium and diameter of seminiferous tubules were, respectively, 78.4 microm and 225.6 microm, testicular parenchyma was composed by 75.8% seminiferous tubules and 24.2% intertubular tissue, and length of seminiferous tubules per gram of testis was 15.8m. These results show that, except for overall rate of spermatogenesis, the spermatogenic process in white-lipped peccaries is very similar to that of collared peccaries, and that Sertoli cells have a greater capacity to support germinative cells than most domestic mammals.  相似文献   

3.
Optical clearing techniques provide unprecedented opportunities to study large tissue samples at histological resolution, eliminating the need for physical sectioning while preserving the three-dimensional structure of intact biological systems. There is significant potential for applying optical clearing to reproductive tissues. In testicular biology, for example, the study of spermatogenesis and the use of spermatogonial stem cells offer high-impact applications in fertility medicine and reproductive biotechnology. The objective of our study is to apply optical clearing, immunofluorescence, and confocal microscopy to testicular tissue in order to reconstruct its three-dimensional microstructure in intact samples. We used Triton-X/DMSO clearing in combination with refractive index matching to achieve optical transparency of fixed mouse testes. An antibody against smooth muscle actin was used to label peritubular myoid cells of seminiferous tubules while an antibody against ubiquitin C-terminal hydrolase was used to label Sertoli cells and spermatogonia in the seminiferous epithelium. Specimens were then imaged using confocal fluorescence microscopy. We were able to successfully clear testicular tissue and utilize immunofluorescent probes. Additionally, we successfully visualized the histological compartments of testicular tissue in three-dimensional reconstructions. Optical clearing combined with immunofluorescence and confocal imaging offers a powerful new method to analyze the cytoarchitecture of testicular tissue at histological resolution while maintaining the macro-scale perspective of the intact system. Considering the importance of the murine model, our developed method represents a significant contribution to the field of male reproductive biology, enabling the study of testicular function.  相似文献   

4.
Seminiferous tubule differentiation was related to the occurrence of germ cell neoplasia in 38 men, aged 17-47, treated surgically in childhood for cryptorchidism. Tissues from 46 testes obtained from biopsies taken as a neoplastic preventive procedure or whole testes removed because of GCT were evaluated quantitatively. Paraffin sections were treated with antibodies against placental like alkaline phosphatase (PLAP), a marker of germ cell neoplasia, and cytokeratin 18 (CK-18), a marker of immature Sertoli cells. Quality of spermatogenesis and number Leydig cells were assessed with a score count. Seminiferous tubules diameter, thickness of basal membrane and size of intertubular spaces were measured with image analysis software. In 17.4% of testes spermatogenesis was normal (9.9 points) (N) and neoplasia was not found there. In the other 38 specimens (83%) spermatogenesis was abnormal (A). When spermatogenesis was arrested or when germ cells were absent (3.7+/-1.8 points), neoplastic lesions were found in 13.1% of the specimens. In A group 5.1+/-7.1% of tubules contained immature Sertoli cells, while in N they were not found. Tubular diameter was significantly lower in A (161.5+/-31.8 microm) than in N (184.6+/-24.3 microm) and the percentage of seminiferous tubules with the thickening of tubular basal membrane was also greater in A. Intertubular spaces were significantly larger in A (49.9+/-18.6%) in comparison to N group (32.6+/-12.5%). Mean number of Leydig cells was similar in both groups. To conclude, in most of the formerly cryptorchid testes, despite surgical treatment, impaired seminiferous tubules differentiation is predominant. Germ cell neoplasia is present in testes with retarded seminiferous tubules differentiation. Retardation of seminiferous tubule differentiation consists of inhibited spermatogenesis, presence of tubules with immature Sertoli cells, decreased tubular diameter, increased thickness of basal membrane and enlarged intertubular spaces. Examination of testicular biopsy with respect to the state of seminiferous tubule differentiation may be helpful to predict the appearance of germ cell neoplasia in adult men with cryptorchidism in anamnesis. Orchiopexy of cryptorchid testes may not prevent the occurrence of features of testicular dysgenesis and the associated germ cell neoplasia.  相似文献   

5.
Testes were obtained at post mortem from three Western lowland gorillas, two Bornean orang-utans and one Chimpanzee. All specimens were adults which had died in captivity. Histological examination revealed that two gorillas exhibited complete degeneration of the seminiferous tubules and that the testes contained large amounts of interstitial tissue. Some, less obvious, signs of degeneration were noted in the third specimen but poor preservation of the material hampered interpretation of these features. The testes of the Orang-utans and Chimpanzee were structurally normal. Testicular atrophy in captive gorillas may be more common than is generally realized and there is a need for research on fertility and reproductive endocrinology of male specimens. At the moment it is not possible to identify the causes of testicular dysfunction in captive gorillas.  相似文献   

6.
Androgens drive spermatogenesis by processes that are largely unknown. Direct effects on germ cells and indirect effects mediated via testicular somatic elements are currently under consideration, and specific localization of androgens in seminiferous tubules may provide information as regards this. Adult male rats were injected with ethane dimethanesulfonate (EDS; 75 mg/kg body weight) or vehicle. Testes were fixed and paraffin-embedded for localization of testosterone immunoreactivity 1 and 2 weeks after treatment, using the unlabeled antibody (PAP) technique. Plasma testosterone dropped from a pre-treatment level of 2.3 ng/ml to below 0.2 ng/ml 3 days after EDS injection and remained at low levels until the end of observation, accompanied by a progressive decrease in testicular weight. In the seminiferous tubules of vehicle-injected males, testosterone immunoreactivity was found in nuclei of spermatocytes and spermatids and in nuclei and the cytoplasm of Sertoli cells, and showed typical variations according to the stage of spermatogenesis. One week after EDS treatment, immunoreactivity had disappeared from the seminiferous epithelium. Two weeks after treatment, staining of germ cells was detected in two out of four males. The disappearance and reappearance of immunoreactivity coincided with the time course of EDS effects on rat Leydig cells, and we conclude that it corresponds to androgen specifically localized in fixed, paraffin-embedded tissue. Because staining of germ cell nuclei varied with the stage of spermatogenesis, the technique may detect a physiologically relevant androgen fraction; its location suggests that androgens may also directly affect certain germ cell stages.  相似文献   

7.
We describe seasonal variations of the histology of the seminiferous tubules and efferent ducts of the tropical, viviparous skink, Mabuya brachypoda, throughout the year. The specimens were collected monthly, in Nacajuca, Tabasco state, Mexico. The results revealed strong annual variations in testicular volume, stages of the germ cells, and diameter and height of the epithelia of seminiferous tubules and efferent ducts. Recrudescence was detected from November to December, when initial mitotic activity of spermatogonia in the seminiferous tubules were observed, coinciding with the decrease of temperature, photoperiod and rainy season. From January to February, early spermatogenesis continued and early primary and secondary spermatocytes were developing within the seminiferous epithelium. From March through April, numerous spermatids in metamorphosis were observed. Spermiogenesis was completed from May through July, which coincided with an increase in temperature, photoperiod, and rainfall. Regression occurred from August through September when testicular volume and spermatogenic activity decreased. During this time, the seminiferous epithelium decreased in thickness, and germ cell recruitment ceased, only Sertoli cells and spermatogonia were present in the epithelium. Throughout testicular regression spermatocytes and spermatids disappeared and the presence of cellular debris, and scattered spermatozoa were observed in the lumen. The regressed testes presented the total suspension of spermatogenesis. During October, the seminiferous tubules contained only spermatogonia and Sertoli cells, and the size of the lumen was reduced, giving the appearance that it was occluded. In concert with testis development, the efferent ducts were packed with spermatozoa from May through August. The epididymis was devoid of spermatozoa by September. M. brachypoda exhibited a prenuptial pattern, in which spermatogenesis preceded the mating season. The seasonal cycle variations of spermatogenesis in M. brachypoda are the result of a single extended spermiation event, which is characteristic of reptilian species. J. Morphol. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The testicular seminiferous tubules contain Sertoli cells and different types of spermatogenic cells. They provide the microenvironment for spermatogenesis, but the precise molecular mechanism of spermatogenesis is still not well known. Here, we have employed tandem mass tag coupled to LC‐MS/MS with the high‐throughput quantitative proteomics technology to explore the protein expression from buffalo testicular seminiferous tubules at three different developmental stages (prepuberty, puberty, and postpuberty). The results show 304 differentially expressed proteins with a ≥2‐fold change, and bioinformatics analysis indicates that 27 of these may be associated with spermatogenesis. Expression patterns of seven selected proteins were verified via Western blot and quantitative RT‐PCR analysis, and further cellular localizations of these proteins by immunohistochemical or immunofluorescence analysis. Taken together, the results provide potential molecular markers of spermatogenesis and provide a rich resource for further studies on male reproduction regulation.  相似文献   

9.
The presence of classical components of the renin-angiotensin system has been demonstrated in the male reproductive tract, mainly in the testes and epididymis. The objective of this study was to verify the localization of angiotensin (Ang)-(1–7) and its receptor Mas in human testis. The study included 12 men with previously proven fertility submitted to orchiectomy for prostate cancer and 20 infertile men submitted to testicular biopsy for infertility work-up, comprising a subgroup with obstructive azoospermia/normal spermatogenesis (n = 8) and another with non-obstructive azoospermia and severely impaired spermatogenesis (n = 12). Testicular tissue samples were processed by immunohistochemistry and real time polymerase chain reaction. Ang-(1–7) was strongly expressed in the interstitial compartment, mainly in Leydig cells, with similar intensity in all groups evaluated. The peptide was also detected in the seminiferous tubules, but with much less intensity compared to interstitial cells. The receptor Mas was equally distributed between interstitial and tubular compartments and was found in all layers of the normal seminiferous epithelium. However, neither Ang-(1–7) nor Mas were detected in the seminiferous tubules of samples with impaired spermatogenesis. The testicular samples of infertile men with impaired spermatogenesis (non-obstructive azoospermia) expressed Mas and ACE2 mRNA at lower concentrations (fold change = 0.06 and 0.04, respectively, P < 0.05) than samples with full spermatogenesis (obstructive azoospermia). This shows, for the first time, the immunolocalization of Ang-(1–7) and its receptor Mas in testes of fertile and infertile men, and suggests that this system may be altered when spermatogenesis is severely impaired.  相似文献   

10.
Aflatoxin-B1 was injected in a dose of 0.01 mg/50 g body weight into the dorsal lymph sac of male toads (Bufo regularis) to evaluate its effect on the testes. After three and six weeks' treatment the diameters of the seminiferous tubules were significantly reduced. Furthermore, spermatogenic cells were almost completely absent. The histological evidence also showed complete suppression of spermatogenesis. It is suggested that one or several AFB1 metabolites may be responsible for suppression of spermatogenesis in the given toads, through inhibition of testicular androgenic activity.  相似文献   

11.
We studied the male reproductive cycle in a population of Ophisops elegans from Mount Sannine, Lebanon, by histological analysis. Testicular histology showed active spermatogenesis in spring, followed by a testicular regression at the end of summer and a subsequent recrudescence in autumn. Monthly variations in the epididymis, the ductus deferens and the sexual segment of the kidney were in synchrony with the testicular cycle. They were hypertrophied as spermatogenetic activity increased and atrophied as spermatogenetic activity decreased. Males of O. elegans showed a vernal type of spermatogenesis with a close relationship between the evolution of the seminiferous tubules and the secondary sexual characters.  相似文献   

12.
The present study was undertaken (1) to document structural and functional changes in the testes of seasonally breeding woodchuck during active and inactive states of spermatogenesis and (2) to evaluate the ability of exogenous gonadotropins to reinitiate spermatogenesis outside the breeding season. During seasonal gonadal inactivity, there were significant (P less than 0.05) reductions in volumes of several testicular features (testis, seminiferous tubules, tubular lumen, interstitial tissue, individual Leydig cells, Leydig cell nuclei, and Leydig cell cytoplasm) as compared with gonadally active animals. The diameter of the seminiferous tubules was decreased by 26%, and Leydig cell numbers also declined in the regressed testes. These changes were accompanied by a decline in testosterone (T) levels in both plasma and testis, and reduction in epithelial height of accessory reproductive organs. A hormonal regimen was developed that would reinitiate spermatogenesis in captive, sexually quiescent woodchucks. A combination of PMSG and hCG markedly stimulated testicular growth and function and restored spermatogenesis qualitatively. Quantitatively normal spermatogenesis was restored in 2 of 6 treated males. Morphometric analyses revealed substantial increases in seminiferous tubular diameter and in the volume of seminiferous tubules, tubular lumen, total Leydig cells, and individual Leydig cells in the hormone-treated animals. These increased values corresponded to 99, 75, 68, 51, and 200%, respectively, of the values measured in naturally active woodchucks. Leydig cell numbers, however, remained unchanged and approximated only 31% of the number found in naturally active testes. Hormonal stimulation also resulted in a significant rise in serum T as well as in the total content of testicular T, and a marked increase in epithelial height in various accessory reproductive glands. The most effective hormonal protocol for stimulating spermatogenesis was treatment with 12.5 IU of PMSG twice a week for 4 weeks followed by 12.5 IU of PMSG + 25 IU of hCG twice a week for 4 weeks.  相似文献   

13.
Ultrastructural study of testicular biopsy specimens from an XX male showed hyalinized seminiferous tubules and tubules containing only mature Sertoli cells. These cells possessed large lipid inclusions as well as microfilament bundles which were perpendicular to the basement membrane and parallel to one another. The basal lamina was thickened and composed of several parallel layers with myofibroblast layers between them. The interstitium showed nodular to diffuse Leydig cell hyperplasia. Four types of Leydig cells were found: 1) normal Leydig cells with crystals of Reinke; 2) cells with abundant microcrystalline inclusions as well as microfilaments and concentric cisternae of smooth endoplasmic reticulum; 3) vacuolated cells containing numerous large lipid droplets; 4) immature Leydig cells. The different ultrastructural abnormalities found in the Sertoli and Leydig cells might be considered as the histological expression of a tubular-interstitial dysgenesis which is reflected in the high levels of gonadotropins and low levels of testosterone.  相似文献   

14.
Summary The initial phases of the development of the seminiferous cords (future seminiferous tubules) were studied with histological techniques and with electron microscopy. On day 14 after fertilization, seminiferous cords are well differentiated in the anterior part of the testis near the mesonephric tubules. They comprise Sertoli cells which encompass the primordial germ cells. The Sertoli cells show an expanded clear cytoplasm and microfilaments beneath the outer surface; they differentiate complex contact zones. On day 13 a few cells localized near the mesonephric tubules display the characteristics of the Sertoli cells. These cells become more and more numerous. They aggregate and they form the seminiferous cords.The primordia of male gonads explanted in vitro on the mesonephros, realize testicular organogenesis in a synthetic medium. Adding 15% fetal calf serum to the medium prevents the morphogenesis of the testicular cords, although the Sertoli cells seem to differentiate morphologically and physiologically. In these gonads differentiation of the Sertoli cells was obtained but their aggregation and the morphogenesis of the seminiferous cords were prevented. This gives new insights into testicular morphogenesis and probably provides an experimental model for a new type of gonadal anomaly.  相似文献   

15.
Adult males from a colony of lesser rock hyrax found near the equator in Kenya exhibited an annual cycle of testicular activity characterized by intense spermatogenesis and elevated androgen status from May to July. Average masses of testes and seminal vesicles taken in these months were almost fourfold greater than those from September to January. During the months of peak testicular activity average diameters of Leydig cells and seminiferous tubules were increased by approximately one half and total tubule length was doubled, compared with values for the quiescent months. Variable testicular development occurred during transitional intervals preceding and following peak testicular activity. From February to Aril thickening of the seminiferous epithelium and appearance of spermatozoa in the caput epididymidis signalled re-establishment of sperm production. In August shedding of germinal cells from the epithelium heralded impending failure of spermatogenesis. Evidence of an annual testicular cycle contradicted the prevalent belief that equatorial hyrax breed all year and suggested that the testicular cycle is a conservative element of hyracoid reproductive strategy.  相似文献   

16.
Testicular biopsies from 82 oligo-or azoospermic male patients were subjected to immunostaining using anti-human FSH antibodies. Histological evaluation showed normal spermatogenesis (nspg) in 7 (FSH: 2.7±0.7), mixed atrophy (ma) in 63 (FSH:5.3±0.5), and bilateral or unilateral Sertoli Cell Only syndrome (SCO) in 12 (FSH:21.7±3.5) patients. For the relationship between FSH values and testicular histology, see Bergmann et al. (1994). FSH immunoreactivity was found exclusively in Sertoli cells and in some interstitial cells. Seminiferous epithelium showing normal or impaired spermatogenesis displayed only weak immunoreactivity compared to intense immunoreaction, i.e. large and numerous vesicles in Sertoli cells of SCO tubules in biopsies showing mixed atrophy or SCO. In addition, h-FSH receptor mRNA was demonstrated by in situ hydridization using biotinylated cDNA antisense oligonucleotides. Hybridization signals were found within the seminiferous epithelium exclusively in Sertoli cell cytoplasm associated with normal spermatogenesis and in epithelia showing different signs of impairment, including SCO. It is concluded that: (1) Sertoli cells are the only cells within the seminiferous epithelium expressing FSH receptors; (2) the accumulation of FSH immunoreactivity in Sertoli cells of SCO tubules appears to be a sign of impaired Sertoli cell function.  相似文献   

17.
The niche is considered to play an important role in stem cell biology. Sertoli cells are the only somatic cells in the seminiferous tubule that closely interact with germ cells to create a favorable environment for spermatogenesis. However, little is known about how Sertoli cells develop to form the male germ line niche. We report here that Sertoli cells recovered and dissociated from testes of donor male mice can be microinjected into recipient testes, form mature seminiferous tubule structures, and support spermatogenesis. Sertoli cells from perinatal donors had a dramatically greater capacity for generating seminiferous tubules than those from adult donors. Furthermore, transplantation of wild-type Sertoli cells into infertile Steel/Steel(dickie) testes created a permissive testicular microenvironment for generating spermatogenesis and spermatozoa. Thus, our results demonstrate that the male germ line stem cell niche can be transferred between animals. In addition, the technique provides a novel tool with which to analyze spermatogenesis and might provide a mechanism for correcting fertility in males suffering from supporting cell defects.  相似文献   

18.
19.
Ground Skink (Scincella lateralis) testes were examined histologically to determine the testicular organization and germ cell development strategy employed during spermatogenesis. Testicular tissues were collected from 19 ground skinks from Aiken County, South Carolina during the months of March-June, August, and October. The testes consisted of seminiferous tubules lined with germinal epithelia in which germ cells matured in close association with Sertoli cells. As germ cells matured, they migrated away from the basal lamina of the epithelia towards the lumina of the seminiferous tubules. The testes were spermatogenically active during the months of March, April, May, June, and October (largest seminiferous tubule diameters and epithelial heights), but entered a quiescent period in August (smallest seminiferous tubule diameter and epithelial height) where only spermatogonia type A and B and early spermatocytes were present in low numbers within the seminiferous epithelium. Although the testicular organization was similar to other amniotes, a temporal germ cell development strategy was employed during spermatogenesis within Ground Skinks, similar to that of anamniotes. Thus, this skink's germ cell development strategy, which also has been recently reported in all other major reptilian clades, may represent an evolutionary intermediate in terms of testicular organization between anamniotes and birds and mammals.  相似文献   

20.
夏蒙蒙  申雪沂  牛长敏  夏静  孙红亚  郑英 《遗传》2018,40(9):724-732
精子发生过程需要生精细胞及睾丸体细胞的共同参与,这两种细胞也决定着睾丸的发育及雄性生育力。支持细胞是生精小管中唯一的体细胞,在正常精子发生过程中发挥重要的作用。支持细胞增殖与粘附功能的异常将导致精子发生异常,进而引发雄性不育。近年来研究发现,microRNA (miRNA)可调控支持细胞的增殖与粘附功能,其表达水平在激素、内分泌干扰素和营养状况等多种因素作用下发生特异性变化。本文总结了与睾丸支持细胞增殖与粘附功能相关的miRNA及其作用机制,以期发现并鉴定更多与支持细胞相关的miRNA,进而为探索与支持细胞相关不育症的病因提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号