首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of high-intensity trained (6 X 4.5 min at 40 m/min, 15% grade, 2.5-min rest between bouts, 5 days/wk, for 6 wk) on contractile, biochemical, and fatigue properties of the rat diaphragm were examined. The exercise program produced significant elevations in the mitochondrial marker enzyme citrate synthase (mumol X g-1 X min-1) in the soleus (SOL) (27.2 +/- 1.5 vs. 46.7 +/- 2.4; mean +/- SE), deep vastus lateralis (DVL) (40.8 +/- 2.6 vs. 58.3 +/- 2.8), and superficial vastus lateralis (SVL) (8.5 +/- 0.6 vs. 11.4 +/- 0.7). No significant differences were observed in the crural (CRU) (45.9 +/- 2.0 vs. 44.0 +/- 2.3) or ventral costal (VEN) (41.5 +/- 2.0 vs. 45.8 +/- 2.6) diaphragmatic regions. Phosphofructokinase, the rate-limiting enzyme of glycolysis, significantly increased in the SOL (19.0 +/- 0.8 vs. 23.3 +/- 1.3 mumol X g-1 X min-1) and DVL (69.3 +/- 6.0 vs. 86.6 +/- 5.0), but no alterations were seen in the SVL (98.6 +/- 5.7 vs. 106.1 +/- 9.0), CRU (54.4 +/- 2.8 vs. 53.8 +/- 1.5), or VEN (44.7 +/- 2.4 vs. 46.4 +/- 1.4) posttraining. Diaphragm contractile properties, with the exception of an increased rate of fall in twitch tension, remained unchanged after training. Glycogen values were significantly higher in trained diaphragms at rest (6.54 +/- 0.39 vs. 4.86 +/- 0.41 mg/g) and during 1, 5, and 10 min of fatiguing stimulation. During fatigue no differences were observed in force, rate of rise in force, rate of fall in force, muscle lactate, ATP, or creatine phosphate in trained vs. control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. Acetazolamide (ACET)-resistant and -sensitive carbonic anhydrase (CA) activity was measured in post-mitochondrial supernatants from the soleus (SOL), deep vastus lateralis (DVL) and superficial vastus lateralis (SVL) muscles of rats and rabbits. 2. The relative total CA activity in the three muscles of both species can be summarized as SOL greater than DVL greater than SVL. 3. ACET-resistant CA activity was found in the SOL and DVL muscles of both species whereas a low level of ACET-sensitive CA activity was detected in the SVL muscle. 4. ACET-sensitive CA activity was also found in sarcoplasmic reticulum preparations from rat and rabbit SOL muscles.  相似文献   

3.
Fiber type changes in rat skeletal muscle after intense interval training   总被引:1,自引:0,他引:1  
Female Sprague-Dawley rats were subjected to a ten week training program to determine the influence of intense interval running on the fiber type composition of selected hindlimb muscles; soleus (S), plantaris (P), deep vastus lateralis (DVL), and superficial vastus lateralis (SVL). The muscles of one hindlimb were used for histochemical ATPase analysis to determine the distribution of fiber types and those of the contralateral hindlimb were assayed biochemically for citrate synthase activity (an aerobic marker). Training induced a significant increase in citrate synthase activity in each muscle section. The largest absolute increase occurred in the DVL and the largest relative increase occurred in the SVL. The distribution of fiber types within the S (85% slow-twitch) and SVL (100% fast-twitch) remained unchanged with training. However, significant increases in the percentage of type I (slow-twitch) fibers in both the P (2-fold) and DVL (3-fold) were observed with concomitant decreases in the type II (fast-twitch) population. In addition, training induced significant changes in the fast-twitch subtype populations of the DVL (IIB----IIA). These data suggest exercise-induced fiber type transformations occurring both within the fast-twitch population and between fast-twitch and slow-twitch fibers in certain hindlimb muscles of the rat following a high intensity interval training program.  相似文献   

4.
Fiber type changes in rat skeletal muscle after intense interval training   总被引:2,自引:0,他引:2  
Summary Female Sprague-Dawley rats were subjected to a ten week training program to determine the influence of intense interval running on the fiber type composition of selected hindlimb muscles; soleus (S), plantaris (P), deep vastus lateralis (DVL), and superficial vastus lateralis (SVL). The muscles of one hindlimb were used for histochemical ATPase analysis to determine the distribution of fiber types and those of the contralateral hindlimb were assayed biochemically for citrate synthase activity (an aerobic marker). Training induced a significant increase in citrate synthase activity in each muscle section. The largest absolute increase occurred in the DVL and the largest relative increase occurred in the SVL. The distribution of fiber types within the S (85% slow-twitch) and SVL (100% fast-twitch) remained unchanged with training. However, significant increases in the percentage of type I (slow-twitch) fibers in both the P (2-fold) and DVL (3-fold) were observed with concomitant decreases in the type II (fast-twitch) population. In addition, training induced significant changes in the fast-twitch subtype populations of the DVL (IIBIIA). These data suggest exercise-induced fiber type transformations occurring both within the fast-twitch population and between fast-twitch and slow-twitch fibers in certain hindlimb muscles of the rat following a high intensity interval training program.  相似文献   

5.
Glutathione status and antioxidant enzymes in various types of rat skeletal muscle were studied after an acute bout of exercise (Ex) at different intensities. Glutathione (GSH) and glutathione disulfide (GSSG) concentrations were the highest in soleus (SO) muscle, followed by those in deep (DVL) and then superficial (SVL) portions of vastus lateralis. In DVL, but not in SO or SVL, muscle GSH increased proportionally with Ex intensity and reached 1.8 +/- 0.08 mumol/g wet wt compared with 1.5 +/- 0.03 (P < 0.05) in resting controls (R). GSSG in DVL was increased from 0.10 +/- 0.01 mumol/g wet wt in R to 0.14 +/- 0.01 (P < 0.05) after Ex. Total glutathione (GSH + GSSG) contents in DVL were also significantly elevated with Ex, whereas GSH/GSSG ratio was unchanged. Activities of GSH peroxidase (GPX), GSSG reductase (GR), and catalase (CAT) were significantly higher in SO than in DVL and SVL, but there was no difference in superoxide dismutase activity between the three muscle types. Furthermore, Ex at moderate intensities elicited significant increases in GPX, GR, and CAT activities in DVL muscle. None of the antioxidant enzymes was affected by exercise in SO. It is concluded that rat DVL muscle is particularly vulnerable to exercise-induced free radical damage and that a disturbance of muscle GSH status is indicative of an oxidative stress.  相似文献   

6.
The objectives of the present study were to determine if carbonic anhydrase III (CA III) demonstrated a specific association for any particular organelle or structure of the skeletal muscle cell and to quantify the activity and content of this enzyme in different types of skeletal muscle fibers. Ultrastructural localization of CA III in the soleus (SOL), deep vastus lateralis (DVL), and superficial vastus lateralis (SVL), composed of predominantly type I, IIa, and IIb fibers, respectively, was performed using a high-resolution immunocytochemical technique and antibody specific for CA III on ultra-thin sections of skeletal muscle embedded in the water-soluble medium polyvinyl alcohol (PVA). The results indicated a uniform distribution of CA III within the sarcomere. Mitochondria, nuclei, triads, Z-, and M-bands were not specifically labeled. Immunoblotting of washed myofibril preparations did not show any detectable CA III associated with this structure. In addition to quantification of the immunogold labeling, CA III activity and content were assayed in the post-mitochondrial supernatant of the three muscles. In the SOL, these values were found to be 3.6-7.6 times higher than in the DVL. The SVL showed a labeling intensity slightly higher than background level, while the enzyme activity and content were indistinguishable from background levels. We therefore conclude that CA III is randomly distributed in the cytoplasm of the three muscle fiber types and that the relative CA III content and activity in the three muscles studied is SOL greater than DVL greater than SVL approximately equal to 0.  相似文献   

7.
The purpose of this study was to assess the influence of regular voluntary exercise in pregnant normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats on 1) uteroplacental perfusion and mean arterial pressure in the resting conscious condition and 2) fetal number, fetal weight, and number of fetal resorptions. WKYs and SHRs were randomly assigned to standard cages [CWKY (n = 10); CSHR (n = 6)] or cages with activity wheels [EWKY (n = 7); ESHR (n = 8)]. EWKYs and ESHRs exercised for 12 wk, and then all rats were bred and experiments were conducted on gestational day 17. Resting blood flow (microspheres), heart rate (HR), and mean arterial pressure (Pa) were measured. No significant difference was found in Pa, HR, uterine blood flow (ESHRs 52 +/- 8 ml.min-1.100 g-1; CSHRs 28 +/- 6 ml.min-1.100 g-1), or maternal placental blood flow (ESHRs, 122 +/- 31 ml.min-1.100 g-1; CSHRs 78 +/- 21 ml.min-1.100 g-1) among the groups. Exercise altered the relationship between maternal placental and uterine blood flow and Pa in the SHR; SHRs with lower Pa maintained higher placental and uterine blood flow after training. Before gestation ESHRs ran on average more kilometers per week than EWKYs (43 +/- 3 vs. 34 +/- 4), but during gestation ESHRs averaged fewer kilometers per week than EWKYs (16 +/- 4 vs. 22 +/- 4). Succinate dehydrogenase activity was higher in the white vastus lateralis (1.02 +/- 0.2 mumol cytochrome c reduced.min-1.g wet wt-1) and vastus intermedius (3.1 +/- 0.5 mumol cytochrome c reduced.min-1.g wet wt-1) muscles of ESHRs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of endurance exercise on the capacity of crube homogenates (CH) to sequester Ca2+ was determined in the slow type I soleus, the fast type IIA deep region of the vastus lateralis (DVL), and the fast type IIB superficial region of the vastus lateralis (SVL). The Ca2+ uptake capacity was affected by exercise in a fiber type specific manner. The fast-twitch SVL showed a 35% decrease in the maximal rate of Ca2+ uptake (Vmax) and a significantly lower Km while the slow soleus and fast DVL were unaltered. The time course of Ca2+ uptake, and the peak amount of Ca2+ sequestered was not altered by exercise in any of the muscles studied. The homogenates from the exercise-trained soleus muscles exhibited an increased ability to retain Ca2+ and in this capacity became more like fast muscle.  相似文献   

9.
We investigated the effects of exercise training on the amount of aortic collagen and systolic blood pressure in spontaneously hypertensive rats (SHR). Ten-week old SHR were trained either by forced treadmill running (26.8 m X min-1 -1 h X day-1, five times a week, 0% incline) or by voluntary running in revolving wheels (7,800 m X day-1 at peak) for 8 weeks. Succinate dehydrogenase (SDH) activity measured as a marker of an endurance training effect was 13% higher (P less than 0.01) in the soleus of forced-exercised animals than in that of sedentary ones. (6.56 +/- 0.17 mumol X g-1 X min-1; mean +/- SEM), whereas SDH activity in that of voluntarily-exercised group was found to be at the same level as in sedentary animals. The systolic blood pressure after training increased by 26.4 in sedentary, 21.1 in voluntarily-exercised, and 33.9 mm Hg in forced-exercised rats, when compared with the value of each group at the beginning of the training program. A significant difference was observed in the increment of blood pressure only between the voluntarily- and forced-exercised groups (P less than 0.05). The amount of aortic collagen in voluntarily-trained rats (96.5 +/- 2.0 mg X g tissue-1, 39.8 +/- 0.7 mg X 100 mg protein-1) was significantly less than that in forced-trained rats (P less than 0.05). These results suggest that voluntary, mild exercise training may be more effective in the reduction of collagen accumulation in the aorta associated with the suppression of blood pressure increase than forced, vigorous exercise training in SHR.  相似文献   

10.
The purpose of this study was to ascertain the time course of changes, whilst suspending the hindlimb and physical exercise training, of myosin light chain (LC) isoform expression in rat soleus and vastus lateralis muscles. Two groups of six rats were suspended by their tails for 1 or 2 weeks, two other groups of ten rats each were subjected to exercise training on a treadmill for 9 weeks, one to an endurance training programme (1-h running at 20 m.min-1 5 days.week-1), and the other to a sprint programme (30-s bouts of running at 60 m.min-1 with rest periods of 5 min). At the end of these experimental procedures, soleus and vastus lateralis superficialis muscles were removed for myosin LC isoform determination by two-dimensional gel electrophoresis. Hindlimb suspension for 2 weeks significantly increased the proportion of fast myosin LC and decreased slow myosin LC expression in the soleus muscle. The pattern of myosin LC was unchanged in the vastus lateralis muscle. Sprint training or endurance training for 9 weeks increased the percentage of slow myosin LC in vastus lateralis muscle, whereas soleus muscle myosin LC was not modified. These data indicate that hindlimb suspension influences myosin LC expression in postural muscle, whereas physical training acts essentially on phasic muscle. There were no differences in myosin LC observed under the influence of sprint- or endurance-training programme.  相似文献   

11.
We hypothesized that glycogenesis increases in muscle during exercise before significant glycogen depletion occurs. Therefore, rats ran for 15 or 90 min at speeds of 8-22 m/min. D-[5-3H]glucose (10 microCi/100 g body wt) was administered 10 min before the end of exercise. Hindlimb muscles [soleus (SOL), plantaris (PL), extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG)] and a portion of liver were analyzed for glycogen concentrations and rates of glycogen synthesis (i.e., D-[3H]glucose incorporated into glycogen). At rest, marked differences were observed among muscles in their rates of glucose incorporation into glycogen: i.e., SOL = 24.3 +/- 3.1, RG = 5.4 +/- 1.9, PL = 2.8 +/- 1.1, EDL = 0.54 +/- 0.10, WG = 0.12 +/- 0.02 (SE) dpm.micrograms glycogen-1.10 min-1 (P less than 0.05 between respective muscles). Compared with the glucose incorporation into glycogen at rest, increments in the PL (272%), RG (189%), WG (400%), EDL (274%), and liver (175%) were observed after 90 min of exercise (P less than 0.05, all data). In contrast, a decrease in glucose incorporation into glycogen (-62%) occurred in the SOL at min 15 (P less than 0.05), but this returned to the rates observed at rest after 90 min of exercise. This measure for rates of net glycogen synthesis (dpm.microgram glycogen-1.10 min-1) was weakly related to the ambient glycogen levels in most muscles; the exception was the SOL (r = -0.79; P less than 0.05). There was up to a 50-fold difference in glycogen synthesis among muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Muscle glucose uptake (MGU) is distributively controlled by three serial steps: delivery of glucose to the muscle membrane, transport across the muscle membrane, and intracellular phosphorylation to glucose 6-phosphate by hexokinase (HK). During states of high glucose fluxes such as moderate exercise, the HK activity is of increased importance, since augmented muscle perfusion increases glucose delivery, and increased GLUT4 at the cell membrane increases glucose transport. Because HK II overexpression augments exercise-stimulated MGU, it was hypothesized that a reduction in HK II activity would impair exercise-stimulated MGU and that the magnitude of this impairment would be greatest in tissues with the largest glucose requirement. To this end, mice with a HK II partial knockout (HK+/-) were compared with their wild-type control (WT) littermates during either sedentary or moderate exercise periods. Rg, an index of glucose metabolism, was measured using 2-deoxy-[3H]glucose. No differences in glucose metabolism were detected between sedentary groups. The increase in Rg due to exercise was impaired in the highly oxidative heart and soleus muscles of HK+/- compared with WT mice (7 +/- 10 vs. 29 +/- 9 and 8 +/- 3 vs. 25 +/- 7 micromol. 100 g-1. min-1, respectively). However, the increase in Rg due to exercise was not altered in gastrocnemius and superficial vastus lateralis muscles in HK+/- and WT mice (8 +/- 2 vs. 12 +/- 3 and 5 +/- 2 vs. 8 +/- 2 micromol. 100 g-1. min-1, respectively). In conclusion, MGU is impaired by reductions in HK activity during exercise, a physiological condition characterized by high glucose flux. This impairment is critically dependent on the tissue's glucose metabolic rate and correlates with tissue oxidative capacity.  相似文献   

13.
Endurance-training-induced cellular adaptations in respiratory muscles   总被引:3,自引:0,他引:3  
Controversy exists concerning the adaptability of mammalian respiratory muscles in response to endurance training. We examined the effects of 8 wk of progressive treadmill exercise (45 min/day 5 days/wk) on the biochemical adaptations of rat diaphragm and intercostal muscles. Female Sprague-Dawley rats were randomly assigned to a sedentary control (n = 10) or an exercise-training group (n = 10). Endurance training resulted in an enhanced oxidative capacity in the anterior costal diaphragm as evidenced by a 29% increase (P less than 0.05) in the activity of succinate dehydrogenase (SDH) in trained animals compared with controls (4.15 +/- 0.13 vs. 3.21 +/- 0.17 mumol.g-1.min-1). Similarly, SDH activity in the intercostal muscles was 32% greater (P less than 0.05) in the trained animals than in the untrained animals (1.72 +/- 0.11 vs. 1.30 +/- 0.06 mumol.g-1.min-1). In contrast, the crural region of the diaphragm showed no significant increase (P greater than 0.05) in oxidative capacity as a result of the training program (3.28 +/- 0.12 vs. 3.13 +/- 0.18). Furthermore, training did not alter (P less than 0.05) lactate dehydrogenase activity in the intercostals or in the crural or the costal diaphragm. These data demonstrate that the oxidative capacity of the costal diaphragm and the intercostal muscles can be enhanced by increasing respiratory loads via regular endurance exercise. We speculate that the lack of metabolic adaptation in the crural region of the diaphragm was not due to limited plasticity of the fibers in this area but to failure to the exercise-training program to provide the appropriate stimulus for cellular adaptation.  相似文献   

14.
Contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus (EDL), and fast-twitch superficial region of the vastus lateralis were determined in vitro (22 degrees C) in rats remobilized after prolonged (3 mo) hindlimb immobilization (IM). For all muscles the muscle-to-body weight ratio was significantly depressed by IM, and the ratios failed to completely recover even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than the slow-twitch SOL. The IM shortened the SOL isometric twitch duration due to a reduced contraction and half-relaxation time. These parameters returned to control levels by the 14th day of recovery. Peak tetanic tension (Po, g/cm2) declined with IM by 46% in the SOL but showed no significant change in the fast-twitch muscles. After IM the SOL Po (g/cm2) recovered to control values by 28 days. The recovery of Po in absolute units (g) was considerably slower and did not return to control levels until 60 (SOL) to 90 (EDL) days. The maximum shortening velocity was not altered by IM in any of the muscles studied. These results demonstrate that both fast- and slow-twitch skeletal muscles possess the ability to completely recover normal contractile function following prolonged periods of hindlimb IM.  相似文献   

15.
The possibility of quantifying the total concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum was investigated by measurement of the Ca2+-dependent steady-state phosphorylation from [gamma-32P]ATP and the Ca2+-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase) activity in crude muscle homogenates. The Ca2+-dependent phosphorylation at 0 degree C (mean +/- S.E.) was 40.0 +/- 2.5 (n = 6) and 6.2 +/- 0.7 (n = 4) nmol/g wet wt. in rat extensor digitorum longus (EDL) and soleus muscle, respectively (P less than 0.001). The Ca2+-dependent 3-O-MFPase activity at 37 degrees C was 1424 +/- 238 (n = 6) and 335 +/- 56 (n = 4) nmol/min per g wet wt. in rat EDL and soleus muscle, respectively (P less than 0.01). The molecular activity calculated from these measurements amounted to 35 +/- 5 min-1 (n = 6) and 55 +/- 10 min-1 (n = 4) for EDL and soleus muscle respectively. These values were not different from the molecular activity calculated for purified Ca2+-ATPase (36 min-1). The Ca2+-dependent 32P incorporation in soleus muscle decreased in the order mice greater than rats greater than guinea pigs. In EDL muscles from hypothyroid rats at a 30% reduction of the Ca2+-dependent phosphorylation was observed. The Ca2+-dependent phosphorylation in vastus lateralis muscle from three human subjects amounted to 4.5 +/- 0.8 nmol/g wet wt. It is concluded that measurement of the Ca2+-dependent phosphorylation allows rapid and reproducible quantification of the concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum. Since only 20-60 mg of tissue is required for the measurements, the method can also be used for biopsies obtained in clinical studies.  相似文献   

16.
The purpose of this study was to further document the role of locally released norepinephrine (NE) in the control of metabolic and endocrine responses to exercise in rats. Post-ganglionic blockade with bretylium (20 mg.kg-1, i.v.) reduced NE release from sympathetic nerve endings and triggered a compensatory increase in epinephrine (E) release from the adrenal medulla, as reflected by plasma NE and E concentrations at rest and exercise (E/NE ratio = 2.92 +/- 0.53 and 2.48 +/- 0.51 vs 0.62 +/- 0.15 and 1.48 +/- 0.18 in control rats; mean +/- SE). Following bretylium administration a reduction in running time to exhaustion (28 m.min-1, 8% slope: 33 +/- 2 min vs 74 +/- 10 min) was associated with 1) a faster decrease in blood glucose concentration (3.58 +/- 0.80 mM vs 8.09 +/- 0.38 mM in control rats exercised for 33 min); and 2) an increased glycogen store utilization in fast-twitch muscles (superficial vastus lateralis and gastrocnemius lateralis). Glycogen utilization was not modified in soleus muscle and in the liver. Taken together these results suggest that post-ganglionic blockade increased carbohydrate store and peripheral blood glucose utilization. This could reflect an impairment in fat mobilization and utilization which might be secondary to a reduction of NE release in the adipose tissue and/or in the endocrine pancreas.  相似文献   

17.
The purpose of this study was to characterize the lipolytic activity of the alkaline triglyceride lipase in homogenates of three types of skeletal muscle obtained from heparin-perfused rat hindlimb. Specifically, the red portion of the vastus lateralis, the white portion of the vastus lateralis, and the soleus muscles were examined. To remove capillary-bound lipoprotein lipase from the capillary beds, muscle was perfused with an erythrocyte-free buffer containing 4% albumin, 5 units of heparin/mL, and 7.5 microM adenosine. Adenosine reduced perfusion pressure from 117 +/- 5 to 86 +/- 6 mmHg (1 mmHg = 133.32 Pa), providing evidence for an effective vasodilation. This vasodilation increased the amount of lipoprotein lipase removed from the capillary beds. By the end of the experiment, perfusates were lipoprotein lipase-free. Oxygen supply to the perfused hindlimb appeared adequate as evidenced by similar high energy phosphate values for perfused and contralateral control tissues. For example, in soleus muscle, ATP content was 4.5 +/- 0.6 vs. 4.2 +/- 0.3 mumol/g, ADP concentration was 1.0 +/- 0.2 vs. 1.4 +/- 0.2 mumol/g, and creatine phosphate level was 12.9 +/- 0.7 vs. 11.0 +/- 0.6 mumol/g for perfused and contralateral control soleus, respectively. In addition, K+ output by the hindlimb was negligible, while glycolytic flux of perfused muscle was similar to that measured in control tissue. The findings that triglyceride levels of soleus and red vastus lateralis were decreased suggest that endogenous triglyceride was providing energy for the hindlimb during perfusion. Skeletal muscle triglyceride lipase activity was stimulated by serum and heparin, inhibited by NaCl and protamine, and had a pH optimum of 8.1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In this study maximum shortening velocity (Vmax) and isometric tension (P0) in skinned single fibers from rat slow soleus (SOL) and fast superficial vastus lateralis (SVL) muscles were examined after varying degrees of filament lattice compression with dextran. In both fiber types Vmax was greatest in the absence of dextran and decreased as the concentration of dextran was increased between 2.5 and 10 g/100 ml. At 10% dextran, which compressed fiber width by 31-38%, Vmax relative to the initial 0% dextran value was 0.28 +/- 0.03 (mean +/- SE) and 0.26 +/- 0.02 in SVL and SOL fibers, respectively. The effect of compression to depress Vmax was reversed completely by returning the fiber to 0% dextran. The force-generating capability of skinned fibers was not as sensitive to variations in cell width. In both the SOL and SVL fibers P0 increased by 3-7% when the concentration of dextran was increased from 0 to 5%. Further compression of lattice volume with 10% dextran resulted in a 8-13% decline in P0 relative to the initial value. While the precise mechanism by which filament lattice spacing modulates contractile function is not known, our results suggest that the major effect is upon the rate constant for cross-bridge detachment.  相似文献   

19.
1. Morphological, biochemical and metabolic characteristics of hindlimb muscles from summer-active (SA), winter-active (WA) and hibernating (H) golden-mantled ground squirrels (Spermophilus lateralis) were examined to identify alterations resulting from seasonal periods of inactivity. 2. Cross-sectional areas of fibers from the soleus were reduced in both WA and H, although only significantly (P less than 0.05) in WA. Fibers in the EDL exhibited significant reductions in cross-sectional areas in both H and WA groups. Muscle fiber and capillary densities were altered in quantitative agreement with changes in cross-sectional areas. 3. Protein content was reduced 20% (P less than 0.05) in EDL from H and WA groups, but reductions (10%) in the soleus were not statistically significant. RNA content in WA and H groups was significantly decreased in soleus (20%) and EDL (35%) compared with SA, but DNA content was unchanged. 4. In the plantaris, triglyceride content was unchanged, but citrate synthase activity in H (210 +/- 13 mumol min-1 g-1) was significantly greater than in SA (177 +/- 10). In contrast, LDH activity in H was reduced by 25% (P less than 0.05) compared with SA. 5. These results demonstrate atrophic effects associated with seasonal inactivity in hibernating ground squirrels, but suggest the existence of natural mechanisms which limit the response.  相似文献   

20.
Distribution of blood flow in muscles of miniature swine during exercise   总被引:7,自引:0,他引:7  
The purpose of this study was to determine how the distribution of blood flow within and among the skeletal muscles of miniature swine (22 +/- 1 kg body wt) varies as a function of treadmill speed. Radiolabeled microspheres were used to measure cardiac output (Q) and tissue blood flows in preexercise and at 3-5 min of treadmill exercise at 4.8, 8.0, 11.3, 14.5, and 17.7 km/h. All pigs (n = 8) attained maximal O2 consumption (VO2max) (60 +/- 4 ml X min-1 X kg-1) by the time they ran at 17.7 km/h. At VO2max, 87% of Q (9.9 +/- 0.5 l/min) was to skeletal muscle, which constituted 36 +/- 1% of body mass. Average total muscle blood flow at VO2max was 127 +/- 14 ml X min-1 X 100 g-1; average limb muscle flow was 135 +/- 17 ml X min-1 X 100 g-1. Within the limb muscles, blood flow was distributed so that the deep red parts of extensor muscles had flows about two times higher than the more superficial white portions of the same muscles; the highest muscle blood flows occurred in the elbow flexors (brachialis: 290 +/- 44 ml X min-1 X 100 g-1). Peak exercise blood flows in the limb muscles were proportional (P less than 0.05) to the succinate dehydrogenase activities (r = 0.84), capillary densities (r = 0.78), and populations of oxidative (slow-twitch oxidative + fast-twitch oxidative-glycolytic) fiber types (r = 0.93) in the muscles. Total muscle blood flow plotted as a function of exercise intensity did not peak until the pigs attained VO2max, although flows in some individual muscles showed a plateau in this relationship at submaximal exercise intensities. The data demonstrate that blood flow in skeletal muscles of miniature swine is distributed heterogeneously and varies in relation to fiber type composition and exercise intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号