首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: Escherichia coli O157:H7 was monitored daily during sprouting of alfalfa seeds inoculated at high (3.92 log10 cfu g(-1)) and low (1.86 log10 cfu g(-1)) levels to assess the extent of pathogen growth during production. METHODS AND RESULTS: Sprouts and rinse water were tested by direct and membrane filter plating on modified sorbitol MacConkey agar and BCM O157:H7(+) agar; the antibody-direct epifluorescent filter technique; and rapid immunoassays. The pathogen reached maximum populations after one and two days of sprouting seeds inoculated at high and low levels, respectively; in either case, populations of 5-6 log10 cfu g(-1) were reached. Detection limits of two rapid immunoassays, Reveal and VIP, without enrichment were determined to be 5-7 log10 cfu ml(-1). CONCLUSION: These results show the ability of E. coli O157:H7 to grow to high levels during sprouting; however, because these levels may be below detection limits, it is necessary to include enrichment when monitoring sprout production for E. coli O157:H7 by the rapid test kits. SIGNIFICANCE AND IMPACT OF THE STUDY: The data indicate that sprouts may harbor high levels of pathogens. The appropriate use of rapid test methods for pathogen monitoring during sprouting is indicated.  相似文献   

2.
Enterohaemorrhagic Escherichia coli (EHEC) agar was evaluated for its ability to recover one isolate of each of three serotypes (O157:H7, O26 and O113:H21) of shiga toxin-producing E. coli (STEC) from raw mince, pasteurized milk and salami after enrichment. The method detected around one colony-forming unit (cfu) in 25 ml in milk, but was less sensitive with salami, requiring 10-1000 cfu 25 g-1 (depending on serotype) for detection. In raw minced beef any enterohaemolysin-producing colonies were outnumbered by other colonies and only one of 12 enrichments yielded the inoculum serotype. Additional tests were conducted on 15 retail meat products. One 25-g sample of each product was processed as purchased, while another was inoculated with 157-185 cfu of a cocktail of E. coli O157, O113 and O26 cultures. Recovery was easily achieved with cooked meat products and salami. Recovery from raw minced meat was again difficult, but sometimes possible. Testing more suspect colonies than were tested in this study would presumably increase the sensitivity of the method.  相似文献   

3.
Four different commercial kits (EHEC-TEK of Organon Teknika, Durham, NC; HEC O157 of 3M, St. Paul, MN; and Coline dipstick and Coline one-step of AMP-COR Inc., Camden, NJ) were evaluated for the detection and recovery of E. coli O157:H7from 75 fresh meat samples and 23 artificially inoculated beef and pork samples. Of the total 75 samples tested, 21 (28%) were presumptive positive by HEC O157 and Coline dipstick, 18 (24%) by Coline one-step, and 12 (16%) by EHEC-TEK. None of the presumptive positive samples by any of the methods was confirmed as E. coli O157:H7 (false positive). Of the 23 positive spiked samples tested, 23 were recovered by Coline dipstick and one-step (100%), 22 (95.6%) by HEC O157, and 20 (86.9) were recovered by EHEC-TEK. In the confirmation step 17 of the 23 spiked samples produced characteristic colonies on MacConkey sorbitol agar (Difco) with 5-bromo-4-chloro-3-indoxy-β-D-glucuronide (Biosynth International) (MSA-BCIG) and were confirmed as E. coli O157:H7. No characteristic colonies on MSA-BCIG were detected for 6 of the spiked samples with initial inoculum levels of between 2 to 70 cells/g and, therefore, were not confirmed as E. coli O157:H7. A better enrichment medium, as well as improved selective plating and confirmation techniques, are needed to enhance the selective growth of E. coli O157:H7 and provide lower detection levels.  相似文献   

4.
AIMS: To compare media used in immunomagnetic separation (IMS) techniques for the isolation of Escherichia coli O157 from food. METHODS AND RESULTS: Foods, both naturally contaminated and spiked, with low numbers (< 1 g(-1)) of stressed E. coli O157 were enriched in media based on buffered peptone water (BPW), tryptone soya and EC broths incubated at 30, 37, 40 and 42 degrees C. Following immunomagnetic separation, beads were plated on a range of selective agars. CONCLUSION: BPW supplemented with vancomycin (8 mg l(-1)) incubated at 42 degrees C, followed by IMS and subsequent plating of immunobeads onto cefixime tellurite sorbitol MacConkey agar plus either Rainbow or CHROMagar agars, proved optimum for the recovery of spiked, stressed E. coli O157 in minced beef, cheese, apple juice and pepperoni. The same protocol was optimum for recovery from naturally-contaminated minced beef and cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: The optimum protocol would increase isolation rates of E. coli O157 from foods.  相似文献   

5.
AIM: To develop an improved, rapid and sensitive sample preparation method for PCR-based detection of Escherichia coli O157:H7 in ground beef. METHODS AND RESULTS: Fresh ground beef samples were experimentally inoculated with varying concentrations of E. coli O157:H7. PCR inhibitors were removed and bacterial cells were concentrated by filtration and centrifugation, and lysed using enzymatic digestion and successive freeze/thaw cycles. DNA was purified and concentrated via phenol/chloroform extraction and the Shiga toxin 1 gene (stx1) was amplified using PCR to evaluate the sample preparation method. Without prior enrichment of cells in broth media, the detection limit was 103 CFU g-1 beef. When a 6 h enrichment step was incorporated, the detection limit was 1 CFU g-1 beef. The total time required from beginning to end of the procedure was 12 h. CONCLUSIONS: The sample preparation method developed here enabled substantially improved sensitivity in the PCR-based detection of E. coli O157:H7 in ground beef, as compared to previous reports. SIGNIFICANCE AND IMPACT OF THE STUDY: Superb sensitivity, coupled with quick turn-around time, relative ease of use and cost-effectiveness, makes this a useful method for detecting E. coli O157:H7 in ground beef.  相似文献   

6.
AIMS: The behaviour of Escherichia coli O157:H7 was studied during the manufacture and ripening of a smear-ripened cheese produced from raw milk. METHODS AND RESULTS: Cheese was manufactured on a laboratory scale using milk (20 l) inoculated with E. coli O157:H7, and enumeration was carried out using CT-SMAC. From an initial level of 1.52 +/- 0.03 log cfu ml-1 in the milk (34 +/- 2 cfu ml-1), the numbers increased to 3.4 +/- 0.05 log cfu g-1 in the cheese at day 1. During ripening, the numbers decreased to <1 cfu g-1 and <10 cfu g-1 in the rind and core, respectively, after 21 days, although viable cells were detected by enrichment after 90 days. The presence of E. coli O157:H7 in the cheese was confirmed by latex agglutination and by multiplex PCR. CONCLUSION: The results indicate that the manufacturing procedure encouraged substantial growth of E. coli O157:H7 to levels that permitted survival during ripening and extended storage. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of low numbers of E. coli O157:H7 in milk, destined for raw milk cheese manufacture, could constitute a threat to the consumer.  相似文献   

7.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

8.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

9.
Tryptone soya agar (TSA) and three selective media, BCM1M O157:H7(+) agar (BCM), modified eosin methylene blue agar (MEMB), and sorbitol MacConkey agar (SMAC) were evaluated for recovery of two strains of E. coli O157:H7 (salami and cider isolates) heated at 56, 58, and 60C for up to 60 min in tryptone soya broth (TSB). TSA and MEMB were equally effective at recovery of heat-stressed (56, 58, and 60C) E . coli O 157:H7 and superior to SMAC and BCM (P 0.05). When heated at 56 and 58C, recovery of E. coli O157:H7 on MEMB and TSA was not significantly different (P > 0.05); recovery was poorer on SMAC, followed by BCM (P 0.05). There was no significant difference in recovery of E. coli O157:H7 on BCM and SMAC when strains were heated at 60C (P > 0.05).  相似文献   

10.
The survival characteristics of a non-toxigenic, antibiotic-resistant strain of Escherichia coli O157:H7 in bovine faeces were investigated. Faecal samples were inoculated with 10(8-9) cfu g-1 of the organism and (i) stored in closed plastic containers at 10 degrees C, (ii) stored in closed plastic containers placed outside or (iii) decanted onto the surface of grazing land. Recovery and enumeration on Sorbitol MacConkey Agar (SMAC) and Tryptic Soya Agar (TSA) revealed that the E. coli O157:H7 numbers in both enclosed samples (i and ii) had decreased by 4.5-5.5 log10 cfu g-1 within 99 d. Numbers in samples decanted onto grassland (iii) decreased by 4.0-5.0 log10 cfu g-1 within 50 d but the organism was still detectable in the surrounding soil for up to 99 d. Persistence of E. coli O157:H7 in bovine faeces and contaminated pastures may therefore be an important factor in the initial infection and re-infection of cattle.  相似文献   

11.
The efficacy of tryptic soy agar (TSA), modified sorbitol MacConkey agar (MSMA), modified eosin methylene blue (MEMB) agar, and modified SD-39 (MSD) agar in recovering a five-strain mixture of enterohemorrhagic Escherichia coli O157:H7 and five non-O157 strains of E. coli heated in tryptic soy broth at 52, 54, or 56 degrees C for 10, 20, and 30 min was determined. Nonselective TSA supported the highest recovery of heated cells. Significantly (P < or = 0.05) lower recovery of heat-stressed cells was observed on MSMA than on TSA, MEMB agar, or MSD agar. The suitability of MEMB agar or MSD agar for recovery of E. coli O157:H7 from heated or frozen (-20 degrees C) low- or high-fat ground beef was determined. Recovery of E. coli O157:H7 from heated ground beef was significantly (P < or = 0.05) higher on TSA than on MEMB agar, which in turn supported higher recovery than MSD agar did; MSMA was inferior. Recovery from frozen ground beef was also higher on MEMB and MSD agars than on MSMA. Higher populations were generally recovered from high-fat beef than from low-fat beef, but the relative performance of the recovery media was the same. The inability of MSMA to recover stressed cells of E. coli O157:H7 underscores the need to develop a better selective medium for enumerating E. coli O157:H7.  相似文献   

12.
The immuno-polymerase chain reaction (PCR) approaches facilitate rapid (8 h) detection of Escherichia coli O157:H7 in contaminated dairy products and ground beef samples with detection sensitivities approaching 1 colony forming unit (cfu) g-1 ml-1. However, no PCR products were obtained when the method was applied to identify E. coli O157:H7 in tainted apple juice. Enzyme-linked immuno-assay (ELISA) results suggested non-specific binding of endogenous polyphenols (ubiquitous in plant products) to antibodies present on the surface of the immunobeads, making the latter unavailable for capturing the target bacteria Treatment of the test sample, prior to IMS, with a synthetic fining agent, polyvinylpyrrolidone, restored the full function and sensitivity of the immuno-PCR. The study demonstrates the suitability of the improved method as a generic strategy for rapid screening of fruit juices and plant produce for E. coli O157:H7.  相似文献   

13.
We studied injury of Escherichia coli O157:H7 cells in 11 food items during freeze storage and methods of isolating freeze-injured E. coli O157:H7 cells from foods. Food samples inoculated with E. coli O157:H7 were stored for 16 weeks at -20 degrees C in a freezer. Noninjured and injured cells were counted by using tryptic soy agar and sorbitol MacConkey agar supplemented with cefixime and potassium tellurite. Large populations of E. coli O157:H7 cells were injured in salted cabbage, grated radish, seaweed, and tomato samples. In an experiment to detect E. coli O157:H7 in food samples artificially contaminated with freeze-injured E. coli O157:H7 cells, the organism was recovered most efficiently after the samples were incubated in modified E. coli broth without bile salts at 25 degrees C for 2 h and then selectively enriched at 42 degrees C for 18 h by adding bile salts and novobiocin. Our enrichment method was further evaluated by isolating E. coli O157:H7 from frozen foods inoculated with the organism prior to freezing. Two hours of resuscitation at 25 degrees C in nonselective broth improved recovery of E. coli O157:H7 from frozen grated radishes and strawberries, demonstrating that the resuscitation step is very effective for isolating E. coli O157:H7 from frozen foods contaminated with injured E. coli O157:H7 cells.  相似文献   

14.
AIMS: To evaluate the suitability of a multiplex PCR-based assay for sensitive and rapid detection of Escherichia coli O157:H7 in soil and water. METHODS AND RESULTS: Soil and water samples were spiked with E. coli O157:H7 and subjected to two stages of enrichment prior to multiplex PCR. Detection sensitivities were as high as 1 cfu ml(-1) drinking water and 2 cfu g(-1) soil. Starvation of E. coli O157:H7 for 35 d prior to addition to soil did not affect the ability of the assay to detect initial cell numbers as low as 10 cfu g(-1) soil. Use of an 8-h primary enrichment enabled detection of as few as 6 cfu g(-1) soil, and 10(4) cfu g(-1) soil with a 6-h primary enrichment. When soil was inoculated with 10(5) cfu g(-1), the PCR assay indicated persistence of E. coli O157:H7 during a 35 d incubation. However, when soil was inoculated with lower numbers of pathogen, PCR amplification signals indicated survival to be dependent on cell concentration. CONCLUSIONS: A multiplex PCR-based assay, in combination with an enrichment strategy enabled sensitive and rapid detection of E. coli O157:H7 in soil and water. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to sensitively detect E.coli O157:H7 in environmental material within one working day represents a considerable advancement over alternative more time-consuming methods for detection of this pathogen.  相似文献   

15.
A total of 896 samples of retail fresh meats and poultry was assayed for Escherichia coli serogroup O157:H7 by a hydrophobic grid membrane filter-immunoblot procedure developed specifically to isolate the organism from foods. The procedure involves several steps, including selective enrichment, filtration of enrichment culture through hydrophobic grid membrane filters, incubation of each filter on nitrocellulose paper on selective agar, preparation of an immunoblot (by using antiserum to E. coli O157:H7 culture filtrate) of each nitrocellulose paper, selection from the filters of colonies which corresponded to immunopositive sites on blots, screening of isolates by a Biken test for precipitin lines from metabolites and antiserum to E. coli O157:H7 culture filtrate, and confirmation of isolates as Vero cell cytotoxic E. coli O157:H7 by biochemical, serological, and Vero cell cytotoxicity tests. E. coli O157:H7 was isolated from 6 (3.7%) of 164 beef, 4 (1.5%) of 264 pork, 4 (1.5%) of 263 poultry, and 4 (2.0%) of 205 lamb samples. One of 14 pork samples and 5 of 17 beef samples contaminated with the organism were from Calgary, Alberta, Canada, grocery stores, whereas all other contaminated samples were from Madison, Wis., retail outlets. This is the first report of the isolation of E. coli O157:H7 from food other than ground beef, and results indicate that the organism is not a rare contaminant of fresh meats and poultry.  相似文献   

16.
In this study, enrichment procedures and two recovery methods, a membrane surface adhesion technique and an immunomagnetic separation (IMS), were compared for use in conjunction with a multiplex polymerase chain reaction (PCR) method with a view to describing a fast (24 h) and economical test for detection of Escherichia coli O157:H7 in meat samples. The study showed no significant difference between three different enrichment media (BHI, E. coli (E.C.) broth+novobiocin, modified tryptone soya broth (mTSB)+novobiocin) or two incubation temperatures (37 or 41.5 degrees C) for growth of E. coli O157:H7 in minced beef. Minced beef samples inoculated with E. coli O157:H7 at 40 cfu g(-1) were incubated at 37 degrees C for 16 h in E.C. broth+novobiocin reaching numbers of (log(10)7.82-8.70). E. coli O157:H7 were recovered by attachment to polycarbonate membranes immersed in the enriched cultures for 15 min or by immunomagnetic separation. Subsequent treatment of recovered membranes or IMS beads with lysis buffer and phenol/chloroform/isoamyl alcohol was used to extract the DNA from the extracted E. coli O157:H7 cells. The results show when E. coli O157:H7 was present at high levels in the enriched meat sample (log(10)9.6-7.5 cfu ml(-1); >16-h enrichment), the membrane and IMS techniques recovered similar levels of the pathogen and the microorganism was detectable by PCR using both methods. At lower levels of E. coli O157:H7 (log(10)6.4), only the IMS method could recover the pathogen but at levels below this neither method could recover sufficient numbers of the pathogens to allow detection. The conclusion of the study is that with sufficient enrichment time (16 h) the membrane surface adhesion membrane extraction method used in combination with multiplex PCR has the potential for a rapid and economical detection method.  相似文献   

17.
In this study, the sensitivities of multiplex PCR and an immuno-chromatographic methods to detect Escherichia coli O157:H7 in minced beef were compared. The detection of Escherichia coli O157:H7 in minced beef inoculated with 1-100 cells of this bacterium was possible after enrichment of culture and subsequent analysis by either of the two methods. Enrichment conditions were eight hours of incubation at 37 degrees C or 42 degrees C in a non-selective medium (Buffered Peptone Water). Multiplex PCR analysis was performed using three primer sets with analysis by gel electrophoresis. The Quix immuno-chromatographic assay which is a new kit being marketed by New Horizons Diagnostics, Columbia, MD, was used for immunological analysis of the enriched broths.The sensitivity of both tests was similar. The results depended on the concentration of the specific bacterium in the culture since the influence of the proportion of other bacteria to the E. coli O157:H7 was not observed. The data suggests that either method or used together, when coupled with an enrichment technique, could provide a rapid mean to detect the presence of this pathogen in minced meat samples.  相似文献   

18.
Escherichia coli O157:H7, a major foodborne pathogen, has been associated with numerous cases of foodborne illnesses. Rapid methods have been developed for the screening of this pathogen in foods in order to circumvent timely plate culture techniques. Unfortunately, many rapid methods are presumptive and do not claim to confirm the presence of E. coli O157:H7. The previously developed method, enzyme-linked immunomagnetic chemiluminescence (ELIMCL), has been improved upon to allow for fewer incidences of false positives when used to detect E. coli O157:H7 in the presence of mixed cultures. The key feature of this assay is that it combines the highly selective synergism of both anti-O157 and anti-H7 antibodies in the sandwich immunoassay format. This work presents application of a newly semi-automated version of ELIMCL to the detection of E. coli O157:H7 in pristine buffered saline yielding detection limits of approximately 1 x 10(5) to 1 x 10(6) of live cells/mL. ELIMCL was further demonstrated to detect E. coli O157:H7 inoculated into artificially contaminated ground beef at ca. 400 CFU/g after a 5 h enrichment and about 1.5 h assay time for a total detection time of about 6.5 h. Finally, ELIMCL was compared with USFDA's Bacteriological Analytical Manual method for E. coli O157:H7 in a double-blind study. Using McNemar's treatment, the two methods were determined to be statistically similar for the detection of E. coli O157:H7 in ground beef inoculated with mixed cultures of select bacteria.  相似文献   

19.
AIMS: The aims of this study were (i) to evaluate the specificity and sensitivity of three previously described PCR assays for the detection of E. coli O157 and, (ii) to compare PCR, culture, and two visual immunoassays (VIAs), BioSign and Path-Stik, for detecting E. coli O157 after enrichment culture and immunomagnetic separation (IMS) performed on various naturally contaminated raw beef, lamb and mixed meat products. METHODS AND RESULTS: Twelve sorbitol non fermenting (SNF) verocytotoxin-producing (VT+) E. coli O157, 6 SNF VT- E. coli O157, 4 sorbitol fermenting (SF) VT+ E. coli O157, 3 SF VT- E. coli O157, 23 E. coli belonging to 17 other serogroups and 12 organisms of other species were used to check the specificity of PCR reactions. Only one primer pair generated amplimers only with E. coli O157 and was used for all subsequent work. After enrichment culture and on inoculated minced beef samples, PCR was as sensitive as culture for detecting 9 of the 12 strains of E. coli O157, but up to 4 log10 more sensitive than culture for detecting three strains. Of the 120 samples of naturally contaminated meat products examined, 80 (67%) were positive by PCR, 70 (58%) were positive by BioSign, 69 (58%) were positive by culture and 67 (56%) were positive by Path-Stik. Eleven samples were positive by PCR and both VIAs, but negative by culture because culture plates were heavily overgrown with SF organisms making detection of any E. coli O157 present impossible. CONCLUSIONS: PCR and both VIAs compared well with culture of beads to CT-SMAC for detecting E. coli O157 after enrichment culture and IMS. PCR appeared to be the most sensitive method, but needed specialised equipment and was also the most expensive, laborious and technically demanding technique. Although lacking the sensitivity of PCR, the VIAs were of comparable sensitivity to culture and were extremely quick and easy to perform giving a result in less than 15 minutes. SIGNIFICANCE AND IMPACT OF THE STUDY: Culture techniques may fail to detect E. coli O157 retrieved by IMS due to overgrowth with other organisms.  相似文献   

20.
C. VERNOZY-ROZAND, C. MAZUY, S. RAY-GUENIOT, S. BOUTRAND-LOEï, A. MEYRAND AND y. richard. 1997. Two commercially available screening methods, an automated enzyme-linked fluorescent immunoassay (VIDASTM E. coli O157) and an immunomagnetic separation followed by culture onto cefixime tellurite sorbitol MacConkey agar (CT-SMAC), were compared for detection of Escherichia coli O157 in naturally and artificially contaminated food samples. A total of 250 naturally contaminated food samples, including raw milk cheeses, poultry, raw sausages and ground beef retail samples, were examined. Four poultry, one raw sausage and one ground beef sample were found to be positive for E. coli O157 by both methods. Of the six positive samples, five were shown to contain sorbitol-positive, O157-positive, H7-negative, motile and non-verotoxin-producing E. coli .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号