首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metazoan nuclear envelope (NE) breaks down and reforms at each mitosis. Nuclear pore complexes (NPCs), which allow nucleocytoplasmic transport during interphase, assemble into the reforming NE at the end of mitosis. Using in vitro NE assembly assays, we show that one of the two transmembrane nucleoporins, pom121, is essential for NE formation, whereas the second, gp210, is dispensable. Depletion of either pom121-containing membrane vesicles or the protein alone does not affect vesicle binding to chromatin but prevents their fusion to form a closed NE. When the Nup107-160 complex, which is essential for integration of NPCs into the NE, is also depleted, pom121 becomes dispensable for NE formation, suggesting a close functional link between NPC and NE formation and the existence of a checkpoint that monitors NPC assembly state.  相似文献   

2.
An important step in mRNA biogenesis is the export of mRNA from the nucleus to the cytoplasm. In this work, we provide evidence that the previously uncharacterized gene APQ12 functions in nucleocytoplasmic mRNA transport in Saccharomyces cerevisiae. First, apq12delta strains manifest 3' hyperadenylated mRNA similar to other previously characterized RNA export mutants. Second, bulk poly(A)+ RNA is retained in the nucleus in apq12delta cells. Third, an Apq12p-GFP chimeric protein is localized to the nuclear periphery. Fourth, mRNA in apq12delta cells is stabilized, consistent with a defect in the rate of nuclear export. Interestingly, apq12delta mutants are severely compromised for growth and display atypical cell morphology. Because this aberrant cell morphology is not seen with other viable export mutants, Apq12p must have either an additional cellular function, or preferentially impinge on the export of mRNAs regulating cell growth. Together, these findings support a role for APQ12 in nucleocytoplasmic transport of mRNA.  相似文献   

3.
We have identified a concanavalin A-reactive glycoprotein of 150 kD that coenriches with isolated yeast nuclear pore complexes. Molecular cloning and sequencing of this protein revealed a single canonical transmembrane segment. Epitope tagging and localization by both immunofluorescence and immunoelectron microscopy confirmed that it is a pore membrane protein. The protein was termed POM152 (for pore membrane protein of 152 kD) on the basis of its location and cDNA-deduced molecular mass. POM152 is likely to be a type II membrane protein with its NH2-terminal region (175 residues) and its COOH-terminal region (1,142 residues) positioned on the pore side and cisternal side of the pore membrane, respectively. The proposed cisternally exposed domain contains eight repetitive motifs of approximately 24 residues. Surprisingly, POM152 deletion mutants were viable and their growth rate was indistinguishable from that of wild-type cells at temperatures between 17 and 37 degrees C. However, overproduction of POM152 inhibited cell growth. When expressed in mouse 3T3 cells, POM152 was found to be localized to the pore membrane, suggesting a conserved sorting pathway between yeast and mammals.  相似文献   

4.
During the synthesis of integral membrane proteins (IMPs), the hydrophobic amino acids of the polypeptide sequence are partitioned mostly into the membrane interior and hydrophilic amino acids mostly into the aqueous exterior. Using a many-body statistical mechanics model, we analyze the minimum free energy state of polypeptide sequences partitioned into α-helical transmembrane (TM) segments and the role of thermal fluctuations. Results suggest that IMP TM segment partitioning shares important features with general theories of protein folding. For random polypeptide sequences, the minimum free energy state at room temperature is characterized by fluctuations in the number of TM segments with very long relaxation times. Moreover, simple assembly scenarios do not produce a unique number of TM segments due to jamming phenomena. On the other hand, for polypeptide sequences corresponding to actual IMPs, the minimum free energy structure with the wild-type number of segments is free of number fluctuations due to an anomalously large gap in the energy spectrum. Now, simple assembly scenarios do reproduce the minimum free energy state without jamming. Finally, we find a threshold number of random point mutations where the size of the anomalous gap is reduced to the point that the wild-type ground state is destabilized and number fluctuations reappear.  相似文献   

5.
Here, we report the first evidence that the Ran GTPase cycle is required for nuclear pore complex (NPC) assembly. Using a genetic approach, factors required for NPC assembly were identified in Saccharomyces cerevisiae. Four mutant complementation groups were characterized that correspond to respective mutations in genes encoding Ran (gsp1), and essential Ran regulatory factors Ran GTPase-activating protein (rna1), Ran guanine nucleotide exchange factor (prp20), and the RanGDP import factor (ntf2). All the mutants showed temperature-dependent mislocalization of green fluorescence protein (GFP)-tagged nucleoporins (nups) and the pore-membrane protein Pom152. A decrease in GFP fluorescence associated with the nuclear envelope was observed along with an increase in the diffuse, cytoplasmic signal with GFP foci. The defects did not affect the stability of existing NPCs, and nup mislocalization was dependent on de novo protein synthesis and continued cell growth. Electron microscopy analysis revealed striking membrane perturbations and the accumulation of vesicles in arrested mutants. Using both biochemical fractionation and immunoelectron microscopy methods, these vesicles were shown to contain nups. We propose a model wherein a Ran-mediated vesicular fusion step is required for NPC assembly into intact nuclear envelopes.  相似文献   

6.
We have identified an integral membrane protein of 145 kD (estimated by SDS-PAGE) of rat liver nuclear envelopes that binds to WGA. We obtained peptide sequence from purified p145 and cloned and sequenced several cDNA clones and one genomic clone. The relative molecular mass of p145 calculated from its complete, cDNA deduced primary structure is 120.7 kD. Antibodies raised against a synthetic peptide represented in p145 reacted monospecifically with p145. In indirect immunofluorescence these antibodies gave punctate staining of the nuclear envelope. Immunogold EM showed specific decoration of the nuclear pores. Thus p145 is an integral membrane protein located specifically in the "pore membrane" domain of the nuclear envelope. To indicate this specific location, and based on its calculated relative molecular mass, the protein is termed POM 121 (pore membrane protein of 121 kD). The 1,199- residue-long primary structure shows a hydrophobic region (residues 29- 72) that is likely to form one (or two adjacent) transmembrane segment(s). The bulk of the protein (residues 73-1199) is predicted to be exposed not on the cisternal side but on the pore side of the pore membrane. It contains 36 consensus sites for various kinases. However, its most striking feature is a repetitive pentapeptide motif XFXFG that has also been shown to occur in several nucleoporins. This nucleoporin- like domain of POM 121 is proposed to function in anchoring components of the nuclear pore complex to the pore membrane.  相似文献   

7.
We have observed the assembly of the staphylococcal pore-forming toxin α-hemolysin using single-molecule fluorescence imaging. Surprisingly, assembly from the monomer to the complete heptamer is extremely rapid, occurring in <5 ms. No lower order oligomeric intermediates are detected. Monte Carlo simulation of our experiment shows that assembly is diffusion limited, and pore formation is dependent on the stability of intermediate species. There are close similarities between bacterial pore-forming toxins, such as staphylococcal α-hemolysin, the anthrax protective antigen, and the cholesterol-dependent cytolysins, and their eukaryotic analogs, such as the complement pore membrane attack complex and perforin domain. The assembly mechanism we have observed for α-hemolysin provides a simple model that aids our understanding of these important pore formers.  相似文献   

8.
《Molecular cell》2022,82(20):3856-3871.e6
  1. Download : Download high-res image (235KB)
  2. Download : Download full-size image
  相似文献   

9.
Nuclear pore complexes are large aqueous channels that penetrate the nuclear envelope, thereby connecting the nuclear interior with the cytoplasm. Until recently, these macromolecular complexes were viewed as static structures, the only function of which was to control the molecular trafficking between the two compartments. It has now become evident that this simplistic scenario is inaccurate and that nuclear pore complexes are highly dynamic multiprotein assemblies involved in diverse cellular processes ranging from the organization of the cytoskeleton to gene expression. In this review, we discuss the most recent developments in the nuclear-pore-complex field, focusing on the assembly, disassembly, maintenance and function of this macromolecular structure.  相似文献   

10.
Miao M  Ryan KJ  Wente SR 《Genetics》2006,172(3):1441-1457
Here we have examined the function of Pom34p, a novel membrane protein in Saccharomyces cerevisiae, localized to nuclear pore complexes (NPCs). Membrane topology analysis revealed that Pom34p is a double-pass transmembrane protein with both the amino (N) and carboxy (C) termini positioned on the cytosolic/pore face. The network of genetic interactions between POM34 and genes encoding other nucleoporins was established and showed specific links between Pom34p function and Nup170p, Nup188p, Nup59p, Gle2p, Nup159p, and Nup82p. The transmembrane domains of Pom34p in addition to either the N- or C-terminal region were necessary for its function in different double mutants. We further characterized the pom34deltaN nup188delta mutant and found it to be perturbed in both NPC structure and function. Mislocalization of a subset of nucleoporins harboring phenylalanine-glycine repeats was observed, and nuclear import capacity for the Kap104p and Kap121p pathways was inhibited. In contrast, the pom34delta pom152delta double mutant was viable at all temperatures and showed no such defects. Interestingly, POM152 overexpression suppressed the synthetic lethality of pom34delta nup170delta and pom34delta nup59delta mutants. We speculate that multiple integral membrane proteins, either within the nuclear pore domain or in the nuclear envelope, execute coordinated roles in NPC structure and function.  相似文献   

11.
Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin beta down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin beta to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin beta 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin beta-regulation of NPC assembly. Excess full-length importin beta and beta 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin beta NPC block, which maps downstream of GTPgammaS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 microM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin beta. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly.  相似文献   

12.
Resident integral proteins of the inner nuclear membrane (INM) are synthesized as membrane-integrated proteins on the peripheral endoplasmic reticulum (ER) and are transported to the INM throughout interphase using an unknown trafficking mechanism. To study this transport, we developed a live cell assay that measures the movement of transmembrane reporters from the ER to the INM by rapamycin-mediated trapping at the nuclear lamina. Reporter constructs with small (<30 kD) cytosolic and lumenal domains rapidly accumulated at the INM. However, increasing the size of either domain by 47 kD strongly inhibited movement. Reduced temperature and ATP depletion also inhibited movement, which is characteristic of membrane fusion mechanisms, but pharmacological inhibition of vesicular trafficking had no effect. Because reporter accumulation at the INM was inhibited by antibodies to the nuclear pore membrane protein gp210, our results support a model wherein transport of integral proteins to the INM involves lateral diffusion in the lipid bilayer around the nuclear pore membrane, coupled with active restructuring of the nuclear pore complex.  相似文献   

13.
Aphysical and functional link between the nuclear pore complex (NPC) and the spindle checkpoint machinery has been established in the yeast Saccharomyces cerevisiae. We show that two proteins required for the execution of the spindle checkpoint, Mad1p and Mad2p, reside predominantly at the NPC throughout the cell cycle. There they are associated with a subcomplex of nucleoporins containing Nup53p, Nup170p, and Nup157p. The association of the Mad1p-Mad2p complex with the NPC requires Mad1p and is mediated in part by Nup53p. On activation of the spindle checkpoint, we detect changes in the interactions between these proteins, including the release of Mad2p (but not Mad1p) from the NPC and the accumulation of Mad2p at kinetochores. Accompanying these events is the Nup53p-dependent hyperphosphorylation of Mad1p. On the basis of these results and genetic analysis of double mutants, we propose a model in which Mad1p bound to a Nup53p-containing complex sequesters Mad2p at the NPC until its release by activation of the spindle checkpoint. Furthermore, we show that the association of Mad1p with the NPC is not passive and that it plays a role in nuclear transport.  相似文献   

14.
The nuclear pore complex (NPC) is a large channel that spans the two lipid bilayers of the nuclear envelope and mediates transport events between the cytoplasm and the nucleus. Only a few NPC components are transmembrane proteins, and the role of these proteins in NPC function and assembly remains poorly understood. We investigate the function of the three integral membrane nucleoporins, which are Ndc1p, Pom152p, and Pom34p, in NPC assembly and transport in Saccharomyces cerevisiae. We find that Ndc1p is important for the correct localization of nuclear transport cargoes and of components of the NPC. However, the role of Ndc1p in NPC assembly is partially redundant with Pom152p, as cells lacking both of these proteins show enhanced NPC disruption. Electron microscopy studies reveal that the absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to an increased diffusion between the cytoplasm and the nucleus.  相似文献   

15.
Nuclear pore complexes (NPCs) control the movement of molecules across the nuclear envelope (NE). We investigated the molecular interactions that exist at the interface between the NPC scaffold and the pore membrane. We show that key players mediating these interactions in mammalian cells are the nucleoporins Nup155 and Nup160. Nup155 depletion massively alters NE structure, causing a dramatic decrease in NPC numbers and the improper targeting of membrane proteins to the inner nuclear membrane. The role of Nup155 in assembly is likely closely linked to events at the membrane as we show that Nup155 interacts with pore membrane proteins Pom121 and NDC1. Furthermore, we demonstrate that the N terminus of Pom121 directly binds the β-propeller regions of Nup155 and Nup160. We propose a model in which the interactions of Pom121 with Nup155 and Nup160 are predicted to assist in the formation of the nuclear pore and the anchoring of the NPC to the pore membrane.  相似文献   

16.
The integral membrane protein Apq12 is an important nuclear envelope (NE)/endoplasmic reticulum (ER) modulator that cooperates with the nuclear pore complex (NPC) biogenesis factors Brl1 and Brr6. How Apq12 executes these functions is unknown. Here, we identified a short amphipathic α-helix (AαH) in Apq12 that links the two transmembrane domains in the perinuclear space and has liposome-binding properties. Cells expressing an APQ12 (apq12-ah) version in which AαH is disrupted show NPC biogenesis and NE integrity defects, without impacting Apq12-ah topology or NE/ER localization. Overexpression of APQ12 but not apq12-ah triggers striking over-proliferation of the outer nuclear membrane (ONM)/ER and promotes accumulation of phosphatidic acid (PA) at the NE. Apq12 and Apq12-ah both associate with NPC biogenesis intermediates and removal of AαH increases both Brl1 levels and the interaction between Brl1 and Brr6. We conclude that the short amphipathic α-helix of Apq12 regulates the function of Brl1 and Brr6 and promotes PA accumulation at the NE possibly during NPC biogenesis.  相似文献   

17.
Nuclear pore complexes (NPCs) fuse the two membranes of the nuclear envelope (NE) to a pore, connecting cytoplasm and nucleoplasm and allowing exchange of macromolecules between these compartments. Most NPC proteins do not contain integral membrane domains and thus it is largely unclear how NPCs are embedded and anchored in the NE. Here, we show that the evolutionary conserved nuclear pore protein Nup53 binds independently of other proteins to membranes, a property that is crucial for NPC assembly and conserved between yeast and vertebrates. The vertebrate protein comprises two membrane binding sites, of which the C‐terminal domain has membrane deforming capabilities, and is specifically required for de novo NPC assembly and insertion into the intact NE during interphase. Dimerization of Nup53 contributes to its membrane interaction and is crucial for its function in NPC assembly.  相似文献   

18.
The two yeast proteins Mlp1p and Mlp2p (homologues of the vertebrate protein Tpr) are filamentous proteins attached to the nuclear face of nuclear pore complexes. Here we perform a proteomic analysis, which reveals that the two Mlps have strikingly different interacting partners, testifying to their different roles within the cell. We find that Mlp2p binds directly to Spc110p, Spc42p, and Spc29p, which are three core components of the spindle pole body (SPB), the nuclear envelope-associated yeast spindle organizer. We further show that SPB function is compromised in mlp2 mutants. Cells lacking Mlp2p form significantly smaller SPBs, accumulate aberrant SPB component-containing structures inside the nucleus, and have stochastic failures of cell division. In addition, depletion of Mlp2p is synthetically lethal with mutants impaired in SPB assembly. Based on these data, we propose that Mlp2p links the SPB to the peripheral Mlp assembly, and that this linkage is required for efficient incorporation of components into the SPB.  相似文献   

19.
The complete primary structure of an integral membrane glycoprotein of the nuclear pore was deduced from the cDNA sequence. The cDNA encodes a polypeptide of 204,205 D containing a 25-residue-long signal sequence, two hydrophobic segments that could function as transmembrane segments, and 13 potential N-linked oligosaccharide addition sites. Endoglycosidase H reduces the molecular mass by approximately 9 kD suggesting that not all of these 13 sites are used. We discuss possible models for the topology of this protein in the pore membrane as well as a possible role in the formation of pores and pore complexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号