首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
10 sera were studied from patients with primary biliary cirrhosis (PBC), that were anomalous in their reactivity against mitochondrial antigens as detected by Western blotting. They had low reactivity against the major, M2 reactive antigen (Mr for beef heart mitochondria, 74 Kd) but reacted against an antigen of Mr 52 Kd (species independent) which was apparently inaccessible in submitochondrial particles (SMP) on ELISA and which was not present in chloroform-released ATPase preparations. In all respects this differed from the characteristics of the M2 antigens and it is concluded that these sera are detecting predominantly the M4-reactive antigen.To whom correspondence should be addressed.  相似文献   

2.
Antimitochondrial antibodies are found in a variety of autoimmune liver diseases, particularly primary biliary cirrhosis. The antigen against which these antibodies are directed is localized on the inner mitochondrial membrane. Earlier work suggested that this antigen was associated with the mitochondrial ATPase. However, we have succeeded in separating the enzyme activity from the antigenic activity using gel filtration and ion-exchange chromatography. Furthermore, the antigenic activity is not affected by modulators of ATPase enzymatic activity like aurovertin or oligomycin. The antigenic activity is, however, very susceptible to reagents which block thiol groups. The mitochondrial antigen, in contrast to the ATPase enzyme, is found in high amounts in brown fat mitochondria. Identification of this antigen may help to explain why specific antimitochondrial antibodies arise in the sera of patients with primary biliary cirrhosis.Abbreviations ATPase adenosine triphosphatase - PBC primary biliary cirrhosis - AMA antimitochondrial antibodies - SMPs submitochondrial particles - CFT complement fixation test - SDS sodium dodecyl sulfate - BSA bovine serum albumin - BAT brown adipose tissue  相似文献   

3.
We have investigated the extent to which the assembly of the cytoplasmically synthesized subunits of the H+-ATPase can proceed in a mtDNA-less (rho°) strain of yeast, which is not capable of mitochondrial protein synthesis. Three of the membrane sector proteins of the yeast H+-ATPase are synthesized in the mitochondria, and it is important to determine whether the presence of these subunits is essential for the assembly of the imported subunits to the inner mitochondrial membrane. A monoclonal antibody against the cytoplasmically synthesized -subunit of the H+-ATPase was used to immunoprecipitate the assembled subunits of the enzyme complex. Our results indicate that the imported subunits of the H+-ATPase can be assembled in this mutant, into a defective complex which could be shown to be associated with the mitochondrial membrane by the analysis of the Arrhenius kinetics of the mutant mitochondrial ATPase activity.This paper is No. 61 in the seriesBiogenesis of Mitochondria. For paper No. 60, see Novitskiet al. (1984).  相似文献   

4.
Synthesis and transport of mitochondrial proteins were followed in a cell-free homogenate of Neurospora crassa in which mitochondrial translation was inhibited. Proteins synthesized on cytoplasmic ribosomes are transferred into the mitochondrial fraction. The relative amounts of proteins which are transferred in vitro are comparable to those transferred in whole cells. Cycloheximide and puromycin inhibit the synthesis of mitochondrial proteins but not their transfer into mitochondria. The transfer of immunoprecipitable mitochondrial proteins was demonstrated for matrix proteins, carboxyatractyloside-binding protein and cytochrome c. Import of proteins into mitochondria exhibits a degree of specificity. The transport mechanism differentiates between newly synthesized proteins and preexistent mitochondrial proteins, at least in the case of matrix proteins. In the cell-free homogenate membrane-bound ribosomes are more active in the synthesis of mitochondrial proteins than are free ribosomes. The finished translation products appear to be released from the membrane-bound ribosomes into the cytosol rather than into the membrane vesicles. The results suggest that the transport of cytoplasmically synthesized mitochondrial proteins is essentially independent of cytoplasmic translation; that cytoplasmically synthesized mitochondrial proteins exist in an extramitochondrial pool prior to import; that the site of this pool is the cytosol for at least some of the mitochondrial proteins; and that the precursors in the extramitochondrial pool differ in structure or conformation from the functional proteins in the mitochondria.  相似文献   

5.
Three types of respiratory deficient mitochondrial strains have been reported in Chlamydomonas reinhardtii: a deficiency due to (i) two base substitutions causing an amino acid change in the apocytochrome b (COB) gene (i.e., strain named dum-15), (ii) one base deletion in the COXI gene (dum-19), or (iii) a large deletion extending from the left terminus of the genome to somewhere in the COB gene (dum-1, -14, and -16). We found that these respiratory deficient strains of C. reinhardtii can be divided into two groups: strains that are constantly transformable and those could not be transformed in our experiments. All transformable mitochondrial strains were limited to the type that has a large deletion in the left arm of the genome. For these mitochondria, transformation was successful not only with purified intact mitochondrial genomes but also with DNA-constructs containing the compensating regions. In comparison, mitochondria of all the non-transformable strains have both of their genome termini intact, leading us to speculate that mitochondria lacking their left genome terminus have unstable genomes and might have a higher potential for recombination. Analysis of mitochondrial gene organization in the resulting respiratory active transformants was performed by DNA sequencing and restriction enzyme digestion. Such analysis showed that homologous recombination occurred at various regions between the mitochondrial genome and the artificial DNA-constructs. Further analysis by Southern hybridization showed that the wild-type genome rapidly replaces the respiratory deficient monomer and dimer mitochondrial genomes, while the E. coli vector region of the artificial DNA-construct likely does not remain in the mitochondria.  相似文献   

6.
Sera from eight out of 62 (14.5%) patients with progressive systemic sclerosis (PSS) reacted by immunoblotting with a 72,000 dalton antigen and one, a patient with concomitant primary biliary cirrhosis (PBC), reacted with the 72,000 dalton and a 47,000 dalton antigen. Reactivity with these antigens was not seen with any of 111 control sera. The antigens with minor variations in m.w. were present in a variety of cultured cells and tissue homogenates from different species. Subcellular fractionation studies localized the antigens to the mitochondria. Of 19 sera from patients with other diseases selected for immunofluorescence staining for anti-mitochondria autoantibody, nine reacted with the 72,000 dalton antigen, seven reacted with both the 72,000 and 47,000 dalton antigens, and three reacted with the 47,000 dalton antigen. These results show that serum reactivity with the 72,000 dalton and 47,000 dalton mitochondria autoantigens is found with some patients with PSS. Because mitochondria autoantibodies that are reactive with the 72,000 dalton and 47,000 dalton polypeptides are also found in patients with PBC, the present finding provides additional support for the association of PSS with PBC. Prior absorption of rat liver homogenate with PBC sera removed PSS serum reactivity with a 63,000 dalton antigen, the equivalent 72,000 dalton antigen in rodents, and vice versa, showing that both PBC and PSS sera recognize the same antigen.  相似文献   

7.
We describe a new and potentially universal selection system for mitochondrial transformation based on bacterial genes, and demonstrate its feasibility in Saccharomyces cerevisiae. We first found that cytoplasmically synthesized Barnase, an RNase, interferes with mitochondrial gene expression when targeted to the organelle, without causing lethality when expressed at appropriate levels. Next, we synthesized a gene that uses the yeast mitochondrial genetic code to direct the synthesis of the specific Barnase inhibitor Barstar, and demonstrated that expression of this gene, BARSTM, integrated in mtDNA protects respiratory function from imported barnase. Finally, we showed that screening for resistance to mitochondrially targeted barnase can be used to identify rare mitochondrial transformants that had incorporated BARSTM in their mitochondrial DNA. The possibility of employing this strategy in other organisms is discussed.Communicated by R. G. Herrmann  相似文献   

8.
In Chlamydomonas reinhardtii P. A. Dangeard, mitochondrial morphology has been observed during asexual cell division cycle, gamete and zygote formation, zygote maturation, and meiotic stages. However, the chronological transition of mitochondrial morphology after the stationary phase of vegetative growth, defined as the poststationary phase, remains unknown. Here, we examined the mitochondrial morphology in cells cultured for 4 months on agar plates to study mitochondrial dynamics in the poststationary phase. Fluorescence microscopy showed that the intricate thread‐like structure of mitochondria gradually changed into a granular structure via fragmentation after the stationary phase in cultures of about 1 week of age. The number of mitochondrial nucleoids decreased from about 30 per cell at 1 week to about five per cell after 4 months of culture. The mitochondrial oxygen consumption decreased exponentially, but the mitochondria retained their membrane potential. The total quantity of mitochondrial DNA (mtDNA) of cells at 4 months decreased to 20% of that at 1 week. However, the mitochondrial genomic DNA length was unchanged, as intermediate lengths were not detected. In cells in which the total mtDNA amount was reduced artificially to 16% after treatment with 5‐fluoro‐2‐deoxyuridine (FdUrd) for 1 week, the mitochondria remained as thread‐like structures. The oxygen consumption rate of these cells corresponded to that of untreated cells at 1 week of culture. This suggests that a decrease in mtDNA does not directly induce the fragmentation of mitochondria. The results suggest that during the late poststationary phase, mitochondria converge to a minimum unit of a granular structure with a mitochondrial nucleoid.  相似文献   

9.
Mitochondrial autoantibodies are characteristic of the disease primary biliary cirrhosis (PBC), but the immunoreactive mitochondrial antigens have not been defined. We used a rat liver cDNA library in lambda gt 11-Amp3 to clone a 1370-base pair insert that coded for a polypeptide reactive with PBC sera. This insert was subcloned for expression into pBTA224, a plasmid vector in the same reading frame as lambda-Amp3. A positive clone, designated pRMIT, that expressed a fused polypeptide of 160 kd, was recognized by 25 of 25 sera from patients with PBC and none of 96 sera from normal persons or patients with systemic lupus erythematosus, rheumatoid arthritis, or chronic active hepatitis. This fused polypeptide was shown to correspond with the 70 kd mitochondrial autoantigen by several experiments. First, lysates of pRMIT in J101 absorbed out the 70 kd reactivity of PBC sera when probed against fractionated placental mitochondria. Second, affinity-purified antisera reactive with the fused polypeptide also reacted with the 70 kd mitochondrial antigen. Third, such affinity-purified antisera produced the characteristic anti-mitochondrial pattern of immunofluorescence on tissue sections. Finally, immunization of BALB/c mice with the fused polypeptide elicited antibodies to mitochondria. These murine antibodies reacted with the 70 kd mitochondrial protein and also produced typical mitochondrial immunofluorescence on tissue sections. The nucleotide and amino acid sequence of the recombinant protein, which encodes for approximately a 48 kd protein, showed no significant homologies with known proteins, and there were no homologies with mitochondrial genomic DNA. The availability of a recombinant form of the 70 kd mitochondrial autoantigen will allow several definitive questions to be addressed in PBC, including identification of B cell epitopes, T cell recognition, and a model of PBC in mice.  相似文献   

10.
Context: Nanocarrier-based strategies to achieve delivery of bioactives specifically to the mitochondria are being increasingly explored due to the importance of mitochondria in critical cellular processes.

Objective: To test the ability of liposomes modified with newly synthesized triphenylphosphonium (TPP)–phospholipid conjugates and to test their use in overcoming the cytotoxicity of stearyl triphenylphosphonium (STPP)-modified liposomes when used for delivery of therapeutic molecules to the mitochondria.

Methods: TPP–phospholipid conjugates with the dioleoyl, dimyristoyl or dipalmitoyl lipid moieties were synthesized and liposomes were prepared with these conjugates in a 1?mol% ratio. The subcellular distribution of the liposomes was tested by confocal microscopy. Furthermore, the liposomes were tested for their effect on cell viability using a MTS assay, on cell membrane integrity using a lactate dehydrogenase assay and on mitochondrial membrane integrity using a modified JC-1 assay.

Results: The liposomes modified with the new TPP–phospholipid conjugates exhibited similar mitochondriotropism as STPP-liposomes but they were more biocompatible as compared to the STPP liposomes. While the STPP-liposomes had a destabilizing effect on cell and mitochondrial membranes, the liposomes modified with the TPP–phospholipid conjugates did not demonstrate any such effect on biomembranes.

Conclusions: Using phospholipid anchors in the synthesis of TPP–lipid conjugates can provide liposomes that exhibit the same mitochondrial targeting ability as STPP but with much higher biocompatibility.  相似文献   

11.
12.
13.
N. Burgess  D. R. Thomas 《Planta》1986,167(1):58-65
Purified pea cotyledon mitochondria did not oxidise acetyl-CoA in the presence of carnitine. However, acetylcarnitine was oxidised. It was concluded that acetylcarnitine passed through the mitochondrial membrane barrier but acetyl-CoA did not. Only a sensitive radioactive assay detected carnitine acetyltransferase in intact mitochondrion or intact mitoplast preparations. When the mitochondria or mitoplasts were burst, acetyl-CoA substrate was available to the matrix carnitine acetyltransferase and a high activity of the enzyme was measured. The inner mitochondrial membrane is there-fore the membrane barrier to acetyl-CoA but acetylcarnitine is suggested to be transported through this membrane via an integral carnitine: acylcarnitine translocator. Evidence is presented to indicate that when the cotyledons from 48-h-grown peas are oxidising pyruvate, acetylcarnitine formed in the mitochondrial matrix by the action of matrix carnitine acetyltransferase may be transported to extra-mitochondrial sites via the membrane translocator.  相似文献   

14.
The behavior of cell nuclei, mitochondrial nucleoids (mt-nucleoids) and plastid nucleoids (ptnucleoids) was studied in the root apical meristem of Arabidopsis thaliana. Samples were embedded in Technovit 7100 resin, cut into thin sections and stained with 4′-6-diamidino-2-phenylindole for light-microscopic autoradiography and microphotometry. Synthesis of cell nuclear DNA and cell division were both active in the root apical meristem between 0 μm and 300 μm from the central cells. It is estimated that the cells generated in the lower part of the root apical meristem enter the elongation zone after at least four divisions. Throughout the entire meristematic zone, individual cells had mitochondria which contained 1–5 mt-nucleoids. The number of mitochondria increased gradually from 65 to 200 in the meristem of the central cylinder. Therefore, throughout the meristem, individual mitochondria divided either once or twice per mitotic cycle. By contrast, based on the incorporation of [3H]thymidine into organelle nucleoids, syntheses of mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) occurred independently of the mitotic cycle and mainly in a restricted region (i.e., the lower part of the root apical meristem). Fluorimetry, using a videointensified microscope photon-counting system, revealed that the amount of mtDNA per mt-nucleoid in the cells in the lower part of the meristem, where mtDNA synthesis was active, corresponded to more than 1 Mbp. By contrast, in the meristematic cells just below the elongation zone of the root tip, the amount of mtDNA per mt-nucleoid fell to approximately 170 kbp. These findings strongly indicate that the amount of mtDNA per mitochondrion, which has been synthesized in the lower part of the meristem, is gradually reduced as a result of continual mitochondrial divisions during low levels of mtDNA synthesis. This phenomenon would explain why differentiated cells in the elongation zone have mitochondria that contain only extremely small amounts of mtDNA. This work was supported by a Grant-in Aid (T.K.) for Special Research on Priority Areas (Project No. 02242102, Cellular and Molecular Basis for Reproduction Processes in Plants) from the Ministry of Education, Science and Culture of Japan and by a Grant-in Aid (T.K.) for Original and Creative Research Project on Biotechnology from the Research Council, Ministry of Agriculture, Forestry and Fisheries of Japan.  相似文献   

15.
The amounts of an antigen to primary biliary cirrhosis (PBC) which occur in subcellular fractions of Trypanosoma rhodesiense and T. lewisi correlate positively with the oligomycin-sensitive (OS) ATPase activity of these fractions. This result is consistent with the mitochondrial ATPase association of the antigen in mammalian and other cells. Higher levels of OS-ATPase and of PBC antigen in T. lewisi accord with a more extensive mitochondrial development in this species.  相似文献   

16.
The transport of cytoplasmically synthesized mitochondrial proteins was investigated in whole cells of Neurospora crassa, using dual labelling and immunological techniques. In pulse and pulse-chase labelling experiments the mitochondrial proteins accumulate label. The appearance of label in mitochondrial protein shows a lag relative to total cellular protein, ribosomal, microsomal and cytosolic proteins. The delayed appearance of label was also found in immunoprecipitated mitochondrial matrix proteins, mitochondrial ribosomal proteins, mitochondrial carboxyatractyloside-binding protein and cytochrome c. Individual mitochondrial proteins exhibit different labelling kinetics. Cycloheximide inhibition of translation does not prevent import of proteins into the mitochondria. Mitochondrial matrix proteins labelled in pulse and pulse-chase experiments can first be detected in the cytosol fraction and subsequently in the mitochondria. The cytosol matrix proteins and those in the mitochondria show a precursor-product type relationship. The results suggest that newly synthesized mitochondrial proteins exist in an extra-mitochondrial pool from which they are imported into the mitochondria.  相似文献   

17.
The presence of plant-uncoupling mitochondrial protein (PUMP), previously described by Vercesi et al. (1995), was screened in mitochondria of various organs or tissues of several plant species. This was done functionally, by monitoring purine nucleotide-sensitive linoleic acid-induced uncoupling, or by Western blots. The following findings were established: (1) PUMP was found in most of the higher plants tested; (2) since ATP inhibition of linoleic acid-induced membrane potential decrease varied, PUMP content might differ in different plant tissues, as observed with mitochondria from maize roots, maize seeds, spinach leaves, wheat shoots, carrot roots, cauliflower, broccoli, maize shoots, turnip root, and potato calli. Western blots also indicated PUMP presence in oat shoots, carnation petals, onion bulbs, red beet root, green cabbage, and Sedum leaves. (3) PUMP was not detected in mushrooms. We conclude that PUMP is likely present in the mitochondria of organs and tissues of all higher plants.  相似文献   

18.
Mitochondria from ejaculated bovine spermatozoa contain a group of polypeptides ranging in molecular weights from 13,000 to 35,000 not found in other bovine or murine testicular mitochondria [Hecht and Bradley, 1981]. These proteins are present in the mitochondria isolated from both epididymal and ejaculated spermatozoa. To establish when during epididymal transport, spermiogenesis, and/or meiosis these proteins are synthesized, the synthesis intervals for the mitochondrial proteins from cauda epididymal spermatozoa were established following intratesticular injection of (35S)methionine. Mice were killed every third day over a 33-day period and cauda epididymal spermatozoa were fractionated into mitochondrial and head components. Radioactivity in each fraction was monitored by liquid scintillation counting. Maximal incorporation was observed during spermiogenesis, although substantial amounts of protein were synthesized during meiosis. Analysis of the mitochondrial polypeptides by gel electrophoresis revealed that many polypeptides such as the cysteine-rich structural protein of the mitochondrial capsule were synthesized over prolonged intervals of spermiogenesis and meiosis rather than in a brief specific time period. These results suggest that spermatozoal mitochondria are produced by a sequential substitution of new proteins into the differentiating mitochondria rather than the abrupt appearance of a new class of mitochondria during spermatogenesis.  相似文献   

19.
Summary Variation in mitochondrial protein synthesis and genome organization was investigated. Three different alloplasmic cytoplasmic male-sterile Nicotiana tabacum cultivars, carrying N. repanda, N. suaveolens or N. debneyi cytoplasm, were analysed together with corresponding male-fertile parental and restored material. Although several differences were detected in the proteins synthesized by isolated mitochondria from the male-sterile and male-fertile plants, most of these were related to the origin of the mitochondria. However, a 23 kD protein was synthesized in the male-sterile cultivar carrying N. debneyi mitochondria, but not in other lines containing this cytoplasm. This protein was also present in the male-fertile parent containing N. tabacum mitochondria. Only the enhanced production of a 30 kD protein in the lines carrying mitochondria from N. repanda or N. debneyi was exclusively correlated with CMS. This protein was not present in any of the corresponding male-fertile parental and restored lines. Restriction enzyme analysis of mitochondrial DNA revealed a difference in abundance of a 5.6 kb XhoI fragment between lines containing N. debneyi mitochondria. No rearrangements of mitochondrial DNA was found between male-fertile and male-sterile lines carrying N. repanda or N. suaveolens cytoplasm. These results might indicate that CMS in alloplasmic Nicotiana cultivars is caused by alterations in the expression of mitochondrial genes, rather than by induced changes in the genome.  相似文献   

20.
Early events in Bcl-2-enhanced apoptosis   总被引:3,自引:0,他引:3  
Transfection of PC12 pheochromocytoma cells with bcl-2 potentiates apoptosis induced by the antimitotic agent, neocarzinostatin (NCS). The mechanism of potentiation involves caspase 3-dependent cleavage of Bcl-2 to its pro-apoptotic counterpart, but the cellular events proximal to caspase 3 activation in this system are not known. Two min after initiation of NCS treatment, Bax begins to translocate from cytosol to the mitochondria; the mitochondrial localization of Bax persists for 30 min after NCS treatment. At the same time, cytochrome C is released from the mitochondria to cytosol. The mitochondrial membrane potential exhibits differential change in mock- and bcl-2-transfected PC12 cells. In mock-transfected PC12 cells, the mitochondrial membrane potential increases immediately, peaks at 15 min following initiation of NCS treatment, and drops thereafter. In contrast, in bcl-2-transfected PC12 cells, the membrane potential drops immediately following NCS treatment. Caspase 9 is activated and peaks at 10 min in both mock- and bcl-2 transfected PC12 cells, however, the peak activity of caspase 9 is higher and caspase 9 activation lasts longer (30 min) after the treatment in bcl-2 transfectants. Not until 30 min after initiation of a 1 h treatment with NCS is Bcl-2 protein cleaved in bcl-2-transfected cells. Thus, in bcl-2-transfected cells, the mitochondrial membrane potential drops and cytochrome C is released from the mitochondria despite the presence of large amounts of intact mitochondrial Bcl-2. This makes it unlikely that cleavage of Bcl-2 is the only factor involved in potentiation of NCS-induced apoptosis by Bcl-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号