首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This experimental study tests new theory for multiple predator effects on communities by using warming to alter predator habitat use and hence direct and indirect interactions in a grassland food web containing two dominant spider predator species, a dominant grasshopper herbivore and grass and herb plants. Experimental warming further offers insight into how climate change might alter direct and indirect effects. Under ambient environmental conditions, spiders used habitat in spatially complementary locations. Consistent with predictions, the multiple predator effect on grasshoppers and on plants was the average of the individual predator effects. Warming strengthened the single predator effects. It also caused the spider species to overlap lower in the vegetation canopy. Consistent with predictions, the system was transformed into an intraguild predation system with the consequent extinction of one spider species. The results portend climate caused loss of predator diversity with important consequences for food web structure and function.  相似文献   

2.
The large vulnerability of top predators to human-induced disturbances on ecosystems is a matter of growing concern. Because top predators often exert strong influence on their prey populations their extinction can have far-reaching consequences for the structure and functioning of ecosystems. It has, for example, been observed that the local loss of a predator can trigger a cascade of secondary extinctions. However, the time lags involved in such secondary extinctions remain unexplored. Here we show that the loss of a top predator leads to a significantly earlier onset of secondary extinctions in model communities than does the loss of a species from other trophic levels. Moreover, in most cases time to secondary extinction increases with increasing species richness. If local secondary extinctions occur early they are less likely to be balanced by immigration of species from local communities nearby. The implications of these results for community persistence and conservation priorities are discussed.  相似文献   

3.
Extinction is notoriously difficult to study because of the long timescales involved and the difficulty in ascertaining that extinction has actually occurred. The effect of habitat subdivision, or fragmentation, on extinction risk is even harder to study, as it requires copious replication of habitat patches on large spatial scales and control of area effects between treatments. I used simple small-scale communities of bacteria and protozoa to study extinction in response to habitat loss and habitat fragmentation. I studied several different community configurations, each with three trophic levels. Unlike most metapopulation studies (experimental as well as theoretical), which have tended to deal with inherently unstable species interactions, I deliberately used community configurations that were persistent in large stock cultures. I recorded the time to extinction of the top predator in single habitat patches of different sizes and in fragmented systems with different degrees of subdivision but the same amount of available habitat. Habitat loss reduced the time to extinction of isolated populations. Fragmented systems went extinct sooner than corresponding unfragmented (continuous) systems of the same overall size. Unfragmented populations persisted longer than fragmented systems (metapopulations) with or without dispersal corridors between subpopulations. In fact, fragmented systems where the fragments were linked by dispersal corridors went extinctly significantly sooner than those where subpopulations were completely isolated from each other. If these results extend to more "natural" systems, it suggests a need for caution in management programs that emphasize widespread establishment of wildlife corridors in fragmented landscapes.  相似文献   

4.
Ecological networks are tightly interconnected, such that loss of a single species can trigger additional species extinctions. Theory predicts that such secondary extinctions are driven primarily by loss of species from intermediate or basal trophic levels. In contrast, most cases of secondary extinctions from natural systems have been attributed to loss of entire top trophic levels. Here, we show that loss of single predator species in isolation can, irrespective of their identity or the presence of other predators, trigger rapid secondary extinction cascades in natural communities far exceeding those generally predicted by theory. In contrast, we did not find any secondary extinctions caused by intermediate consumer loss. A food web model of our experimental system—a marine rocky shore community—could reproduce these results only when biologically likely and plausible nontrophic interactions, based on competition for space and predator‐avoidance behaviour, were included. These findings call for a reassessment of the scale and nature of extinction cascades, particularly the inclusion of nontrophic interactions, in forecasts of the future of biodiversity.  相似文献   

5.
The number of species that live in a habitat typically declines as that habitat becomes more isolated. However, the influence of habitat isolation on patterns of food web structure, in particular the ratio of predator to prey species richness, is less well understood. We placed aquatic mesocosms at varying distances from ponds that acted as sources of potential colonists; then we examined how isolation affected the ratio of predator:prey species richness in the communities that assembled. In the final sampling, a total of 21 species (12 prey and 9 predators) of insects, crustaceans, and amphibians had colonized the mesocosms. We found that total species richness, as well as the richness of predators and prey, declined with increasing isolation. However, predator richness declined more rapidly than prey richness with increasing isolation, which lead to decreasing predator:prey ratios. This result conflicts with prior demonstrations of invariant predator:prey ratios in freshwater communities.  相似文献   

6.
Plankton communities account for at least half of global primary production and play a key role in the global carbon cycle. Warming and acidification may alter the interaction chains in these communities from the bottom and top of the food web. Yet, the relative importance of these potentially complex interactions has not yet been quantified. Here, we examine the isolated and combined effects of warming, acidification, and reductions in phytoplankton and predator abundances in a series of factorial experiments. We find that warming directly impacts the top of the food web, but that the intermediate trophic groups are more strongly influenced by indirect effects mediated by altered top‐down interactions. Direct manipulations of predator and phytoplankton abundance reveal similar strong top‐down interactions following top predator decline. A meta‐analysis of published experiments further supports the conclusion that warming has stronger direct impacts on the top and bottom of the food web rather than the intermediate trophic groups, with important differences between freshwater and marine plankton communities. Our results reveal that the trophic effect of warming cascading down from the top of the plankton food web is a powerful agent of global change.  相似文献   

7.
Understanding ecosystem stability is one of the greatest challenges of ecology. Over several decades, it has been shown that allometric scaling of biological rates and feeding interactions provide stability to complex food web models. Moreover, introducing adaptive responses of organisms to environmental changes (e.g. like adaptive foraging that enables organisms to adapt their diets depending on resources abundance) improved species persistence in food webs. Here, we introduce the concept of metabolic adjustment, i.e. the ability of species to slow down their metabolic rates when facing starvation and to increase it in time of plenty. We study the reactions of such a model to nutrient enrichment and the adjustment speed of metabolic rates. We found that increasing nutrient enrichment leads to a paradox of enrichment (increase in biomasses and oscillation amplitudes and ultimately extinction of species) but metabolic adjustment stabilises the system by dampening the oscillations. Metabolic adjustment also increases the average biomass of the top predator in a tri‐trophic food chain. In complex food webs, metabolic adjustment has a stabilising effect as it promotes species survival by creating a large diversity of metabolic rates. However, this stabilising effect is mitigated in enriched ecosystems. Phenotypic plasticity of organisms must be considered in food web models to better understand the response of organisms to their environment. As metabolic rate is central in describing biological rates, we must pay attention to its variations to fully understand the population dynamics of natural communities.  相似文献   

8.
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food‐web stability. In lakes, littoral and pelagic food‐web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high‐latitude lakes. We analyzed food‐web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food‐chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate‐dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high‐latitude lakes.  相似文献   

9.
Much research has focused on identifying species that are susceptible to extinction following ecosystem fragmentation, yet even those species that persist in fragmented habitats may have fundamentally different ecological roles than conspecifics in unimpacted areas. Shifts in trophic role induced by fragmentation, especially of abundant top predators, could have transcendent impacts on food web architecture and stability, as well as ecosystem function. Here we use a novel measure of trophic niche width, based on stable isotope ratios, to assess effects of aquatic ecosystem fragmentation on trophic ecology of a resilient, dominant, top predator. We demonstrate collapse in trophic niche width of the predator in fragmented systems, a phenomenon related to significant reductions in diversity of potential prey taxa. Collapsed niche width reflects a homogenization of energy flow pathways to top predators, likely serving to destabilize remnant food webs and render apparently resilient top predators more susceptible to extinction through time.  相似文献   

10.
It has been hypothesised that larger habitats should support more complex food webs. We consider three mechanisms which could lead to this pattern. These are increased immigration rates, increased total productivity and spatial effects on the persistence of unstable interactions. Experiments designed to discriminate between these mechanisms were carried out in laboratory aquatic microcosm communities of protista and bacteria, by independently manipulating habitat size, total productivity and immigration rate. Larger habitats supported more complex food webs, with more species, more links per species and longer maximum and mean food chains, even in the absence of differences in total energy input. Increased immigration rate resulted in more complex food webs, but habitats with higher energy input per unit area supported less complex food webs. We conclude that spatial effects on the persistence of unstable interactions, and variation in immigration rates, are plausible mechanisms by which habitat size could affect food web structure. Variation in total productivity with habitat area seems a less likely explanation for variation in food web structure.  相似文献   

11.
Diverse benthic communities in streams include a wide variety of predators with different habitat preferences, e.g. for pools or riffles. We hypothesised that these preferences result in mesohabitat-specific predator community structures with quantitative differences concerning predation intensity by vertebrate and invertebrate predators, importance of intraguild predation, or top–down pressure. This hypothesis was evaluated for a small submontane stream by means of mesohabitat-specific quantification of prey consumption by two benthivorous fish species (Gobio gobio and Barbatula barbatula) and several invertebrate predators. The estimation was based on daily food rations and diet composition of predators and mesohabitat-specific predator biomass. We found clear differences between the two mesohabitat types. Predator food webs were less complex in pools than in riffles. Fish predation was more important than invertebrate predation in pools, and intraguild predation had a higher relative importance in these mesohabitats. These differences were probably caused by the mesohabitat use of G. gobio, the largest top predator, which preferred pools. Consequently, the predator food webs were more similar between the mesohabitats when fish were absent. Top–down pressure on primary consumers by all predators together was lowest in pools without fish, but the effect was not significant. Omnivory (including cannibalism) was intense, but its potentially destabilising effects were probably counterbalanced by mesohabitat connectivity. From the results of our experimental study, we conclude that even in small stream ecosystems, food web structures and predation pathways can differ between mesohabitats and that a mesohabitat-specific consideration will help to explain the variety of top–down effects on benthic communities.  相似文献   

12.
Food web structure and habitat loss   总被引:4,自引:0,他引:4  
In this paper we explore simple food web models to study how metacommunity structure affects species response to habitat loss. We find that patch abundances and extinction thresholds vary according to the kind of food web. Second, for intermediate species, a slight decrease in the exploration cost of the better competitor has a strong effect on the extinction threshold of the poorer competitor. When predicting extinction risk one should consider not only the amount of habitat destroyed, but also the structure of the food web in which species are embedded. Both direct and indirect interactions are critical for predicting the consequences of habitat destruction.  相似文献   

13.
Human activities have led to massive influxes of pollutants, degrading the habitat of species and simplifying their biodiversity. However, the interaction between food web complexity, pollution and stability is still poorly understood. In this study we evaluate the effect exerted by accumulable pollutants on the relationship between complexity and stability of food webs. We built model food webs with different levels of richness and connectance, and used a bioenergetic model to project the dynamics of species biomasses. Further, we developed appropriate expressions for the dynamics of bioaccumulated and environmental pollutants. We additionally analyzed attributes of organisms’ and communities as determinants of species persistence (stability). We found that the positive effect of complexity on stability was enhanced as pollutant stress increased. Additionally we showed that the number of basal species and the maximum trophic level shape the complexity–stability relationship in polluted systems, and that in‐degree of consumers determines species extinction in polluted environments. Our study indicates that the form of biodiversity and the complexity of interaction networks are essential to understand and project the effects of pollution and other ecosystem threats.  相似文献   

14.
The flux of energetic and nutrient resources across habitat boundaries can exert major impacts on the dynamics of the recipient food web. Competition for these resources can be a key factor structuring many ecological communities. Competition theory suggests that competing species should exhibit some partitioning to minimize competitive interactions. Species should partition both in situ (autochthonous) resources and (allochthonous) resources that enter the food web from outside sources. Allochthonous resources are important sources of energy and nutrients in many low productivity systems and can significantly influence community structure. The focus of this paper is on: (i) the influence of resource partitioning on food web stability, but concurrently we examine the compound effects of; (ii) the trophic level(s) that has access to allochthonous resources; (iii) the amount of allochthonous resource input; and (iv) the strength of the consumer–resource interactions. We start with a three trophic level food chain model (resource–consumer–predator) and separate the higher two trophic levels into two trophospecies. In the model, allochthonous resources are either one type available to both consumers and predators or two distinct types, one for consumers and one for predators. The feeding preferences of the consumer and predator trophospecies were varied so that they could either be generalists or specialists on allochthonous and/or autochthonous resources. The degree of specialization influenced system persistence by altering the structure and, therefore, the indirect effects of the food web. With regard to the trophic level(s) that has access to allochthonous resources, we found that a single allochthonous resource available to both consumers and predators is more unstable than two allochthonous resources. The results demonstrate that species populating food webs that experience low to moderate allochthonous resources are more persistent. The results also support the notion that strong links destabilize food web dynamics, but that weak to moderate strength links stabilize food web dynamics. These results are consistent with the idea that the particular structure, resource availability, and relative strength of links of food webs (such as degree of specialization) can influence the stability of communities. Given that allochthonous resources are important resources in many ecosystems, we argue that the influence of such resources on species and community persistence needs to be examined more thoroughly to provide a clearer understanding of food web dynamics.  相似文献   

15.
Reynolds PL  Bruno JF 《PloS one》2012,7(5):e36196
Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.  相似文献   

16.
Inverse trophic cascades are a well explored and common consequence of the local depletion or extinction of top predators in natural ecosystems. Despite a large body of research, the cascading effects of predator removal on ecosystem functions are not as well understood. Developing microcosm experiments, we explored food web changes in trophic structure and ecosystem functioning following biomass removal of top predators in representative temperate and tropical rock pool communities that contained similar assemblages of zooplankton and benthic invertebrates. We observed changes in species abundances following predator removal in both temperate and tropical communities, in line with expected inverse effects of a trophic cascade, where predation release benefits the predator’s preys and competitors and impacts the preys of the latter. We also observed several changes at the community and ecosystem levels including a decrease in total abundance and mean trophic level of the community, and changes in chlorophyll-a and total dissolved particles. Our results also showed an increase in variability of both community and ecosystem processes following the removal of predators. These results illustrate how predator removal can lead to inverse trophic cascades both in structural and functioning properties, and can increase variability of ecosystem processes. Although observed patterns were consistent between tropical and temperate communities following an inverse cascade pattern, changes were more pronounced in the temperate community. Therefore, aquatic food webs may have inherent traits that condition ecosystem responses to changes in top-down trophic control and render some aquatic ecosystems especially sensitive to the removals of top predators.  相似文献   

17.
Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has “top down” regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.  相似文献   

18.

Background

We are interested in understanding if metacommunity dynamics contribute to the persistence of complex spatial food webs subject to colonization-extinction dynamics. We study persistence as a measure of stability of communities within discrete patches, and ask how do species diversity, connectance, and topology influence it in spatially structured food webs.

Methodology/Principal Findings

We answer this question first by identifying two general mechanisms linking topology of simple food web modules and persistence at the regional scale. We then assess the robustness of these mechanisms to more complex food webs with simulations based on randomly created and empirical webs found in the literature. We find that linkage proximity to primary producers and food web diversity generate a positive relationship between complexity and persistence in spatial food webs. The comparison between empirical and randomly created food webs reveal that the most important element for food web persistence under spatial colonization-extinction dynamics is the degree distribution: the number of prey species per consumer is more important than their identity.

Conclusions/Significance

With a simple set of rules governing patch colonization and extinction, we have predicted that diversity and connectance promote persistence at the regional scale. The strength of our approach is that it reconciles the effect of complexity on stability at the local and the regional scale. Even if complex food webs are locally prone to extinction, we have shown their complexity could also promote their persistence through regional dynamics. The framework we presented here offers a novel and simple approach to understand the complexity of spatial food webs.  相似文献   

19.
Biodiversity in running waters is threatened by an increased severity and incidence of low‐flow extremes resulting from global climate change and a growing human demand for freshwater resources. Although it is unknown how and to what extent riverine communities will change in the face of these threats, considerable insight will be gained from efforts aimed at quantifying habitat size‐related controls on the trophic relationships among taxa in streams experiencing extreme flow loss. Here we report on a detailed space‐for‐time survey of replicate stream food webs sampled along the perennial‐ to‐drying continuum in each of fourteen different intermittent South Island, New Zealand streams. We quantified several structural attributes of food webs at fifty‐eight sites, including two taxonomically‐based metrics (web size, predator:prey ratio) and three stable isotope‐based metrics (food chain length [FCL], trophic area, δ13C range); we also quantified habitat size‐, disturbance‐, and resource‐related covariates at each site. Food web structure varied widely across sample sites within and across study streams and much of this variation was explained by habitat size. Consistent with our predictions, we found that food webs became smaller (ca 30 to ca 15 taxa, ca 20‐fold reduction in stable isotope‐based trophic area) and shorter (maximum trophic position [FCL] from 4.1 to 2.0, 25% reduction in predator:prey ratio) as we moved from the largest to smaller habitats. These results, and a comparison of our findings with those from a similar assessment conducted in perennial streams, suggest that there are perturbation thresholds which may trigger food web collapse when exceeded, and further imply that food webs may ultimately be ‘sized’ to minimum flows rather than average flow conditions. Our work provides a basis for making general predictions about how habitat contraction, and flow loss in particular, may affect communities and additionally provides insight on mechanisms warranting further attention.  相似文献   

20.
With the interest in conservation biology shifting towards processes from patterns, and to populations from communities, the theory of metapopulation dynamics is replacing the equilibrium theory of island biogeography as the population ecology paradigm in conservation biology. The simplest models of metapopulation dynamics make predictions about the effects of habitat fragmentation - size and isolation of habitat patches - on metapopulation persistence. The simple models may be enriched by considerations of the effects of demographic and environmental stochasticity on the size and extinction probability of local populations. Environmental stochasticity affects populations at two levels: it makes local extinctions more probable, and it also decreases metapopulation persistence time by increasing the correlation of extinction events across populations. Some controversy has arisen over the significance of correlated extinctions, and how they may affect the optimal subdivision of metapopulations to maximize their persistence time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号