首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digestion of insoluble myosin with soluble papain produces heavy meromyosin subfragment 1 (HMM-S-1) having ATPase activity and the ability to combine with actin. These fragments of myosin do not undergo appreciable changes in ATPase activity, chromatographic behavior, or actin combining ability during digestion up to 2 h but, as shown by sodium dodecyl sulfate gel electrophoresis, several splits occur in both the heavy and light polypeptide chains. The largest fragment of heavy chain present in fast, slow, cardiac and embryonic HMM-S-1 has a mass of 89,000 daltons. This fragment undergoes further degradation resulting in fragments having masses of the order of 70,000, 50,000, and 27,000 daltons. The latter fragment and other material resulting from the proteolysis of myosin appear as bands in that region of the gels where the light chains are found in electrophoretograms of the parent myosin. The precise size of the fragments and the rates of their formation depend on the type of myosin; slow and cardiac HMM-S-1 and their fragments show greater stability. Embryonic myosin has properties intermediate between those of fast skeletal and cardiac myosin. Experiments involving the combination of HMM-S-1 with actin and experiments with glutaraldehyde cross linking and chromatography on Sephadex G-200 indicate that the fragments separated by sodium dodecyl sulfate gel electrophoresis are held together by noncovalent forces in HMM-S-1.  相似文献   

2.
The addition of either smooth muscle or brain tropomyosin to skeletal muscle actoheavy meromyosin (HMM) or acto-myosin subfragment-1 (SF1) produces an activation of the actin-activated ATPase activity up to 100%. This contrasts with the opposite, inhibitory effect produced by skeletal muscle tropomyosin. The degree of activation or inhibition depends on the ionic conditions, which influence the affinities of tropomyosin and HMM or SF1 for actin as well as on the molar ratio of actin to myosin.Enzyme kinetic analysis indicates that the inhibitory effect of skeletal muscle tropomyosin results from an approximately six- to tenfold increase in the apparent affinity (Kapp) of the myosin head for the F-actin-tropomyosin complex with a concomitant six- to tenfold reduction in the maximal turnover rate (Vmax). Thus, there is no direct competition of skeletal muscle tropomyosin and myosin for the same site on actin. Brain tropomyosin has an opposite effect, decreasing the apparent affinity with concomitant increase in the Vmax.The effect of smooth muscle tropomyosin is more complex. At high ratios of myosin to actin this tropomyosin produces the same change in the Kapp as skeletal muscle tropomyosin but yields a value of Vmax that is about twofold higher. At lower molar ratios (below about 1 to 5 myosin subfragments to actin) the activating effect of this tropomyosin remains unchanged while the apparent affinity decreases to that observed for pure F-actin.On the basis of these data as well as from experiments carried out at fixed actin and varying SF1 concentrations, it is concluded that tropomyosins act in general as allosteric un-competitive inhibitors or activators of actomyosin by increasing or reducing the co-operative activation of myosin by actin at the level of product release.  相似文献   

3.
Julian Borejdo  Avraham Oplatka 《BBA》1976,440(1):241-258
Single glycerinated rabbit psoas muscle fibers were skinned by splitting them lengthwise. The fiber segments thus obtained were more easily accessible to solutes in the surrounding medium than the intact fibers. Using such segments, active tension could be fully abolished by adding N-ethylmaleimide under conditions which lead to inhibition of actin activation of the ATPase activity of myosin. Such muscles could, however, develop tension after irrigation with myosin or with the water-soluble active myosin fragments heavy meromyosin (HMM) or its subfragment 1 (HMM-S1). The induced tensions increased with increasing protein concentration in the irrigating solution. At any given protein concentration, the tension generated by myosin was larger than that produced by HMM which was, in turn, greater than that induced by HMM-S1 e.g. at 15 mg/ml protein the tensions produced by these three myosin moieties were 44.0, 14.0 and 2.8 g/cm2, respectively. The tension was found to be intimately associated with ATP splitting; thus, HMM and HMM-S1 which have been treated with reagents abolishing actin-activated ATPase failed to induce tension development. A contractile force may thus be generated through the interaction with actin of the water-soluble, enzymatically active, myosin subfragments involving the splitting of ATP.  相似文献   

4.
H-Meromyosin (HMM) was digested with insoluble papain [EC 3.4.22.2]. Neither the size of the initial burst of Pi liberation (0.5 mole/mole of myosin head) nor the Mg2+-ATPase [EC 3.6.1.3] activity of HMM in the steady state was affected by this treatment. Acto-S-1 was obtained by mixing F-actin with HMM digested with insoluble papain (HMM-S-1). The size of the initial burst of Pi liberation of acto-S-1 was 0.35 mole/mole of S-l at an ATP concentration of 0.5 mole/mole of S-1, and 0.5 mole/moleof S-1 at ATP concentrations above 1 mole/mole of S-1...  相似文献   

5.
A method for structural analysis of biological membranes using neutron scattering from suspensions is described and applied to photosynthetic membranes from bacteria. The variation of scattering density across the membrane is analysed using small-angle scattering and contrast variation with H2O/2H2O mixtures. Effects due to membrane curvature and scattering density variation in the plane of the membrane are evaluated. Thickness parameters (D) are obtained from the small-angle scattering data, which are the one-dimensional analogues of radii of gyration. The formalism of contrast variation is used to describe the change of intensity and thickness parameter with H2O/2H2O mixture. The results are expressed in terms of a thickness parameter at infinite contrast, which is directly related to the physical thickness of the membrane, and a measure of the variation of the scattering density across the membrane, produced, for example, by the higher scattering densities of the polar surfaces relative to a hydrocarbon interior of the membrane. Asymmetry in the membrane scattering density is also evaluated.The results for photosynthetic membranes demonstrate a lipid hydrocarbon core in the membrane. About two-thirds of the protein is closely associated with the lipid layer, and no substantial amounts of protein project more than short distances from the lipid layer. There is a contribution to the variation in scattering density across the membrane that cannot be attributed to lipid, and may involve scattering density heterogeneity within the protein, giving a high proportion of hydrophobic protein segments at the interior of the membrane that have lower scattering densities than the hydrophilic segments at the surfaces of the membrane. The membrane scattering density is not markedly asymmetric. Several alternative structures previously proposed for photosynthetic membranes are incompatible with these results.  相似文献   

6.
The HLB dependency for the solubilization of membrane proteins and adenylate cyclase activity from a plasma membrane-enriched fraction from rat liver has been determined. The HLB (hydrophilic/lipophilic/balance) number of a detergent is an empirical measure of its relative hydrophobicity. Detergent HLB numbers vary systematically with the length of the ethylene oxide chain for a homologous series of detergents such as the Triton X series. These detergents have a constant hydrophobic moiety, octylphenyl, and a variable polar portion, polyethoxyethanol. Basal-NaF-epine-phrine-, and glucagon-stimulated adenylate cyclase activities were solubilized in the HLB range of 16.8–17.4. Solubilization was most effective in 0.01 M Tris buffers at pH 7.5 containing 1–5 mM mercaptoethanol, 1 mM MgCl2, and 0.1% Triton X-305. The detergent to membrane protein ratio used in these studies was 3:1. Criteria for solubilization included lack of sedimentation at 100,000 × g, the absence of particulate material in the supernatant when examined by electron microscopy, and inclusion of hormonally sensitive adenylate cylcase activity in Sephadex G-200 gels. The apparent molecular weight of the solubilized enzyme was approximately 200,000 in the presence of Triton X-305. The solubilized enzyme was stimulated 5-fold by NaF, 7-fold by glucagon, and 20-fold by epinephrine compared to the particulate enzyme used in this study which was stimulated 10-fold, 3,4-fold, and 4-fold by NaF, epinephrine, and glucagon, respectively. The solubilized enzyme is stable for several weeks when stored at ?60° C.  相似文献   

7.
 应用凝胶电泳覆盖技术和放射自显影法研究了32~P-标记的平滑肌肌球蛋白调节轻链在肌球蛋白分子上的定位。实验结果表明调节轻链(LC_(20))可重新结合于平滑肌肌球蛋白重链(200kD),重酶解肌球蛋白(130kD)及其62kD和26kD肽段上。这提示调节轻链的结合点位于平滑肌肌球蛋白亚段-1羧基端的26kD肽段上。  相似文献   

8.
Single fibers were isolated from the semitendinosus muscle of frog and illuminated with an He-Ne laser. The polarization of the laser beam was varied by a photoelastic modulator. The time course of the degree of polarization of light diffracted from the muscle fiber during an isometric contraction was measured directly with a time resolution of 1 ms. Tension, sarcomere length, and diffraction intensity were also measured. During the contraction cycle, the degree of polarization of the active fiber exhibited a biphasic variation relative to that of the resting fiber. Analysis identifies the movement of heavy meromyosin toward actin and the rise in myoplasmic calcium ion concentration as the main contributors to the polarization transient of active fibers. A quantitative theory describing the polarized diffraction from muscle fibers is formulated. There is good agreement between the theory and measurements.  相似文献   

9.
Molluscan myosins are regulated molecules that control muscle contraction by the selective binding of calcium. The essential and the regulatory light chains are regulatory subunits. Scallop myosin is the favorite material for studying the interactions of the light chains with the myosin heavy chain since the regulatory light chains can be reversibly removed from it and its essential light chains can be exchanged. Mutational and structural studies show that the essential light chain binds calcium provided that the Ca-binding loop is stabilized by specific interactions with the regulatory light chain and the heavy chain. The regulatory light chains are inhibitory subunits. Regulation requires the presence of both myosin heads and an intact headrod junction. Heavy meromyosin is regulated and shows cooperative features of activation while subfragment-1 is non-cooperative. The myosin heavy chains of the functionally different phasic striated and the smooth catch muscle myosins are products of a single gene, the isoforms arise from alternative splicing. The differences between residues of the isoforms are clustered at surface loop-1 of the heavy chain and account for the different ATPase activity of the two muscle types. Catch muscles contain two regulatory light chain isoforms, one phosphorylatable by gizzard myosin light chain kinase. Phosphorylation of the light chain does not alter ATPase activity. We could not find evidence that light chain phosphorylation is responsible for the catch state.  相似文献   

10.
The unique myosin binding protein-c "motif" near the N-terminus of myosin binding protein-C (MyBP-C) binds myosin S2. Previous studies demonstrated that recombinant proteins containing the motif and flanking regions (e.g., C1C2) affect thin filament movement in motility assays using heavy meromyosin (S1 plus S2) as the molecular motor. To determine if S2 is required for these effects we investigated whether C1C2 affects motility in assays using only myosin S1 as the motor protein. Results demonstrate that effects of C1C2 are comparable in both systems and suggest that the MyBP-C motif affects motility through direct interactions with actin and/or myosin S1.  相似文献   

11.
To examine the spatial relationship between SH1 thiol and actin binding site on subfragment-1 surface, we studied the interaction with actin of subfragment-1 whose SH1 was labeled with an iodoacetate derivative of biotin and covered with avidin. Subfragment-1--avidin complex bound F-actin and its Mg2+ ATPase activity was activated by actin. Considering the size and the location of biotin binding site on avidin, our results suggest that SH1 is separated from the actin binding site on subfragment-1 surface by at least 17-20 A.  相似文献   

12.
The fluorescent analog of adenosine triphosphate (ATP)1 1,N6-ethenoadenosine triphosphate, (εATP), has been utilized as a substitute for ATP in the myosin and heavy meromyosin ATPase systems. For myosin, the analog εATP replaced ATP with a somewhat larger Km (2.6 × 10?4 mole ??1 for εATP as opposed to 8.8 × 10?5 mole ??1 for ATP), indicating that the apparent affinity of the enzyme for εATP is less than for ATP. Perhaps of more interest, further comparison yielded a Vmax for εATP about two and one half times the value for ATP (20 μmole PO4 sec?1 g protein?1 as opposed to 8.1 μmole sec?1 g protein?1). Results for the HMM-εATPase system were similar, yielding a Km value of 1.47 × 10?4 mole ??1 and a Vmax of 54.2 μmole PO4 sec?1 g protein?1, as opposed to corresponding Km and Vmax values of 1.23 × 10?4 mole ??1 and 20.4 μmole PO4 sec?1 g protein?1, respectively for the HMM-ATP interaction. The pH dependence of εATPase for both systems was comparable to ATP, suggesting a similarity in the mechanism of hydrolysis of the two nucleotides. Activation of εATPase by Ca2+ in the presence of 0.5 M KCl was comparable to ATPase for both systems, but inhibition by Mg2+ seemed to be more effective for εATPase. These results indicate that εATP is an excellent substitute for ATP in the myosin and heavy meromyosin systems and because of its insertion into the active site of these muscle proteins, it promises to be a very useful probe for conformation studies at this level.  相似文献   

13.
The exocytosis of catecholamines by chromaffin cells following stimulation (e.g. by acetylcholine) is accompanied by a rise in the level of intracellular free Ca2+. Actually, secretion can be induced merely by making the cells leaky to Ca2+ from the external medium. We have recently demonstrated that secretion can be increased by the introduction of DNase-I, the F-actin depolymerizing agent, or of heavy meromyosin, the enzymatically active fragment of myosin. Suspecting that these changes might be associated with a higher intracellular level of Ca2+, we now have measured the influx of 45Ca2+ into chromaffin cells which have undergone fusion with DNase-I- or with heavy meromyosin-loaded liposomes. In both cases, a marked increase in Ca2+ uptake has been observed, which could be abolished by Co2+ ions (a Ca2+ channel blocker), suggesting an intimate involvement of the cellular actomyosin system in the process of Ca2+ ions transport through the Ca2+ channels of the plasma membrane.  相似文献   

14.
15.
The injection of λDNA from attached phage into a host bacterium can be reversibly inhibited by putrescine. The concentration of di- or polyamine required to inhibit injection varies with the Mg2+ concentration and the amount of DNA in the phage head. In a series of n-alkyl diamines, those with more than five or fewer than three CH2 groups between amino groups were ineffective.  相似文献   

16.
X. Liu  L. -F. Yen 《Protoplasma》1995,186(1-2):87-92
Summary Actin purified from maize pollen grains can be polymerized into F-actin which increased the ATPase activities of proteolytic fragments (HMM, S1) of rabbit muscle myosin. The values of Kapp is 232 M for HMM and 290 M for S1, which are six- and seven-fold higher than those of rabbit muscle F-actin under the same conditions. Pollen actin and rabbit muscle myosin form hybrid actomyosin showing increase in viscosity and turbidity of solution. Viscosity and turbidity of the actomyosin dropped and then increased again with addition of ATP. Polymerized pollen actin can be decorated in vitro with both rabbit muscle HMM and S1 to form an arrowhead-shaped structure like that observed in living plant cells. The results show that pollen actin is similar to muscle actin at a qualitative level. But there are differences between them at a quantitative level.Abbreviations HMM heavy meromyosin - S1 myosin subfragment 1 - ATP adenosine-5-triphosphate  相似文献   

17.
鲢鱼轻酶解肌球蛋白的cDNA克隆及结构解析   总被引:1,自引:0,他引:1  
与栖息温度相关的鲢鱼两种轻酶解肌球蛋白重链(light meromyosin,LMM)同工型(低温型,sc-w;高温型,sc-s)的氨基酸序列解析结果表明:sc-w与sc-s在LMM的氨基酸序列上显示91.8%的同源性,但与已经报道的草鱼(Ctenopharyngodon idella)低温型(gc10)有96.9%的...  相似文献   

18.
Heavy meromyosin subfragment-1 and its trinitrophenylated derivative 3ave been chromatographed on immobilized ATP, ADP and adenosine 5′-(β,γ-imino)triphosphate affinity chromatography columns, in the presence and in the absence of Mg2+ or Ca2+. Splitting of bound ATP was followed by using [γ-3 2P]ATP columns. While the divalent cations had little effect on the chromatographic pattern in the case of the non-hydrolyzable ADP and adenosine 5′(β,γ-imino)triphosphate, they catalyzed splitting in the case of ATP and at the same time strongly increased the affinity of adsorption of the proteins. The protein-elution and the Pi-release patterns were different for the native and the modified proteins. These results have been interpreted in terms of protein binding to the various intermediates of the ATP hydrolysis reaction.  相似文献   

19.
Numerous types of biological motion are driven by myosin thick filaments. Although the exact structure of the filament backbone is not known, it has long been hypothesized that periodically arranged charged regions along the myosin tail are the main contributors to filament stability. Here we provide a direct experimental test of this model by mechanically pulling apart synthetic myosin thick filaments. We find that unzipping is accompanied by broad force peaks periodically spaced at 4-, 14- and 43-nm intervals. This spacing correlates with the repeat distance of highly charged regions along the myosin tail. Lowering ionic strength does not change force-peak periodicity but increases the forces necessary for unzipping. The force peaks are partially reversible, indicating that the interactions are rapidly re-established upon mechanical relaxation. Thus, the zipping together of myosin tails via consecutive formation of periodically spaced bonds may be the underlying mechanism of spontaneous thick filament formation.  相似文献   

20.
Three-dimensional reconstructions of “barbed” and “blunted” arrowheads (Craig et al., 1980) show that these two forms arise from arrangement of scallop myosin subfragments (S1) that appear about 40 Å longer in the presence of the regulatory light chain than in its absence. A similar difference in apparent length is indicated by images of single myosin subfragments in partially decorated filaments. The extra mass is located at the end of the subfragment furthest from actin, and probably comprises part of the regulatory light chain as well as a segment of the myosin heavy chain. The fact that barbed arrowheads are also formed by myosin subfragments from vertebrate striated and smooth muscles implies that the homologous light chains in these myosins have locations similar to that of the scallop light chain.The scallop light chain probably does not extend into the actin-binding site on the myosin head, and is therefore unlikely to interfere physically with binding. Rather, regulation of actin-myosin interaction by light chains may involve Ca2+-dependent changes in the structure of a region near the head-tail junction of myosin.The reconstructions suggest locations for actin and tropomyosin relative to myosin that are similar to those proposed by Taylor & Amos (1981) and are consistent with a revised steric blocking model for regulation by tropomyosin. The identification of actin from these reconstructions is supported by images of partially decorated filaments that display the polarity of the actin helix relative to that of bound myosin subfragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号