首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autoreactive T cells represent a natural repertoire of T cells in both diseased patients and healthy individuals. The mechanisms regulating the function of these autoreactive T cells are still unknown. Ob1A12 is a myelin basic protein (MBP)-reactive Th cell clone derived from a patient with relapsing-remitting multiple sclerosis. Mice transgenic for this human TCR and DRA and DRB1*1501 chains develop spontaneous experimental autoimmune encephalomyelitis. The reactivity of Ob1A12 is reported to be restricted to recognition of MBP peptide 85-99 in the context of DRB1*1501. DRA/DRB1*1501 and the patient's other restriction element, DRA/DRB1*0401, differ significantly in their amino acid sequences. In this study we describe an altered peptide ligand derived from MBP(85-99) with a single amino acid substitution at position 88 (Val to Lys; 88V-->K), that could stimulate the Ob1A12.TCR in the context of both DRA/DRB1*1501 and DRA/DRB1*0401. Analysis of a panel of transfected T cell hybridomas expressing Ob1A12.TCR and CD4 indicated that Ob1A12.TCR cross-reactivity in the context of DRA/DRB1*0401 is critically dependent on the presence of the CD4 coreceptor. Furthermore, we found that activation of Ob1A12.TCR with MBP altered peptide ligand 85-99 88V-->K presented by DRB1*1501 or DRB1*0401 resulted in significant differences in TCR zeta phosphorylation. Our data indicate that injection of altered peptide ligand into patients heterozygous for MHC class II molecules may result in unexpected cross-reactivities, leading to activation of autoreactive T cells.  相似文献   

2.
The differentiation of naive CD4(+) Th cells into Th1 and Th2 phenotypes is influenced by cytokines, concentration of Ag, accessory molecules, and the affinity of the MHC-TCR interaction. To study these factors in human memory T cells, T cell lines with Th1 or Th2 phenotypes specific for the peptide hemagglutinin (HA)(307-319) in the context of DRB1*0401 were established from the peripheral blood of an individual previously vaccinated for influenza virus. Flow cytometric analysis with fluorescent-labeled MHC class II tetramers was used to analyze TCR avidity: the Th2 line bound the HLA-DR*0401-HA(307-319) tetramers with higher mean avidity, although the range of binding avidity largely overlapped with the Th1 line. High-affinity Th1 and Th2 lines were established for further study by FACS sorting. When activated with plate-bound HLA-DR*0401-HA(307-319) monomers, the Th1 line proliferated and produced IFN-gamma without additional costimulation whereas the Th2 line required the addition of soluble anti-CD28 Ab to induce proliferation and IL-5 production, but this requirement could be overcome with high concentrations of plate-bound monomer alone. IL-2 production was dependent on costimulation in both cell lines. These findings demonstrate that upon antigenic rechallenge, Th1 and Th2 cells differ in their response to Ag-specific stimulation. Th2 cells were sensitive to the strength of signal to a greater degree than Th1 cells and required costimulation through CD28 for maximal proliferation. These distinctions between Th1 and Th2 activation are not consistent with a simple avidity model of Ag recognition and indicate both qualitative and quantitative differences in determining cell lineage commitment.  相似文献   

3.
While T cells have been clearly implicated in a number of disease processes including autoimmunity, graft rejection, and atypical immune responses, the precise Ags recognized by the pathogenic T cells have often been difficult to identify. This has particularly been true for MHC class II-restricted CD4+ T cells. Although such cells can be demonstrated to have undergone clonal expansion at sites of pathology, they are frequently difficult to establish as stable T cell clones. Furthermore, in general, larger peptides in higher concentrations are required to stimulate CD4+ T cells than CD8+ T cells, which makes some of the techniques developed to identify CD8+ T cell Ags impractical. To circumvent some of these problems, we developed a model system consisting of two parts. The first part involves the construction of an indicator T cell hybridoma expressing a chimeric TCR comprised of murine constant regions and human variable regions specific for influenza hemagglutinin 307-319 presented by DR4. The second part consists of a library of fibroblasts each expressing multiple peptides as amino terminal covalent extensions of the beta-chain of HLA-DR4 (DRA1*0101, DRB1*0401). Using this model system, we screened approximately 100, 000 peptides and identified three novel peptides stimulatory for the HA1.7 TCR. While there is some convergence at residues known to be important for T cell recognition, all three peptides differ markedly from each other and bear little resemblance to wild-type hemagglutinin 307-319.  相似文献   

4.
T cell responses to Ags involve recognition of selected peptide epitopes contained within the antigenic protein. In this report, we describe a new approach for direct identification of CD4+ T cell epitopes of complex Ags that uses human class II tetramers to identify reactive cells. With a panel of 60 overlapping peptides covering the entire sequence of the VP16 protein, a major Ag for HSV-2, we generated a panel of class II MHC tetramers loaded with peptide pools that were used to stain peripheral lymphocytes of an HSV-2 infected individual. With this approach, we identified four new DRA1*0101/DRB1*0401- and two DRA1*0101/DRB1*0404-restricted, VP16-specific epitopes. By using tetramers to sort individual cells, we easily obtained a large number of clones specific to these epitopes. Although DRA1*0101/DRB1*0401 and DRA1*0101/DRB1*0404 are structurally very similar, nonoverlapping VP16 epitopes were identified, illustrating high selectivity of individual allele polymorphisms within common MHC variants. This rapid approach to detecting CD4+ T cell epitopes from complex Ags can be applied to any known Ag that gives a T cell response.  相似文献   

5.
Class I and class II MHC glycoproteins are highly polymorphic molecules that bind antigenic peptides and present them on cell surfaces for recognition by T lymphocytes. Even though MHC polymorphism has long been known to affect both peptide binding and recognition by the TCR, the role of individual amino acids of MHC proteins in these interactions is poorly understood. To examine the effect of a small number of amino acid residues on T cell stimulation, B lymphoblastoid cell lines homozygous for the closely related DR1 subtypes, Dw1 and Dw20, and the DR4 subtypes, Dw4 and Dw14, were compared for their ability to present an immunogenic influenza hemagglutinin peptide (HA307-319) to an Ag-specific, DR1,4-restricted T cell clone. B cell lines expressing DR1 Dw20 and DR4 Dw14 presented HA307-319 much less efficiently than DR1 Dw1 and DR4 Dw4 and bound a biotinylated analogue of the same peptide less well. Analysis of DRB1 gene sequences suggested that polymorphism at residue 86 had a major effect on peptide binding. Differences in binding of a set of HA307-319 analogues biotinylated at each residue to cells expressing DR1 Dw1 and DR1 Dw20 suggested that the polymorphism affected the interactions of many peptide residues with the class II molecule. In inhibition assays, DR1 Dw1 and DR4 Dw4 were shown to differ from DR1 Dw20 and DR4 Dw14 in their length requirements for peptide binding. Using a larger panel of homozygous B cell lines expressing many class II haplotypes, a Ser-309 substituted HA307-319 analogue was shown to bind to most B cell lines expressing Val-86 containing alleles (including DR1 Dw20 and DR4 Dw14) but failed to bind most B cell lines expressing Gly-86 alleles (including DR1 Dw1 and DR4 Dw4). The results indicated that polymorphism at residue 86 influenced the specificity and affinity of peptide binding and affected the conformation of peptide-DR protein complexes without completely eliminating T cell recognition.  相似文献   

6.
In humans, HLA-DR alleles sharing amino acids at the third hypervariable region with DRB1*0401(shared epitope) are associated with a predisposition to rheumatoid arthritis, whereas DRB1*0402 is not associated with such a predisposition. Both DRB1*0402 and DRB1*0401 occur in linkage with DQ8 (DQB1*0302). We have previously shown that transgenic (Tg) mice expressing HLA-DRB1*0401 develop collagen-induced arthritis. To delineate the role of "shared epitope" and gene complementation between DR and DQ in arthritis, we generated DRB1*0402, DRB1*0401.DQ8, and DRB1*0402.DQ8 Tg mice lacking endogenous class II molecules, AE(o). DRB1*0402 mice are resistant to develop arthritis. In double-Tg mice, the DRB1*0401 gene contributes to the development of collagen-induced arthritis, whereas DRB1*0402 prevents the disease. Humoral response to type II collagen is not defective in resistant mice, although cellular response to type II collagen is lower in *0402 mice compared with *0401 mice. *0402 mice have lower numbers of T cells in thymus compared with *0401 mice, suggesting that the protective effect could be due to deletion of autoreactive T cells. Additionally, DRB1*0402 mice have a higher number of regulatory T cells and show increased activation-induced cell death, which might contribute toward protection. In DRB1*0401.DQ8 mice, activated CD4(+) T cells express class II genes and can present DR4- and DQ8-restricted peptides in vitro, suggesting a role of class II(+) CD4 T cells locally in the joints. The data suggest that polymorphism in DRB1 genes determines predisposition to develop arthritis by shaping the T cell repertoire in thymus and activating autoreactive or regulatory T cells.  相似文献   

7.
An initial event in T cell activation is the specific adherence of T cells via their T cell receptor to the MHC peptide complex. We have studied this adherence by incubating T cells with preformed HLA DR4Dw4 peptide complexes attached to a solid support. Adherence of sodium 51Cr-labeled T cell clones specific for the influenza hemagglutinin peptide, HA 307-319, was maximal after 15 min and was specific for the HLA DR4Dw4-HA 307-319 complex. The binding was temperature dependent and could be blocked with azide or protein kinase C inhibitors, indicating that for adherence the T cells need to be metabolically active and have a functioning protein kinase C pathway. The adherence could be blocked with CD4- or CD3-reactive murine mAb, suggesting that the TCR and CD4 molecules work in concert to induce strong adherence to the HLA DR4Dw4-HA 307-319 complex. A subsequent event in T cell activation is proliferation, which is thought to need additional proteins such as IL-1 or other adhesion molecules. MHC peptide complexes coated on microtiter plates also induced proliferation in the human T cell clones. Removal of any monocytes by treatment of human T cell clones with anti-CD14 in conjunction with C, followed by purification over a nylon wool column, did not abrogate proliferation. After prolonged culture of the T cell clones in plates coated with peptide-pulsed HLA DR4Dw4 in the presence of IL-2, the T cell clones continued to proliferate in response to peptide. These results suggest that human T cell clones do not require a second signal from a monocyte or other APC to proliferate.  相似文献   

8.
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602, are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis. Functional redundancy in Ag presentation by these class II molecules would allow recognition by a single TCR of identical peptides with the different restriction elements, facilitating T cell activation and providing one explanation how a disease-associated HLA haplotype could be linked to a CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30 identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA class II restriction.  相似文献   

9.
Multiple sclerosis (MS) is an autoimmune disease characterized by infiltration of pathogenic immune cells in the CNS resulting in destruction of the myelin sheath and surrounding axons. We and others have previously measured the frequency of human myelin-reactive T cells in peripheral blood. Using T cell cloning techniques, a modest increase in the frequency of myelin-reactive T cells in patients as compared with control subjects was observed. In this study, we investigated whether myelin oligodendrocyte glycoprotein (MOG)-specific T cells could be detected and their frequency was measured using DRB1*0401/MOG(97-109(107E-S)) tetramers in MS subjects and healthy controls expressing HLA class II DRB1*0401. We defined the optimal culture conditions for expansion of MOG-reactive T cells upon MOG peptide stimulation of PMBCs. MOG(97-109)-reactive CD4(+) T cells, isolated with DRB1*0401/MOG(97-109) tetramers, and after a short-term culture of PMBCs with MOG(97-109) peptides, were detected more frequently from patients with MS as compared with healthy controls. T cell clones from single cell cloning of DRB1*0401/MOG(97-109(107E-S)) tetramer(+) cells confirmed that these T cell clones were responsive to both the native and the substituted MOG peptide. These data indicate that autoantigen-specific T cells can be detected and enumerated from the blood of subjects using class II tetramers, and the frequency of MOG(97-109)-reactive T cells is greater in patients with MS as compared with healthy controls.  相似文献   

10.
Rheumatoid arthritis (RA) is genetically associated with MHC class II molecules that contain the shared epitope. These MHC molecules may participate in disease pathogenesis by selectively binding arthritogenic peptides for presentation to autoreactive CD4(+) T cells. The nature of the arthritogenic Ag is not known, but recent work has identified posttranslationally modified proteins containing citrulline (deiminated arginine) as specific targets of the IgG Ab response in RA patients. To understand how citrulline might evoke an autoimmune reaction, we have studied T cell responses to citrulline-containing peptides in HLA-DRB1*0401 transgenic (DR4-IE tg) mice. In this study, we demonstrate that the conversion of arginine to citrulline at the peptide side-chain position interacting with the shared epitope significantly increases peptide-MHC affinity and leads to the activation CD4(+) T cells in DR4-IE tg mice. These results reveal how DRB1 alleles with the shared epitope could initiate an autoimmune response to citrullinated self-Ags in RA patients.  相似文献   

11.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

12.
CD4+ T cells play a central role in the induction and persistence of CD8+ T cells in several models of autoimmune and infectious disease. To improve the efficacy of a synthetic peptide vaccine based on the self-Ag, gp100, we sought to provide Ag-specific T cell help. To identify a gp100 epitope restricted by the MHC class II allele with the highest prevalence in patients with malignant melanoma (HLA-DRB1*0401), we immunized mice transgenic for a chimeric human-mouse class II molecule (DR4-IE) with recombinant human gp100 protein. We then searched for the induction of CD4+ T cell reactivity using candidate epitopes predicted to bind to DRB1*0401 by a computer-assisted algorithm. Of the 21 peptides forecasted to bind most avidly, murine CD4+ T cells recognized the epitope (human gp10044-59, WNRQLYPEWTEAQRLD) that was predicted to bind best. Interestingly, the mouse helper T cells also recognized human melanoma cells expressing DRB1*0401. To evaluate whether human CD4+ T cells could be generated from the peripheral blood of patients with melanoma, we used the synthetic peptide h-gp10044-59 to sensitize lymphocytes ex vivo. Resultant human CD4+ T cells specifically recognized melanoma, as measured by tumor cytolysis and the specific release of cytokines and chemokines. HLA class II transgenic mice may be useful in the identification of helper epitopes derived from Ags of potentially great clinical utility.  相似文献   

13.
The interactions of the T cell receptor (TCR) with cognate MHC-peptide and co-stimulatory molecules expressed at surface of antigen presenting cells (APC) leads to activation or tolerance of T cells. The development of molecular biological tools allowed for the preparation of soluble MHC-peptide molecules as surrogate for the APC. A decade ago a monomeric class II MHC molecule in which the peptide was covalently linked to β-chain of class II molecule was generated. This type of molecule had a low-binding affinity and did not cause the multimerization of TCR. The requirement of multimerization of TCR led to development of a new class of reagents, chimeric peptides covalently linked to MHC that was dimerized via Fc fragment of an immunoglobulin and linked to 3' end of the β-chain of MHC class II molecule. These soluble dimerized MHC-peptide chimeric molecules display high affinity for the TCR and caused multimerization of TCR without processing by an APC. Because dimeric molecules are devoid of co-stimulatory molecules interacting with CD28, a second signal, they induce anergy rather the activation of T cells. In this review, we compare the human and murine dimerized MHC class II-peptides and their effect on CD4(+) T cells, particularly the generation of T regulatory cells, which make these chimeric molecules an appealing approach for the treatment of autoimmune diseases.  相似文献   

14.
The memory T cell response is polyclonal, with the magnitude and specificity of the response controlled in part by the burst size of T cells expanded from effector/memory precursors. Sensitive assays using HLA class II multimers were used to detect low-frequency Ag-specific T cells directed against influenza viral Ags in subjects immunized with the influenza vaccine. Direct ex vivo tetramer staining of PBMC from five individuals identified frequencies of hemagglutinin (HA) 306-318 tetramer binding CD4(+) T cells in the peripheral blood ranging from 1 in 600 to 1 in 30,000 CD4(+) T cells. These frequencies were validated by counting CFSE(low), tetramer-positive T cells after in vitro expansion. Low frequency of T cells directed to other influenza epitopes, including DRA1*0101/DRB1*0401-restricted matrix protein 60-73, DRA1*0101/DRB1*0101-restricted matrix protein 18-29, DRA1*0101/DRB1*0701-restricted HA 232-244 and DRA1*0101/DRB1*0101-restricted nucleoprotein 206-217 were also determined. T cells which occurred at a frequency as low as 1 in 350,000 could be ascertained by in vitro expansion of precursors. Peripheral HA(306-318)-responsive T cells expanded 2- to 5-fold following influenza vaccination. Examination of phenotypic markers of the HA(306-318)-responsive T cells in the peripheral blood indicated that the majority were CD45RA(-), CD27(+), CD25(-), CD28(+), and CD62L(-), while T cell clones derived from this population were CD45RA(-), CD27(-), CD25(+), CD28(+), and CD62L(-).  相似文献   

15.
BACKGROUND: It has been reported that HLA class II haplotypes DRB1*0405-DQA1*0303-DQB1*0401 and DRB1*0901-DQA1*0302-DQB1*0303 are major susceptibility haplotypes for type 1 diabetes mellitus (DM) in Japanese population. However, little has been reported on the susceptibility HLA class II haplotypes in Japanese patients with autoimmune polyglandular syndrome type II and type III (APS III). PATIENTS AND METHODS: HLA class II haplotypes of DRB1-DQA1-DQB1 in 31 patients with APS III, 14 patients with Hashimoto's thyroiditis alone, and 15 patients with Graves' disease alone were examined in Japanese population. APS III patients were divided into three groups (A, B, and C) depending on the combination of autoimmune endocrine diseases. RESULTS: In 13 APS III patients with both Hashimoto's thyroiditis and type 1 DM (group A), the haplotype frequencies of the HLA DRB1*0802-DQA1*0401-DQB1*0402 and DRB1*0901-DQA1*0302-DQB1*0303 were significantly higher than in the controls. In patients with Hashimoto's thyroiditis alone, the haplotype frequency of DRB1*0901-DQA1*0302-DQB1*0303 was significantly higher than in controls, whereas the frequency of DRB1*0802-DQA1*0401-DQB1*0402 did not differ significantly from those in the controls. In 11 APS III patients with both Graves' disease and type 1 DM (group B), the haplotype frequencies of HLA DRB1*0405-DQA1*0303-DQB1*0401 and DRB1*0802-DQA1*0301-DQB1*0302 were significantly higher than in controls. In patients with Graves' disease alone, the haplotype frequency of DRB1*0803-DQA1*0103-DQB1*0601 were significantly higher than those in controls, suggesting that the susceptibility haplotypes for group B APS III differed from those for Graves' disease alone. In 7 APS III patients with both autoimmune thyroid diseases and pituitary disorders (group C), the haplotype frequency of HLA DRB1*0405-DQA1*0303-DQB1*0401 was significantly higher than in controls. CONCLUSIONS: Susceptible HLA class II haplotypes of DRB1-DQA1-DQB1 for APS III differ between the Japanese and Caucasian populations. More interestingly, the susceptible HLA class II haplotypes differ among the three types of Japanese APS III and are not merely a combination of susceptibility haplotypes of each endocrine disease.  相似文献   

16.
The HLA-DRB1*0401 MHC class II molecule (DR4) is genetically associated with rheumatoid arthritis. It has been proposed that this MHC class II molecule participates in disease pathogenesis by presenting arthritogenic endogenous or exogenous peptides to CD4+ T cells, leading to their activation and resulting in an inflammatory response within the synovium. In order to better understand DR4 restricted T cell activation, we analyzed the candidate arthritogenic antigens type II collagen, human aggrecan, and the hepatitis B surface antigen for T-cell epitopes using a predictive model for determining peptide-DR4 affinity. We also applied this model to determine whether cross-reactive T-cell epitopes can be predicted based on known MHC-peptide-TCR interactions. Using the HLA-DR4-IE transgenic mouse, we showed that both T-cell proliferation and Th1 cytokine production (IFN-gamma) correlate with the predicted affinity of a peptide for DR4. In addition, we provide evidence that TCR recognition of a peptide-DR4 complex is highly specific in that similar antigenic peptide sequences, containing identical amino acids at TCR contact positions, do not activate the same population of T cells.  相似文献   

17.
Genetic control of immune reactions has a major role in the development of rheumatic heart disease (RHD) and differs between patients with rheumatic fever (RF). Some authors think the risk of acquiring RHD is associated with the HLA class II DR and DQ loci, but other views exist, due to the various HLA-typing methods and ways of grouping cases. Our goal was to determine the relations between HLA class II alleles and risk of or protection from RF in patients with relatively homogeneous clinical manifestations. A total of 70 RF patients under the age of 18 years were surveyed in Latvia. HLA genotyping of DRB1*01 to DRB1*18 and DQB1*0201-202, *0301-305, *0401-402, *0501-504, and *0601-608 was performed using polymerase chain reaction sequence-specific primers. Data for a control group of 100 healthy individuals typed for HLA by the same method were available from the databank of the Immunology Institute of Latvia. Of the RF patients, 47 had RHD and 8 had Sydenham's chorea. We concluded that HLA class II DRB1*07-DQB1*0401-2 and DRB1*07-DQB1*0302 could be the risk alleles and HLA class II DRB1*06 and DQB1*0602-8, the protective ones. Patients with mitral valve regurgitation more often had DRB1*07 and DQB1*0401-2, and patients with multivalvular lesions more often had DRB1*07 and DQB1*0302. In Sydenham's chorea patients, the DQB1*0401-2 allele was more frequent. Genotyping control showed a high risk of RF and RHD in patients with DRB1*01-DQB1*0301-DRB1*07-DQB1*0302 and DRB1*15-DQB1*0302-DRB1*07-DQB1*0303.  相似文献   

18.
Major histocompatibility complex class II molecules encoded by two common rhesus macaque alleles Mamu-DRB1*0406 and Mamu-DRB*w201 have been purified, and quantitative binding assays have been established. The structural requirements for peptide binding to each molecule were characterized by testing panels of single-substitution analogs of the two previously defined epitopes HIV Env242 (Mamu-DRB1*0406 restricted) and HIV Env482 (Mamu-DRB*w201 restricted). Anchor positions of both macaque DR molecules were spaced following a position 1 (P1), P4, P6, P7, and P9 pattern. The specific binding motif associated with each molecule was distinct, but largely overlapping, and was based on crucial roles of aromatic and/or hydrophobic residues at P1, P6, and P9. Based on these results, a tentative Mamu class II DR supermotif was defined. This pattern is remarkably similar to a previously defined human HLA-DR supermotif. Similarities in binding motifs between human HLA and macaque Mamu-DR molecules were further illustrated by testing a panel of more than 60 different single-substitution analogs of the HLA-DR-restricted HA 307-319 epitope for binding to Mamu-DRB*w201 and HLA-DRB1*0101. The Mamu-DRB1*0406 and -DRB*w201 binding capacity of a set of 311 overlapping peptides spanning the entire simian immunodeficiency virus (SIV) genome was also evaluated. Ten peptides capable of binding both molecules were identified, together with 19 DRB1*0406 and 43 DRB*w201 selective binders. The Mamu-DR supermotif was found to be present in about 75% of the good binders and in 50% of peptides binding with intermediate affinity but only in approximately 25% of the peptides which did not bind either Mamu class II molecule. Finally, using flow cytometric detection of antigen-induced intracellular gamma interferon, we identify a new CD4(+) T-lymphocyte epitope encoded within the Rev protein of SIV.  相似文献   

19.
Activation of T lymphocytes is dependent on multiple ligand-receptor interactions. The possibility that TCR dimerization contributes to T cell triggering was raised by the crystallographic analysis of MHC class II molecules. The MHC class II molecules associated as double dimers, and in such a way that two TCR (and two CD4 molecules) could bind simultaneously. Several subsequent studies have lent support to this concept, although the role of TCR cross-linking in T cell activation remains unclear. Using DRA cDNAs modified to encode two different C-terminal tags, no evidence of constitutive double dimer formation was obtained following immunoprecipitation and Western blotting from cells transiently transfected with wild-type DRB and tagged DRA constructs, together with invariant chain and HLA-DM. To determine whether MHC class II molecules contribute actively to TCR-dependent dimerization and consequent T cell activation, panels of HLA-DR1beta and H2-E(k) cDNAs were generated with mutations in the sequences encoding the interface regions of the MHC class II double dimer. Stable DAP.3 transfectants expressing these cDNAs were generated and characterized biochemically and functionally. Substitutions in either interface region I or III did not affect T cell activation, whereas combinations of amino acid substitutions in both regions led to substantial inhibition of proliferation or IL-2 secretion by human and murine T cells. Because the amino acid-substituted molecules were serologically indistinguishable from wild type, bound antigenic peptide with equal efficiency, and induced Ag-dependent CD25 expression indicating TCR recognition, the reduced ability of the mutants to induce full T cell activation is most likely the result of impaired double dimer formation. These data suggest that MHC class II molecules, due to their structural properties, actively contribute to TCR cross-linking.  相似文献   

20.
Hybrid cells generated by fusing dendritic cells with tumor cells (DC-TC) are currently being evaluated as cancer vaccines in preclinical models and human immunization trials. In this study, we evaluated the production of human DC-TC hybrids using an electrofusion protocol previously defined for murine cells. Human DCs were electrically fused with allogeneic melanoma cells (888mel) and were subsequently analyzed for coexpression of unique DC and TC markers using FACS and fluorescence microscopy. Dually fluorescent cells were clearly observed using both techniques after staining with Abs against distinct surface molecules suggesting that true cell fusion had occurred. We also evaluated the ability of human DC-TC hybrids to present tumor-associated epitopes in the context of both MHC class I and class II molecules. Allogeneic DCs expressing HLA-A*0201, HLA-DR beta 1*0401, and HLA-DR beta 1*0701 were fused with 888mel cells that do not express any of these MHC molecules, but do express multiple melanoma-associated Ags. DC-888mel hybrids efficiently presented HLA-A*0201-restricted epitopes from the melanoma Ags MART-1, gp100, tyrosinase, and tyrosinase-related protein 2 as evaluated by specific cytokine secretion from six distinct CTL lines. In contrast, DCs could not cross-present MHC class I-restricted epitopes after exogenously loading with gp100 protein. DC-888mel hybrids also presented HLA-DR beta 1*0401- and HLA-DR beta 1*0701-restricted peptides from gp100 to CD4(+) T cell populations. Therefore, fusions of DCs and tumor cells express both MHC class I- and class II-restricted tumor-associated epitopes and may be useful for the induction of tumor-reactive CD8(+) and CD4(+) T cells in vitro and in human vaccination trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号