首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herpes simplex virus type 1 immediate-early protein Vmw110 is a non-specific activator of gene expression and is required for efficient initiation of the viral lytic cycle. Since Vmw110-deficient viruses reactivate inefficiently in mouse latency models it has been suggested that Vmw110 plays a role in the balance between the latent and lytic states of the virus. The mechanisms by which Vmw110 achieves these functions are poorly understood. Vmw110 migrates to discrete nuclear structures (ND10) which contain the cellular PML protein, and in consequence PML and other constituent proteins are dispersed. In addition, Vmw110 binds to a cellular protein of approximately 135 kDa, and its interactions with the 135 kDa protein and ND10 contribute to its ability to stimulate gene expression and viral lytic growth. In this report we identify the 135 kDa protein as a novel member of the ubiquitin-specific protease family. The protease is distributed in the nucleus in a micropunctate pattern with a limited number of larger discrete foci, some of which co-localize with PML in ND10. At early times of virus infection, the presence of Vmw110 increases the proportion of ND10 which contain the ubiquitin-specific protease. These results identify a novel, transitory component of ND10 and implicate a previously uncharacterized ubiquitin-dependent pathway in the control of viral gene expression.  相似文献   

2.
Herpes simplex virus type 1 immediate-early protein Vmw110 is a non-specific activator of gene expression and is required for efficient initiation of the viral lytic cycle. Since Vmw110-deficient viruses reactivate inefficiently in mouse latency models it has been suggested that Vmw110 plays a role in the balance between the latent and lytic states of the virus. The mechanisms by which Vmw110 achieves these functions are poorly understood. Vmw110 migrates to discrete nuclear structures (ND10) which contain the cellular PML protein, and in consequence PML and other constituent proteins are dispersed. In addition, Vmw110 binds to a cellular protein of approximately 135 kDa, and its interactions with the 135 kDa protein and ND10 contribute to its ability to stimulate gene expression and viral lytic growth. In this report we identify the 135 kDa protein as a novel member of the ubiquitin-specific protease family. The protease is distributed in the nucleus in a micropunctate pattern with a limited number of larger discrete foci, some of which co-localize with PML in ND10. At early times of virus infection, the presence of Vmw110 increases the proportion of ND10 which contain the ubiquitin-specific protease. These results identify a novel, transitory component of ND10 and implicate a previously uncharacterized ubiquitin-dependent pathway in the control of viral gene expression.  相似文献   

3.
R Everett  P O'Hare  D O'Rourke  P Barlow    A Orr 《Journal of virology》1995,69(11):7339-7344
Herpes simplex virus type 1 immediate-early protein Vmw110 (also known as ICP0) has been implicated in the control of the balance between the lytic and latent states, but the precise mechanisms by which it exerts its effects are unknown. Vmw110 includes a characteristic zinc binding domain, termed the C3HC4 domain or RING finger, which is essential for its function. The solution structure of a related herpesvirus RING finger domain suggested that an amphipathic alpha helix might be an important functional component of the RING finger. In this paper, we show that the equivalent region of Vmw110 is important for virus growth in tissue culture and for the normal interaction of Vmw110 with nuclear structures which include the PML protein.  相似文献   

4.
5.
Reactivation of latent herpes simplex virus type 2 (HSV-2) by the immediate-early protein Vmw110 was studied by using an in vitro latency system. Adenovirus recombinants that express Vmw110 reactivated latent HSV-2. An HSV-1 mutant possessing a deletion in a carboxy-terminal region of Vmw110 reactivated latent HSV-2, whereas mutant FXE, which has a deletion in the second exon, did not. Therefore, Vmw110 alone is required to reactivate latent HSV-2 in vitro, and the region of Vmw110 defined by the deletion in FXE is important for this process.  相似文献   

6.
Herpes simplex virus type 1 (HSV-1) infection causes the active degradation of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), and this process is reliant on the expression of the HSV-1 immediate-early protein Vmw110. In this study we investigated in more detail the mechanism by which the degradation occurs, the domains of Vmw110 which are required, and whether Vmw110 is by itself sufficient for the effect. We found that proteasome inhibitors prevented the degradation of DNA-PKcs, indicating the involvement of a proteasome pathway. Furthermore, the continued activity of DNA-PK during infection in the presence of these inhibitors indicated that Vmw110 does not directly alter the enzyme activity of DNA-PKcs prior to its degradation in a normal infection. Indeed, Vmw110 was found to bind to neither the catalytic nor Ku subunits of DNA-PK. Using mutant Vmw110 viruses we show that the RING finger domain of Vmw110 is essential for the induced degradation of DNA-PKcs but that the ability of Vmw110 to bind to a cellular ubiquitin-specific protease (HAUSP) is not required. When expressed in the absence of other viral proteins, Vmw110 was sufficient to cause the degradation of DNA-PKcs, indicating that the effect on the stability of DNA-PKcs was a direct consequence of Vmw110 activity and not an indirect Vmw110-dependent effect of virus infection. Finally, the Vmw110-induced degradation of DNA-PKcs and loss in DNA-PK activity appears to be beneficial to HSV-1 infection, as virus replication was more efficient in cells lacking DNA-PKcs, especially at low multiplicities of infection.  相似文献   

7.
Vmw65, a herpes simplex virus type 1 (HSV-1) tegument protein, in association with cellular proteins, transactivates viral immediate early genes. In order to examine the role of Vmw65 during acute and latent infection in vivo, a mutant virus (in1814), containing a 12-base-pair insertion in the Vmw65 gene, which lacks the transactivating function of Vmw65 (C. I. Ace, T. A. McKee, J. M. Ryan, J. M. Cameron, and C. M. Preston, J. Virol. 63:2260-2269, 1989) was examined in mice. Following corneal inoculation, the parental virus (17+) and the revertant (1814R) replicated effectively in eyes and trigeminal ganglia with 30 to 60% mortality. At either equal PFU or equal particle numbers, in1814 did not replicate in trigeminal ganglia and none of the infected mice died. Although in1814 did not replicate following corneal inoculation, it established latent infection in trigeminal ganglia. HSV-1 in1814 reactivated at explant as efficiently and rapidly as did 17+ and 1814R. Even low amounts of inoculated in1814 (10(2) PFU) were sufficient to establish latent infection in some animals. Since infectious in1814 was not detected at any time in mouse trigeminal ganglia, in1814 provided a unique opportunity to determine how soon after primary infection latency begins. Latent in1814 infection was detected shortly after virus reached the sensory ganglia, between 24 to 48 h postinfection. Thus, though Vmw65 may be required for lytic infection in vivo, it is dispensable for the establishment of and reactivation from latent infection. These data support the hypotheses that the latent and lytic pathways of HSV-1 are distinct and that latency is established soon after infection without a requirement for viral replication. However, the levels of Vmw65 reaching neuronal nuclei may be a critical determinant of whether HSV-1 forms a lytic or latent infection.  相似文献   

8.
HSV-1 IE protein Vmw110 causes redistribution of PML.   总被引:35,自引:3,他引:32       下载免费PDF全文
R D Everett  G G Maul 《The EMBO journal》1994,13(21):5062-5069
Herpes simplex virus immediate-early protein Vmw110 is required for fully efficient viral gene expression and reactivation from latency. At early times of viral infection, Vmw110 localizes to discrete nuclear structures (known as ND10, PODs or Kr bodies) which contain several cellular proteins, including PML. Interestingly, the unregulated growth of promyelocytic leukaemia cells is correlated with disruption of the normal state of ND10. In this paper we show that: (i) Vmw110 affects the distribution of PML in the cell; (ii) Vmw110 proteins lacking a functional RING finger zinc-binding domain cause the production of striking abnormal cytoplasmic and nuclear structures, some of which contain PML and other ND10 antigens; (iii) a mutant form of Vmw110 which is confined to the cytoplasm appears to result in cytoplasmic PML in some cells; (iv) normal interaction with the nuclear structures requires the C-terminal portion of Vmw110; (v) the C-terminal portion of Vmw110, when linked to a heterologous protein, disrupts the normal distribution of PML. The results suggest that, in normal cells, the PML protein migrates between nucleus and cytoplasm. These observations present an unexpected link between processes involved in the control of cell growth and viral infection and latency.  相似文献   

9.
10.
11.
12.
13.
14.
One of the hallmarks of the latent phase of Kaposi’s sarcoma-associated herpesvirus (KSHV) infection is the global repression of lytic viral gene expression. Following de novo KSHV infection, the establishment of latency involves the chromatinization of the incoming viral genomes and recruitment of the host Polycomb repressive complexes (PRC1 and PRC2) to the promoters of lytic genes, which is accompanied by the inhibition of lytic genes. However, the mechanism of how PRCs are recruited to the KSHV episome is still unknown. Utilizing a genetic screen of latent genes in the context of KSHV genome, we identified the latency-associated nuclear antigen (LANA) to be responsible for the genome-wide recruitment of PRCs onto the lytic promoters following infection. We found that LANA initially bound to the KSHV genome right after infection and subsequently recruited PRCs onto the viral lytic promoters, thereby repressing lytic gene expression. Furthermore, both the DNA and chromatin binding activities of LANA were required for the binding of LANA to the KSHV promoters, which was necessary for the recruitment of PRC2 to the lytic promoters during de novo KSHV infection. Consequently, the LANA-knockout KSHV could not recruit PRCs to its viral genome upon de novo infection, resulting in aberrant lytic gene expression and dysregulation of expression of host genes involved in cell cycle and proliferation pathways. In this report, we demonstrate that KSHV LANA recruits host PRCs onto the lytic promoters to suppress lytic gene expression following de novo infection.  相似文献   

15.
Herpes simplex virus type 1 (HSV-1) immediate-early protein Vmw110 stimulates the onset of virus infection in a multiplicity-dependent manner and is required for efficient reactivation from latency. Recent work has shown that Vmw110 is able to interact with or modify the stability of several cellular proteins. In this report we analyze the ability of Vmw110 to inhibit the progression of cells through the cell cycle. We show by fluorescence-activated cell sorter and/or confocal microscopy analysis that an enhanced green fluorescent protein-tagged Vmw110 possesses the abilities both to prevent transfected cells moving from G(1) into S phase and to block infected cells at an unusual stage of mitosis defined as pseudo-prometaphase. The latter property correlates with the Vmw110-induced proteasome-dependent degradation of CENP-C, a centromeric protein component of the inner plate of human kinetochores. We also show that whereas Vmw110 is not the only viral product implicated in the block of infected cells at the G(1)/S border, the mitotic block is a specific property of Vmw110 and more particularly of its RING finger domain. These data explain the toxicity of Vmw110 when expressed alone in transfected cells and provide an explanation for the remaining toxicity of replication-defective mutants of HSV-1 expressing Vmw110. In addition to contributing to our understanding of the effects of Vmw110 on the cell, our results demonstrate that Vmw110 expression is incompatible with the proliferation of a dividing cell population. This factor is of obvious importance to the design of gene therapy vectors based on HSV-1.  相似文献   

16.
The small nuclear structures known as ND10 or PML nuclear bodies have been implicated in a variety of cellular processes including response to stress and interferons, oncogenesis, and viral infection, but little is known about their biochemical properties. Recently, a ubiquitin-specific protease enzyme (named HAUSP) and a ubiquitin-homology family protein (PIC1) have been found associated with ND10. HAUSP binds strongly to Vmw110, a herpesvirus regulatory protein which has the ability to disrupt ND10, while PIC1 was identified as a protein which interacts with PML, the prototype ND10 protein. We have investigated the role of ubiquitin-related pathways in the mechanism of ND10 disruption by Vmw110 and the effect of virus infection on PML stability. The results show that the disruption of ND10 during virus infection correlates with the loss of several PML isoforms and this process is dependent on active proteasomes. The PML isoforms that are most sensitive to virus infection correspond closely to those which have recently been identified as being covalently conjugated to PIC1. In addition, a large number of PIC1-protein conjugates can be detected following transfection of a PIC1 expression plasmid, and many of these are also eliminated in a Vmw110-dependent manner during virus infection. These observations provide a biochemical mechanism to explain the observed effects of Vmw110 on ND10 and suggest a simple yet powerful mechanism by which Vmw110 might function during virus infection.  相似文献   

17.
Examination of cells at the early stages of herpes simplex virus type 1 infection revealed that the viral immediate-early protein Vmw110 (also known as ICP0) formed discrete punctate accumulations associated with centromeres in both mitotic and interphase cells. The RING finger domain of Vmw110 (but not the C-terminal region) was essential for its localization at centromeres, thus distinguishing the Vmw110 sequences required for centromere association from those required for its localization at other discrete nuclear structures known as ND10, promyelocytic leukaemia (PML) bodies or PODs. We have shown recently that Vmw110 can induce the proteasome-dependent loss of several cellular proteins, including a number of probable SUMO-1-conjugated isoforms of PML, and this results in the disruption of ND10. In this study, we found some striking similarities between the interactions of Vmw110 with ND10 and centromeres. Specifically, centromeric protein CENP-C was lost from centromeres during virus infection in a Vmw110- and proteasome-dependent manner, causing substantial ultrastructural changes in the kinetochore. In consequence, dividing cells either became stalled in mitosis or underwent an unusual cytokinesis resulting in daughter cells with many micronuclei. These results emphasize the importance of CENP-C for mitotic progression and suggest that Vmw110 may be interfering with biochemical mechanisms which are relevant to both centromeres and ND10.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号