首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
大分子物质入核是靠其核内定位序列(NLS),而核内输出是靠其核输出信号(NES),不同的NLS和NES直接或靠配体间接的被转运受体识,目前确定的转运受体都属于同一家族-Karyopherins家族,它们可以在核和胞质间穿梭,可以与小的Ran GTPase以及核孔蛋白相结合,Ran GTPase调节运受体与转运物,配体,核孔蛋白间的结合,而这是决定核孔转运的关键。然而一部分受体转运物复合物通过核孔复合体(NPC)并不需要Ran水解GTP。  相似文献   

2.
核孔复合体(nuclear pore complex,NPC)介导了大分子物质在细胞质与细胞核之间的穿梭运动。NPC定位于核膜,形成一个疏水通道,使得蛋白质等大分子物质与转运受体结合,进行跨膜转运。这种经核孔复合体进行的跨核膜转运在细胞增殖、细胞分化以及个体发育等生命活动中发挥了重要的生理功能。  相似文献   

3.
p62是一种多功能蛋白,其蛋白分子包含多个结构域,通过与不同蛋白质结合形成细胞中重要的信号中心,从而调控多种信号通路,影响细胞的生长、衰老,甚至死亡等生理过程。p62蛋白通过对mTORC1信号通路的影响在氨基酸信号通路中发挥着关键的调控作用。p62蛋白是自噬体与底物之间的适配蛋白,在细胞自噬过程中起到分子调节器的作用。p62蛋白具有质核穿梭功能,在DNA损伤修复和氧化应激反应中具有重要作用,其异常积累会引起细胞的恶性转变,导致肿瘤的发生。现综述p62在调节多种信号通路,如自噬、氨基酸感知、凋亡及肿瘤发生等过程中的作用。  相似文献   

4.
信号蛋白分子的入核及出核转运是细胞因子和生长因子信号转导途径中的重要环节.核定位序列(NLS)是信号蛋白分子上与入核转运相关的氨基酸序列.核孔复合物(NPC)、核转运蛋白importin和能量供应体Ran/TC4在入核转运过程中也发挥了重要作用.另外,很多细胞因子和生长因子或其受体上所含有的NLS序列也具有核定位功能,并可能通过“伴侣机制”参与其他信号蛋白分子的入核转运.  相似文献   

5.
真核细胞核膜上的核孔复合体 (nuclear pore complex, NPC) 是细胞核内外进行物质交换的主要通道, 分子量较小的化合物可自由通过NPC或采取被动扩散的方式进入细胞核, 而分子量为50 kD以上的蛋白质则只能通过主动转运进入细胞核. 以这种方式进入细胞核的 蛋白质必须在其氨基酸序列上拥有特殊的核定位信号(nuclear localization signal, NLS)以被相应的核转运蛋白(karyopherins) 识别. 核定位信号具有多样性, 包括经典核定位信号(classical NLS,cNLS), 内输蛋白β2识别的核定位信号(又称PY模体-NLS)和其它类型的NLS. 每一类NLS具有相似的特征, 但并不具有完全保守的氨基酸组成. 不同的NLS, 往往对应着各不相同的核输入机制. 而对同一蛋白质来说, 也可能同时拥有几个功能性的NLS. 研究核定位信号一方面可以帮助揭示新的大分子物质核转运机制, 另一方面也有助于发现一些蛋白质的新功能. 本文对常见NLS的分类进行了总结, 并介绍了两种常用的NLS预测软件及鉴定NLS的一般策略.  相似文献   

6.
蛋白质入核转运的机制和研究进展   总被引:2,自引:0,他引:2  
细胞核膜是由外膜和内膜组成的磷脂双分子层结构,同时镶嵌一些核孔复合体(NPC).核孔复合体是胞浆和胞核之间主动和被动转运的生理屏障.核内功能蛋白在胞浆内合成后通过核孔复合体进入胞核,这个过程除了需要NPC上核孔蛋白、胞浆内核转运受体和RanGTP等蛋白的参与外, 货物蛋白本身的结构特征在其入核转运过程中亦发挥重要作用.本文着重就蛋白入核转运的机制及近年来取得的相关进展进行综述.  相似文献   

7.
核因子κB的跨核膜转运及其调控机制   总被引:4,自引:1,他引:3  
核因子kappaB(NF-κB)是一组重要的转录调节因子,当细胞处于静息状态时,它与抑制蛋白IκB结合以非活性的形式存在于胞浆中.当细胞受到多种外界信号刺激,NF-κB、IκB分别在核定位信号(NLS)的介导下经核孔复合物(NPC)转运入核.在核内,NF-κB与IκB再次结合成复合物,在核转出信号(NES)介导下,经CRM1依赖的途迳出核.该过程是能量依赖的主动转运过程,涉及小分子Ran蛋白及多种可溶性因子.  相似文献   

8.
核孔复合物(nuclear pore complex,NPC)位于核膜,是控制细胞核与细胞质之间进行蛋白质和mRNA等大分子物质转运的唯一通道。模式植物拟南芥的核孔复合物由30多种多拷贝的核孔蛋白(nucleoporins,NUPs)构成,根据它们参与形成的亚基可分为外环、内环、连接、跨膜、中心FG(phenylalanine-glycine)和核篮核孔蛋白。核孔蛋白不仅介导核质转运,而且在植物多个生命进程中发挥重要作用。该文综述了植物核孔蛋白参与核质转运、激素信号响应、生长发育、环境胁迫应答、免疫防御等的研究进展,为植物核孔蛋白生物学功能的系统认知及深入探索提供参考。  相似文献   

9.
[目的]对布鲁氏菌分泌蛋白BspJ进行亚细胞定位分析,为深入探索该分泌蛋白的功能奠定基础。[方法]使用生物信息学方法对分泌蛋白BspJ的核酸和氨基酸序列进行生物信息学分析;利用常规PCR方法扩增BspJ目的基因并克隆到p MD19-T载体;构建真核表达载体p DsRed2-C1-BspJ并转染HEK293T细胞,制作细胞爬片后进行激光共聚焦显微镜分析;利用RT-PCR方法分析HEK293T转染细胞中BspJ转录情况。[结果]生物信息学分析结果显示,BspJ基因ORF全长是531 bp,共编码177个氨基酸,BspJ蛋白无跨膜结构,有7个抗原决定簇,具有核定位信号(NLS)和核输出信号(NES),据此推测BspJ蛋白亚细胞定位可能具有核—胞浆穿梭过程; PCR方法扩增出BspJ基因;成功构建p DsRed2-C1-BspJ重组质粒;激光共聚焦分析显示BspJ蛋白定位于宿主细胞核及核周围; RT-PCR分析显示BspJ基因于宿主细胞中进行转录。[结论]布鲁氏菌分泌蛋白BspJ分布于宿主细胞核及核周围,可能具有胞核—胞质穿梭过程。  相似文献   

10.
穿梭蛋白是一类可以在细胞核与细胞浆中穿梭往返的蛋白质。目前发现的穿梭蛋白都为多功能蛋白,它们进行核/浆穿梭的主要生物学功能是在胞核及胞浆之间充当运输载体及进行信号传递。穿梭蛋白的跨核膜转运均通过核孔复合体进行,然而不同蛋白质的出入核机制却各不相同。对这类蛋白的研究将使我们加深对蛋白擀完全生物学功能的理解,使我们进一步意识到核孔复合体结构和功能的复杂性及精密性,同时也为我国寻找将靶蛋白在细胞内定位的  相似文献   

11.
The mechanisms that govern the assembly of nuclear pore complexes (NPCs) remain largely unknown. Here, we have established a role for karyopherins in this process. We show that the yeast karyopherin Kap121p functions in the targeting and assembly of the nucleoporin Nup53p into NPCs by recognizing a nuclear localization signal (NLS) in Nup53p. This karyopherin-mediated function can also be performed by the Kap95p-Kap60p complex if the Kap121p-binding domain of Nup53p is replaced by a classical NLS, suggesting a more general role for karyopherins in NPC assembly. At the NPC, neighboring nucleoporins bind to two regions in Nup53p. One nucleoporin, Nup170p, associates with a region of Nup53p that overlaps with the Kap121p binding site and we show that they compete for binding to Nup53p. We propose that once targeted to the NPC, dissociation of the Kap121p-Nup53p complex is driven by the interaction of Nup53p with Nup170p. At the NPC, Nup53p exists in two separate complexes, one of which is capable of interacting with Kap121p and another that is bound to Nup170p. We propose that fluctuations between these two states drive the binding and release of Kap121p from Nup53p, thus facilitating Kap121p's movement through the NPC.  相似文献   

12.
Nuclear pore complexes (NPCs) provide a gateway for the selective transport of macromolecules across the nuclear envelope (NE). Although we have a solid understanding of NPC composition and structure, we do not have a clear grasp of the mechanism of NPC assembly. Here, we demonstrate specific defects in nucleoporin distribution in strains lacking Heh1p and Heh2p-two conserved members of the LEM (Lap2, emerin, MAN1) family of integral inner nuclear membrane proteins. These effects on nucleoporin localization are likely of functional importance as we have defined specific genetic interaction networks between HEH1 and HEH2, and genes encoding nucleoporins in the membrane, inner, and outer ring complexes of the NPC. Interestingly, expression of a domain of Heh1p that resides in the NE lumen is sufficient to suppress both the nucleoporin mislocalization and growth defects in heh1Δpom34Δ strains. We further demonstrate a specific physical interaction between the Heh1p lumenal domain and the massive cadherin-like lumenal domain of the membrane nucleoporin Pom152p. These findings support a role for Heh1p in the assembly or stability of the NPC, potentially through the formation of a lumenal bridge with Pom152p.  相似文献   

13.
Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin alpha and importin beta. Srp1p, the Saccharomyces cerevisiae homologue of importin alpha, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin alpha-importin and beta and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin beta) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin alpha-importin beta complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.  相似文献   

14.
15.
c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.  相似文献   

16.
The yeast nucleoporin Nup116p plays an important role in mRNA export and protein transport. We have determined the solution structure of the C-terminal 147 residues of this protein, the region responsible for targeting the protein to the nuclear pore complex (NPC). The structure of Nup116p-C consists of a large beta-sheet sandwiched against a smaller one, flanked on both sides by alpha-helical stretches, similar to the structure of its human homolog, NUP98. In unliganded form, Nup116p-C exhibits evidence of exchange among multiple conformations, raising the intriguing possibility that it may adopt distinct conformations when bound to different partners in the NPC. We have additionally shown that a peptide from the N terminus of the nucleoporin Nup145p-C binds Nup116p-C. This previously unknown interaction may explain the unusual asymmetric localization pattern of Nup116p in the NPC. Strikingly, the exchange phenomenon observed in the unbound state is greatly reduced in the corresponding spectra of peptide-bound Nup116p-C, suggesting that the binding interaction stabilizes the domain conformation. This study offers a high resolution view of a yeast nucleoporin structural domain and may provide insights into NPC architecture and function.  相似文献   

17.
Metazoan NXF1/p15 heterodimers promote export of bulk mRNA through nuclear pore complexes (NPC). NXF1 interacts with the NPC via two distinct structural domains, the UBA-like domain and the NTF2-like scaffold, which results from the heterodimerization of the NTF2-like domain of NXF1 with p15. Both domains feature a single nucleoporin-binding site, and they act synergistically to promote NPC translocation. Whether the NTF2-like scaffold (and thereby p15) contributes only to NXF1/NPC association or is also required for other functions, e.g., to impart directionality to the export process by regulating NXF1/NPC or NXF1/cargo interactions, remains unresolved. Here we show that a minimum of two nucleoporin-binding sites is required for NXF1-mediated export of cellular mRNA. These binding sites can be provided by an NTF2-like scaffold followed by a UBA-like domain (as in the wild-type protein) or by two NTF2-like scaffolds or two UBA-like domains in tandem. In the latter case, the export activity of NXF1 is independent of p15. Thus, as for the UBA-like domain, the function of the NTF2-like scaffold is confined to nucleoporin binding. More importantly, two copies of either of these domains are sufficient to promote directional transport of mRNA cargoes across the NPC.  相似文献   

18.
Nuclear pore complexes (NPCs) provide the only sites for macromolecular transport between nucleus and cytoplasm. The nucleoporin p62, a component of higher eukaryotic NPCs, is located at the central gated channel and involved in nuclear trafficking of various cargos. p62 is organized into an N-terminal segment that contains FXFG repeats and binds the soluble transport factor NTF2, whereas the C-terminal portion associates with other nucleoporins and importin-beta1. We have now identified new components that interact specifically with the p62 N-terminal domain. Using the p62 N-terminal segment as bait, we affinity-purified nucleoporins Nup358, Nup214 and Nup153 from crude cell extracts. In ligand binding assays, the N-terminal p62 segment associated with Nup358 and p62, suggesting their direct binding to the p62 N-terminal portion. Furthermore, p62 was isolated in complex with Nup358, Nup214 and Nup153 from growing HeLa cells, indicating that the interactions Nup358/p62, Nup214/p62 and p62/Nup153 also occur in vivo. The formation of Nup358/p62 and p62/Nup153 complexes was restricted to interphase cells, whereas Nup214/p62 binding was detected in interphase as well as during mitosis. Our results support a model of complex interactions between FXFG containing nucleoporins, and we propose that some of these interactions may contribute to the movement of cargo across the NPC.  相似文献   

19.
The shape of nuclei in many adherent cultured cells approximates an oblate ellipsoid, with contralateral flattened surfaces facing the culture plate or the medium. Observations of cultured cell nuclei from orthogonal perspectives revealed that nucleoporin p62 (NUP62) and nucleoporin 214 (NUP214) are differentially distributed between nuclear pore complexes on the flattened surfaces and peripheral rim of the nucleus. High resolution stimulated emission depletion (STED) immunofluorescence microscopy resolved individual NPCs, and suggested both heterogeneity and microheterogeneity in NUP62 and NUP214 immunolabeling among in NPC populations. Similar to nuclear domains and interphase chromosome territories, architectural diversity and spatial patterning of NPCs may be an intrinsic property of the nucleus that is linked to the functions and organization of underlying chromatin.  相似文献   

20.
The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-AblΔC, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号