首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
近年来,由于抗生素的滥用,耐药性细菌广泛出现,对人体健康的威胁日益严峻.随着临床用药的选择不断减少,迫切需要开发新的抗菌药物,特别是新作用机制的抗菌分子来对抗出现的耐药菌.细胞分裂温度敏感.突变体Z (filamenting temperature-setnsitive mutant Z,FtsZ)作为细菌分裂的必需蛋白质,是目前研究最热门的作用靶点之一.FtsZ是一高度保守的蛋白质,在大多数原核细胞的细胞分裂中发挥着关键作用,本文回顾了细菌分裂蛋白的结构特点及其生物学功能,并综述了以FtsZ为靶点的抗菌药物研究的进展.  相似文献   

2.
长期以来,人们认为细胞骨架仅为真核生物所特有的结构,但近年来的研究发现它也存在于细菌等原核生物中。目前已经在细菌中发现的FtsZ、MreB和CreS依次与真核细胞骨架蛋白中的微管蛋白、肌动蛋白丝及中间丝类似。FtsZ能在细胞分裂位点装配形成Z环结构,并通过该结构参与细胞分裂的调控;MreB能形成螺旋丝状结构,其主要功能有维持细胞形态、调控染色体分离等;CreS存在于新月柄杆菌中,它在细胞凹面的细胞膜下面形成弯曲丝状或螺旋丝状结构,该结构对维持新月柄杆菌细胞的形态具有重要作用。  相似文献   

3.
FtsZ是与真核微管蛋白类似的原核骨架蛋白,能在细胞分裂位点聚合组装成环状结构而调控细胞分裂过程。为了研究钝顶螺旋藻(Spirulina platensis)FtsZ蛋白的功能,构建了钝顶螺旋藻FtsZ与绿色荧光蛋白GFP融合表达的质粒,并在大肠杆菌中进行了表达和定位研究,结果发现,表达融合蛋白GFP-FtsZ的大肠杆菌细胞由短杆状变为长丝状,且菌丝体长度与融合蛋白的表达量呈正比。在荧光显微镜下观察到融合蛋白GFP-FtsZ在长丝状体细菌中呈有规律的点状分布,这说明FtsZ蛋白功能高度保守,钝顶螺旋藻FtsZ蛋白能识别大肠杆菌分裂位点并装配成环状结构调控大肠杆菌细胞分裂,FtsZ蛋白的过量表达能抑制大肠杆菌正常的细胞分裂而导致长丝状体细胞的形成。  相似文献   

4.
FtsZ是与真核微管蛋白类似的原核骨架蛋白,能在细胞分裂位点聚合组装成环状结构而调控细胞分裂过程。为了研究钝顶螺旋藻(Spirulina platensis)FtsZ蛋白的功能,构建了钝顶螺旋藻FtsZ与绿色荧光蛋白GFP融合表达的质粒,并在大肠杆菌中进行了表达和定位研究,结果发现,表达融合蛋白GFP-FtsZ的大肠杆菌细胞由短杆状变为长丝状,且菌丝体长度与融合蛋白的表达量呈正比。在荧光显微镜下观察到融合蛋白GFP-FtsZ在长丝状体细菌中呈有规律的点状分布,这说明FtsZ蛋白功能高度保守,钝顶螺旋藻FtsZ蛋白能识别大肠杆菌分裂位点并装配成环状结构调控大肠杆菌细胞分裂,FtsZ蛋白的过量表达能抑制大肠杆菌正常的细胞分裂而导致长丝状体细胞的形成。  相似文献   

5.
细菌细胞含有细胞壁,人和动物的细胞没有细胞壁,做对细菌细胞壁,的生物合成有专一抑制作用的抗生素,对人与动物细胞基本上不起作用,以致于不显示或较少显示毒性。这种高效低毒的抗生素是人们追求的目标,长期以来为研究人员所重视。现在,大家已经了解细菌细胞壁的结构与部分细胞壁合成抑制剂的作用机制,在此基础上,人们设计了一些细胞壁抑制剂筛选模型,以便寻找新的细菌细胞壁合成抑制剂。现将  相似文献   

6.
叶绿体分裂相关基因NtFtsZ2-1在大肠杆菌中的表达与定位   总被引:2,自引:0,他引:2  
FtsZ蛋白在细菌的分裂中担任着重要作用,能够在分裂位点形成一个环状结构而控制细菌的分裂过程。胞内FtsZ蛋白浓度的明显降低或异常升高均可阻断正常的细胞分裂过程进而导致丝状菌体的产生。我们为了研究烟草FtsZ蛋白与大肠杆菌FtsZ蛋白的异同,构建了烟草全长ftsZ2-1与绿色荧光蛋白EGFP的融合表达质粒并转化大肠杆菌JM109。融合表达质粒的过量表达导致宿主菌形成了丝状菌体。通过荧光显微镜观察发现NtFtsZ2-1-EGFP融合蛋白沿着宿主菌体的纵轴方向有规律地聚集成荧光点或荧光带,说明烟草FtsZ2-1蛋白能够识别宿主菌内分裂位点的定位信号并参与其细胞分裂复合物的组装。  相似文献   

7.
衣藻CrFtsZ2-GFP融合蛋白在E.coli中的表达及其定位   总被引:2,自引:0,他引:2  
FtsZ蛋白在细菌的分裂中担任着重要作用 ,能够在分裂位点形成一个环状结构而控制细菌的分裂过程。胞内FtsZ蛋白浓度的异常升高或降低均可阻断正常的细胞分裂过程进而形成分裂异常的丝状菌体。为了研究衣藻FtsZ蛋白的生物学活性 ,构建了衣藻CrFtsZ2cDNA全长与绿色荧光蛋白基因egfp的融合表达质粒 ,并对其在大肠杆菌中的表达与定位做了初步分析。在大肠杆菌JM10 9中 ,融合表达质粒的过量表达导致宿主菌形成了丝状菌体 ,通过荧光显微镜观察发现CrFtsZ2 EGFP融合蛋白沿着宿主菌体的纵轴方向有规律地聚集成荧光点或荧光带 ,暗示衣藻CrFtsZ2蛋白能够识别宿主菌内分裂位点的定位信号并参与其细胞分裂过程 ,初步验证了衣藻CrFtsZ2蛋白的功能。  相似文献   

8.
衣藻CrMinD基因的网上克隆及其进化分析   总被引:3,自引:1,他引:2  
细菌细胞正常分裂时,在其中部形成介导细胞分裂的环状复合物结构。该环状复合物至少由10多种蛋白组成。其中,FtsZ蛋白最早在细胞中部组装成环状结构Z环,其他分裂相关蛋白再先后与Z环相结合,行使其分裂功能。Fts蛋白为原核细胞骨架蛋白,与真核生物的微管蛋白具有共同的进化祖先。在大肠杆菌细胞中共有三个潜在的细胞分裂位点,一在中部,另外两个分部在两极。正常情况下仅有中部的分裂位点得到应用。FtsZ环正确定位于细胞中部的潜在分裂位点与MinD蛋白密切相关。当minD基因突变时FtsZ蛋白则在细胞两极组装成Z环,最终导致细胞分裂异常,产生不含基因组的小细胞(Mincell)。    相似文献   

9.
衣藻叶绿体分裂基因CrFtsZ1在E.coli中的表达   总被引:1,自引:0,他引:1  
FtsZ蛋白在细菌的分裂中起着重要作用,能够在分裂位点形成一个环状结构而控制细菌的分裂过程。细胞内FtsZ蛋白浓度的明显降低或异常升高均可阻断正常的细胞分裂过程进而导致丝状菌体的产生。为了研究衣藻叶绿体分裂基因ftsZ的功能,构建了衣藻CrFtsZ1的原核表达重组质粒。试验结果表明,衣藻ftsZ的表达严重影响了大肠杆菌的分裂,初步证明衣藻FtsZ蛋白不仅与E.coli FtsZ蛋白在序列上相似,而且也有着相似的功能,同时这一结果也为真核细胞中质体的内共生起源提供了直接的证据。  相似文献   

10.
FtsZ蛋白同源性分析在乳酸菌系统学研究中的应用   总被引:4,自引:0,他引:4  
张斌  东秀珠 《微生物学报》2005,45(5):661-664
FtsZ是一种广泛存在于细菌和古菌中的结构保守的蛋白质,在细胞分裂的过程中起关键的作用。通过PCR扩增FtsZ基因的一段800bp的核苷酸,构建了干酪乳杆菌-片球菌及相关乳酸菌的FtsZ蛋白系统发育树。将此系统树和16SrDNA系统树比较发现二者的拓扑结构非常相似。在两个基因系统树中,片球菌与乳杆菌的种均显示了较近的亲缘关系,而与其它球状的乳酸菌,如链球菌和肠球菌的亲缘关系较远。研究还表明FtsZ蛋白序列的分辨率高于16SrDNA,更适用于乳酸菌种间的系统分类研究。  相似文献   

11.
The emergence of bacterial resistance to antibiotics is a major health problem and, therefore, it is critical to develop new antibiotics with novel modes of action. FtsZ, a tubulin-like GTPase, plays an essential role in bacterial cell division, and its homologs are present in almost all eubacteria and archaea. During cell division, FtsZ forms polymers in the presence of GTP that recruit other division proteins to make the cell division apparatus. Therefore, inhibition of FtsZ polymerization will prevent cells from dividing, leading to cell death. Using a fluorescent FtsZ polymerization assay, the screening of >100,000 extracts of microbial fermentation broths and plants followed by fractionation led to the identification of viriditoxin, which blocked FtsZ polymerization with an IC50 of 8.2 microg/ml and concomitant GTPase inhibition with an IC50 of 7.0 microg/ml. That the mode of antibacterial action of viriditoxin is via inhibition of FtsZ was confirmed by the observation of its effects on cell morphology, macromolecular synthesis, DNA-damage response, and increased minimum inhibitory concentration as a result of an increase in the expression of the FtsZ protein. Viriditoxin exhibited broad-spectrum antibacterial activity against clinically relevant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci, without affecting the viability of eukaryotic cells.  相似文献   

12.
The continuous emergence of antibiotic resistance demands that novel classes of antibiotics continue to be developed. The division machinery of bacteria is an attractive target because it comprises seven or more essential proteins that are conserved almost throughout the bacteria but are absent from humans. We describe the development of a cell-based assay for inhibitors of cell division and its use to isolate a new inhibitor of FtsZ protein, a key player in the division machinery. Biochemical, cytological, and genetic data are presented that demonstrate that FtsZ is the specific target for the compound. We also describe the effects of more potent analogues of the original hit compound that act on important pathogens, again at the level of cell division. The assay and the compounds have the potential to provide novel antibiotics with no pool of pre-existing resistance. They have provided new insight into cytokinesis in bacteria and offer important reagents for further studies of the cell division machinery.  相似文献   

13.
As a model system for designing new inhibitors of bacterial cell division, we studied the essential and highly conserved FtsZ GTPase from Pseudomonas aeruginosa. A collection of GTP analogues were prepared using the solid-phase parallel synthesis approach. The synthesized GTP analogues inhibited the GTPase activity of FtsZ with IC(50) values between 450microM and 2.6mM, and 5 compounds inhibited Staphylococcus aureus growth in a biological assay. The FtsZ spectrophotometric assay developed for screening of synthesized compounds is the first step in identification of antibacterials targeting the bacterial cell division essential proteins.  相似文献   

14.
Essential cell division protein FtsZ forms the bacterial cytokinetic ring and is a target for new antibiotics. FtsZ monomers bind GTP and assemble into filaments. Hydrolysis to GDP at the association interface between monomers leads to filament disassembly. We have developed a homogeneous competition assay, employing the fluorescence anisotropy change of mant-GTP upon binding to nucleotide-free FtsZ, which detects compounds binding to the nucleotide site in FtsZ monomers and measures their affinities within the millimolar to 10 nM range. We have employed this method to determine the apparent contributions of the guanine, ribose, and the α-, β-, and γ-phosphates to the free energy change of nucleotide binding. Similar relative contributions have also been estimated through molecular dynamics and binding free energy calculations, employing the crystal structures of FtsZ-nucleotide complexes. We find an energetically dominant contribution of the β-phosphate, comparable to the whole guanosine moiety. GTP and GDP bind with similar observed affinity to FtsZ monomers. Loss of the regulatory γ-phosphate results in a predicted accommodation of GDP which has not been observed in the crystal structures. The binding affinities of a series of C8-substituted GTP analogues, known to inhibit FtsZ but not eukaryotic tubulin assembly, correlate with their inhibitory capacity on FtsZ polymerization. Our methods permit testing of FtsZ inhibitors targeting its nucleotide site, as well as compounds from virtual screening of large synthetic libraries. Our results give insight into the FtsZ-nucleotide interactions, which could be useful in the rational design of new inhibitors, especially GTP phosphate mimetics.  相似文献   

15.
Cell division in most bacteria is directed by FtsZ, a conserved tubulin‐like GTPase that assembles forming the cytokinetic Z‐ring and constitutes a target for the discovery of new antibiotics. The developmental regulator MciZ, a 40‐amino acid peptide endogenously produced during Bacillus subtilis sporulation, halts cytokinesis in the mother cell by inhibiting FtsZ. The crystal structure of a FtsZ:MciZ complex revealed that bound MciZ extends the C‐terminal β‐sheet of FtsZ blocking its assembly interface. Here we demonstrate that exogenously added MciZ specifically inhibits B. subtilis cell division, sporulation and germination, and provide insight into MciZ molecular recognition by FtsZ from different bacteria. MciZ and FtsZ form a complex with sub‐micromolar affinity, analyzed by analytical ultracentrifugation, laser biolayer interferometry and isothermal titration calorimetry. Synthetic MciZ analogs, carrying single amino acid substitutions impairing MciZ β‐strand formation or hydrogen bonding to FtsZ, show a gradual reduction in affinity that resembles their impaired activity in bacteria. Gene sequences encoding MciZ spread across genus Bacillus and synthetic MciZ slows down cell division in Bacillus species, including pathogenic Bacillus cereus and Bacillus anthracis. Moreover, B. subtilis MciZ is recognized by the homologous FtsZ from Staphylococcus aureus and inhibits division when it is expressed into S. aureus cells.  相似文献   

16.
Cell division in almost all bacteria is orchestrated by the essential tubulin homologue FtsZ, which assembles into a ring-like structure and acts as a scaffold for the division machinery. Division was recently validated as an important target for antibiotics by the demonstration that low-molecular-weight inhibitors of FtsZ, called benzamides, can cure mice infected with Staphylococcus aureus. In treated cells of Bacillus subtilis we show that FtsZ assembles into foci throughout the cell, including abnormal locations at the cell poles and over the nucleoid. These foci are not inactive aggregates because they remain dynamic, turning over almost as rapidly as untreated polymers. Remarkably, although division is completely blocked, the foci efficiently recruit division proteins that normally co-assemble with FtsZ. However, they show no affinity for components of the Min or Nucleoid occlusion systems. In vitro, the benzamides strongly promote the polymerization of FtsZ, into hyperstable polymers, which are highly curved. Importantly, even at low concentrations, benzamides transform the structure of the Z ring, resulting in abnormal helical cell division events. We propose that benzamides act principally by promoting an FtsZ protomer conformation that is incompatible with a higher-order level of assembly needed to make a division ring.  相似文献   

17.
The earliest event in bacterial cell division is the formation of a Z ring, composed of the tubulin-like FtsZ protein, at the division site at midcell. This ring then recruits several other division proteins and together they drive the formation of a division septum between two replicated chromosomes. Here we show that, in addition to forming a cytokinetic ring, FtsZ localizes in a helical-like pattern in vegetatively growing cells of Bacillus subtilis. FtsZ moves rapidly within this helix-like structure. Examination of FtsZ localization in individual live cells undergoing a single cell cycle suggests a new assembly mechanism for Z ring formation that involves a cell cycle-mediated multistep remodelling of FtsZ polymers. Our observations suggest that initially FtsZ localizes in a helical pattern, with movement of FtsZ within this structure occurring along the entire length of the cell. Next, movement of FtsZ in a helical-like pattern is restricted to a central region of the cell. Finally the FtsZ ring forms precisely at midcell. We further show that another division protein, FtsA, shown to interact with FtsZ prior to Z ring formation in B. subtilis, also localizes to similar helical patterns in vegetatively growing cells.  相似文献   

18.
A new small molecule inhibitor of bacterial cell division has been discovered using a high-throughput screen in Escherichia coli. Although the lead screening hit (534F6) exhibited modest inhibition of the GTPase activity of FtsZ (20+/-5% at 100microM of compound), a primary target for bacterial cell division inhibitors, several analogs caused potent bacterial growth inhibition with negligible antagonism of FtsZ GTPase activity. A library of analogs has been prepared and several alkyne-tagged photoaffinity probes have been synthesized for use in experiments to elucidate the primary target of this compound.  相似文献   

19.
pd137是经甲基磺酸乙脂(ethyl methane sulphonate, EMS)诱变并通过筛选得到的一个拟南芥叶绿体分裂突变体。该突变体的叶绿体表型与野生型相比有很大差异: 叶绿体面积显著增大, 细胞中叶绿体数量明显减少。遗传分析显示pd137的突变表型受隐性单基因控制。本研究通过遗传作图将该突变基因粗定位于拟南芥2号染色体的分子标记CH2-13.70和CH2-16.0区间内。该区间内已知的与叶绿体分裂相关的基因只有FtsZ2-1。对FtsZ2-1基因的测序结果显示pd137突变体的FtsZ2-1基因第505位碱基发生了无义突变, 使蛋白质翻译提前终止。该突变还严重影响了FtsZ2-1基因的mRNA水平。转基因互补实验进一步验证了该突变体表型是由于FtsZ2-1基因突变引起。本项工作为研究叶绿体分裂的机制提供了新材料和一些有用的线索。  相似文献   

20.
With the emergence of multidrug-resistant bacterial strains, there is a dire need for new drug targets for antibacterial drug discovery and development. Filamentous temperature sensitive protein Z (FtsZ), is a GTP-dependent prokaryotic cell division protein, sharing less than 10% sequence identity with the eukaryotic cell division protein, tubulin. FtsZ forms a dynamic Z-ring in the middle of the cell, leading to septation and subsequent cell division. Inhibition of the Z-ring blocks cell division, thus making FtsZ a highly attractive target. Various groups have been working on natural products and synthetic small molecules as inhibitors of FtsZ. This review summarizes the recent advances in the development of FtsZ inhibitors, focusing on those in the last 5 years, but also includes significant findings in previous years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号