首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We compared DNA, pollen and macrofossil data obtained from Weichselian interstadial (age more than 40 kyr) and Holocene (maximum age 8400 cal yr BP) peat sediments from northern Europe and used them to reconstruct contemporary floristic compositions at two sites. The majority of the samples provided plant DNA sequences of good quality with success amplification rates depending on age. DNA and sequencing analysis provided five plant taxa from the older site and nine taxa from the younger site, corresponding to 7% and 15% of the total number of taxa identified by the three proxies together. At both sites, pollen analysis detected the largest (54) and DNA the lowest (10) number of taxa, but five of the DNA taxa were not detected by pollen and macrofossils. The finding of a larger overlap between DNA and pollen than between DNA and macrofossils proxies seems to go against our previous suggestion based on lacustrine sediments that DNA originates principally from plant tissues and less from pollen. At both sites, we also detected Quercus spp. DNA, but few pollen grains were found in the record, and these are normally interpreted as long-distance dispersal. We confirm that in palaeoecological investigations, sedimentary DNA analysis is less comprehensive than classical morphological analysis, but is a complementary and important tool to obtain a more complete picture of past flora.  相似文献   

2.
The mapping of Weichselian late-glacial interstadial (13-11 ka B.P.) and Younger Dryas stadial (11-10 ka B.P.) pollen percentages for selected taxa demonstrates vegetational and hence climatic differentiation in Western Norway during these times. In the south, early interstadial Salix dominance was replaced by Betula woodland development. During Younger Dryas time, Betula pollen declined to values consistent with a modern vegetational analogue of the vegetation at the upper forest limit. In the inner fjord areas north of Stavanger, the interstadial vegetation contained scattered birch trees, the density depending on local topography and soils. During the Younger Dryas, vegetation resembling the modern mid- and low-alpine vegetation developed. On the outer coast, the interstadial vegetation was probably treeless, and dominated by Salix spp., including S. herbacea, and herbs. The vegetation became even more open during the Younger Dryas, resembling that of the modern mid- and high-alpine zones. The spatial ecotones delimiting the three areas of different vegetation development during both the interstadial and the Younger Dryas can be placed north of Stavanger, separating the southern region, and between the outer coast and inner fjord areas to the north. The Younger Dryas drop in temperature in all areas was up to about 5°C, enough to pass ecotonal thresholds in time in all areas.  相似文献   

3.
4.
    
Aim Plant macrofossils in fossil woodrat (Neotoma) middens are the primary source of information on late Quaternary biogeographical history of plants in arid and semi‐arid regions of North America. Macrofossil records from middens are playing particularly important roles in documenting spatial and temporal patterns of plant migrations and invasions since the last glacial maximum 21,000 years ago. However, relatively few actualistic studies comparing contents of modern middens with surrounding flora and vegetation have been carried out. The primary aim of this study is to assess the reliability of midden assemblages in detecting the presence of tree, shrub and several other plant species growing on the surrounding landscape. The secondary aims are to determine whether probability of occurrence of species in middens is related to abundance in vegetation, and whether representation of individual species in middens is contingent on presence/absence or abundance of other species. Location Our five study sites were bedrock escarpments or canyons in the central Rocky Mountains (north‐eastern Utah, central Wyoming and south‐central Montana). All sites were in conifer woodland or forest/woodland variously dominated by Juniperus osteosperma, J. scopulorum, Pinus edulis, P. flexilis and Pseudotsuga menziesii. Neotoma cinerea is the only woodrat species in the region. Methods Macrofossil assemblages from 59 modern middens (all showing clear signs of recent or ongoing woodrat activity) were compared with floristic composition of vegetation within 50 m of the middens, and with percent cover of vegetation within 30 m of the middens. Results Coniferous trees and shrubs were well‐represented in middens, occurring consistently even when abundance in the local vegetation was very low. Juniperus osteosperma and J. scopulorum were particularly well‐represented, occurring in middens regardless of local abundance. Other conifers (P. edulis, P. flexilis, P. ponderosa, Pseudotsuga menziesii) were occasionally absent from middens when abundance in vegetation was low (< 20% canopy cover). Occurrence of dicot shrubs and graminoids was less consistent. Main conclusions Middens constructed by N. cinerea are highly reliable sensors of presence/absence of J. osteosperma and J. scopulorum, and hence can be used to infer invasions and past biogeographical distributions of these species. The middens are also reliable in registering populations of other conifers, although presence in middens may be contingent on local abundance. Additional comparative studies are needed to develop a sound empirical basis for using middens of N. cinerea and other species to infer past presence/absence of plant species on the landscape, and to explore the vegetation‐sensing properties of midden assemblages.  相似文献   

5.
1. Sedimentary remains of aquatic plants, both vegetative (turions, leaves, spines) and reproductive (fruits, seeds, pollen), may provide a record of temporal changes in the submerged vegetation of lakes. An independent assessment of the degree to which these remains reflect past floristic change is, however, rarely possible. 2. By exploiting an extensive series of historical plant records for a small shallow lake we compare plant macrofossil (three cores) and pollen (one core) profiles with the documented sequence of submerged vegetation change since c. 1750 AD. The data set is based on 146 site visits with 658 observations including 42 taxa classified as aquatic, spanning 250 years. 3. Approximately 40% of the historically recorded aquatic taxa were represented by macro‐remains. In general macrofossils underestimated past species diversity, with pondweeds (three of eight historically recorded Potamogeton species were found) particularly poorly represented. Nonetheless, several taxa not reported from historical surveys (e.g. Myriophyllum alterniflorum and Characeae) were present in the sediment record. 4. The pollen record revealed taxa which left no macro‐remains (e.g. Littorella uniflora), and the macrofossil record provided improved taxonomic resolution for some taxa (e.g. Potamogeton) and a more reliable record of persistence, appearance and loss of others (e.g. Myriophyllum spp. and Nymphaeaceae). 5. Detrended correspondence analysis indicated that changes in the community composition evidenced by the palaeolimnological and historical records were synchronous and of a similar magnitude. Both records pointed to a major change at around 1800, with the historical record suggesting a more abrupt change than the sedimentary data. There was good agreement on a subsequent change c. 1930. 6. The palaeolimnological data did not provide a complete inventory of historically recorded species. Nevertheless, these results suggest that combined macrofossil and pollen records provide a reliable indication of temporal change in the dominant components of the submerged and floating‐leaved aquatic vegetation of shallow lakes. As such palaeolimnology may provide a useful tool for establishing community dynamics and successions of plants over decadal to centennial timescales.  相似文献   

6.
I investigated how seed predation differed among tree species and among microhabitats across the Cross Timbers and what that variation may tell us about how this ecotone is maintained. The ecotone is located in Oklahoma, USA, between the eastern deciduous forest and tallgrass prairie where seeds of eight common tree species were placed in three microhabitats (oak forest, tallgrass prairie, and sumac shrub/small-tree/grass mix). After nine days in the field, percent seeds remaining were scored for each of the 120 (8 species×3 microhabitats×5 replicates) dishes. I found for both wind-dispersed tree species, (ash, elm) there was significantly more predation in the prairie microsite, with similar small predation levels in the shrub and forest. For two of the three bird-dispersed species (dogwood, hackberry), there was significantly more predation in the prairie and shrub microsites compared to the forest. Red cedar, however, was not taken by predators very much anywhere. Finally, all three mammal-dispersed tree species (two oaks, pecan) showed significantly more predation in the shrub and forest microsites compared to the prairie. Whereas wind- and bird-dispersed species suffered less predation as microsites became more woody and dark, the dominant oaks showed the opposite trend. Consequently, seed predators are not preventing oaks from advancing across this ecotone, but yearly fluctuations in predator population density, especially in the shrub transitional zone, could be helping to maintain it.  相似文献   

7.
    
Aim Interpretation of fossil pollen assemblages may benefit greatly from comparisons with modern palynological and vegetation analogues. To interpret the full‐ and late‐glacial vegetation in eastern‐central Europe we compared fossil pollen assemblages from this region with modern pollen assemblages from various vegetation types in southern Siberia, which presumably include the closest modern analogues of the last‐glacial vegetation of central Europe. Location Czech and Slovak Republics (fossil pollen assemblages); Western Sayan Mountains, southern Siberia (modern pollen assemblages). Methods Eighty‐eight modern pollen spectra were sampled in 14 vegetation types of Siberian forest, tundra and steppe, and compared with the last‐glacial pollen spectra from seven central European localities using principal components analysis. Results Both full‐ and late‐glacial pollen spectra from the valleys of the Western Carpathians (altitudes 350–610 m) are similar to modern pollen spectra from southern Siberian taiga, hemiboreal forest and dwarf‐birch tundra. The full‐glacial and early late‐glacial pollen spectra from lowland river valleys in the Bohemian Massif (altitudes 185–190 m) also indicate the presence of patches of hemiboreal forest or taiga. Other late‐glacial pollen spectra from the Bohemian Massif suggest an open landscape with steppe or tundra or a mosaic of both, possibly with small patches of hemiboreal forest. Main conclusions Our results are consistent with the hypothesis that during the full glacial and late glacial, the mountain valleys of the north‐western Carpathians supported taiga or hemiboreal forest dominated by Larix, Pinus cembra, Pinus sylvestris and Picea, along with some steppic or tundra formations. Forests tended to be increasingly open or patchy towards the west (Moravian lowlands), gradually passing into the generally treeless landscape of Bohemia, with possible woodland patches in locally favourable sites.  相似文献   

8.
9.
The distribution and status of the montane juniper woodlands of Oman   总被引:3,自引:0,他引:3  
Abstract. The distribution, condition and reproductive status of Juniperus excelsa M. -Bieb. subsp. polycarpos (K.Koch) Takhtajan were determined and assessed in the Hajar mountains of northern Oman, Arabia. Juniper is restricted to the highest areas, viz the central massif of Jebel Akhdar and the outlying mountains of Jebel Qubal and Jebel Kawr, where it generally forms open woodlands.
On exposed slopes juniper is distributed from an altitude of 2100 m to the highest summit at 3009 m, with no upper tree line, while on well-shaded north-facing slopes juniper trees grow as low as 1375 m. Above 2300 m, juniper is the dominant woody species, while below this altitude it is often co-dominant with Olea europea L. The woodlands are generally in poor condition on exposed slopes below 2400 m, with high proportions of dead or dying trees and low proportions of reproductively active trees. Above 2400 m and in shaded sites, woodland condition is better, with markedly higher proportions of reproductively active trees on exposed slopes at these altitudes. A predictive model of woodland condition based on topographic variables is presented. Altitude, shade and habitat account for 30.8% of the variation in a tree condition index, with slope being unimportant.
The absence of juniper from lower and more outlying mountains is likely to have resulted from the alternation of pluvial and arid periods over the last 40,000 years. We speculate that the current dieback of juniper at lower altitudes is due to continuing climatic change. Anthropogenic factors do not appear to be seriously affecting the juniper woodlands at present.  相似文献   

10.
11.
    
Aim A conspicuous climatic and biogeographical transition occurs at 40–45° N in western North America. This pivot point marks a north–south opposition of wet and dry conditions at interannual and decadal time‐scales, as well as the northern and southern limits of many dominant western plant species. Palaeoecologists have yet to focus on past climatic and biotic shifts along this transition, in part because it requires comparisons across dissimilar records [i.e. pollen from lacustrine sediments to the north and plant macrofossils from woodrat (Neotoma) middens to the south]. To overcome these limitations, we are extending the woodrat‐midden record northward into the lowlands of the central Rocky Mountains. Location Woodrat middens were collected from crevices and rock shelters on south‐facing slopes of Dutch John Mountain (2000–2200 m, 40°57′ N, 109°25′ W), situated on the eastern flanks of the Uinta Mountains in north‐eastern Utah. The site is near the regional limits for Pinus ponderosa, P. edulis, P. contorta, Cercocarpus ledifolius var. intricatus, Abies concolor, Ephedra viridis and other important western species. Methods We analysed pollen and plant macrofossils from the 40,000‐year midden sequence. The middens represent brief, depositional episodes (mostly years to decades). Four middens represent the early to full‐glacial period (40,000–18,000 cal‐yr bp ), eight middens are from the late‐glacial/early Holocene transition (13,500–9000 cal yr bp ), and 33 middens span the mid‐to‐late Holocene (last 7500 years). Temporal density of our Holocene middens (one every c. 210 years) is comparable with typical Holocene pollen sequences from lake sediments. Results Early to full‐glacial assemblages are characterized by low diversity and occurrence of montane conifers (Picea pungens, Pseudotsuga menziesii, P. flexilis, Juniperus communis) absent from the site today. Diversity increases in the late‐glacial samples with the addition of J. scopulorum, J. horizontalis, C. montanus, C. ledifolius var. intricatus and mesic understory species. The coniferous trees and J. communis declined and J. osteosperma appeared during the late‐glacial/Holocene transition. Juniperus osteosperma populations have occupied the site throughout the Holocene. Pinus ponderosa was established by 7500 cal‐yr bp , and has occurred at least locally ever since. Montane conifers and J. horizontalis persisted until c. 5500 cal‐yr bp . The signature events of the late Holocene were the invasions of P. edulis and Ephedra viridis and establishment of pinyon–juniper woodland in the last 800 years. Main conclusions The Dutch John Mountain midden record adds to an emerging picture in which mid‐elevation conifers (P. flexilis, Pseudotsuga menziesii, Picea pungens, J. scopulorum, J. communis) dominated vegetation over a wide area of the Colorado Plateau and adjacent Rocky Mountains. Rather than being fragmented, as often assumed in phylogeographical studies, these species had broader and more‐connected distributions than they do in the region today. Paradoxically, subalpine conifers (Picea engelmannii, A. lasiocarpa) occurred at higher elevations to the south, possibly representing declining precipitation from south to north owing to southward displacement of the polar jet stream. The Dutch John Mountain record displays a series of extinction and invasion events. Most of the extinctions were local in scale; nearly all constituents of fossil midden assemblages occur within a few kilometres of Dutch John Mountain, and some occur at least locally on its slopes. The sole exception is J. horizontalis, which is regionally extinct. In contrast to extinctions, Holocene invasions were regional in scale; J. osteosperma, P. ponderosa, P. edulis and Ephedra viridis immigrated from glacial‐age source populations far to the south.  相似文献   

12.
We reconstructed the Holocene developmental history of a kettle-hole peatland in the Tuchola Forest of Northern Poland, using pollen, testat amoebae and plant macrofossil indicators. Our aims were to determine the timing and pattern of autogenic succession and natural and anthropogenic influences on the peatland. Northern Poland is under mixed oceanic and continental climatic influences but has so far been less studied in a palaeoecological context than more oceanic regions of Europe. In the first terrestrial developmental phase of the mire, the testate amoebae-inferred depth to water table revealed two major dry shifts at ca. 9400 (end of lake phase) and ca. 7100 cal BP (a period of global cooling and dry shift in Western Europe). Conditions became wetter again in two steps at ca. 6700 and ca. 5800 BP after a dry event at ca. 6100 BP. The timing of the wet shift at 5800 BP corresponds to wet periods in Western Europe. Peat accumulation rates were low (0.1 mm yr− 1) between ca. 5600 and ca. 3000 BP when sedges dominated the peatland. In the last 2500 yrs surface moisture fluctuated with wet events at ca. 2750–2400, and 2000 BP, and dry events at ca. 2250–2100 and 1450 BP. After 1450 BP a trend towards wetter conditions culminated at ca. 500 cal BP, possibly caused by local deforestation. Over the mire history, pH (inferred from testate amoebae) was mostly low (around 5) with two short-lived shifts to alkaline conditions (7.5) at ca. 6100 and 1450 BP indicating a minerotrophic influence from surface run-off into the mire. Up to about 1000 BP the ecological shifts inferred from the three proxies agree with palaeoclimatic records from Poland and Western Europe. After this date, however correlation is less clear suggesting an increasing local anthropogenic impact on the mire. This study confirms that kettle-hole peatlands can yield useful palaeoenvironmental data as well as recording land-use change and calls for more comparable studies in regions are the interface between major climate influences.  相似文献   

13.
    
We inferred past climate conditions from lacustrine sediments intercalated in Weichselian Early Glacial and Early Pleniglacial fluvial and aeolian sediments, exposed in two opencast lignite mines from the Niederlausitz area (eastern Germany). A chronology was established using radiocarbon and luminescence dating methods. Both lithology and chironomid fauna indicate that the former shallow lakes were situated on a floodplain. Palaeotemperature estimates calculated from the fossil chironomid-assemblages of the Early Glacial lacustrine deposit indicate mean July air temperatures of ca. 15 °C, which is in line with results derived in earlier studies from the Niederlausitz area and from northwestern Europe. The Early Pleniglacial lacustrine deposits consist of an organic-rich gyttja, intercalated with sand and silt lenses. The chironomid-assemblages show that a shallow meso- to eutrophic lake was present at the study site, and chironomid-inferred palaeotemperature estimates indicate an abrupt decline in July air temperatures from 15–16 °C to ca. 13 °C. In combination with other proxies from the same record, this suggests a Dansgaard/Oeschger like climate event.  相似文献   

14.
    
Aim The genus Abies exemplifies plant diversification related to long‐term climatic, geological and evolutionary changes. Today, the Mediterranean firs comprise nine species, one natural hybrid and several varieties. Here I summarize current knowledge concerning the origin and evolution of the genus Abies in the Mediterranean Basin and propose a comprehensive hypothesis to explain the isolation and speciation pattern of Mediterranean firs. Location The Mediterranean Basin. Methods The literature on Abies was reviewed, focusing on the morphology, fossil records, molecular ecology, phytosociology and biogeography of the genus in the Mediterranean Basin. Results Abies fossils from the western Mediterranean indicate a wide Tertiary circum‐Mediterranean distribution of the Abies ancestor. Palaeogeographical data also suggest a single eastern Mediterranean Tertiary ancestor. Following the Miocene to Pliocene climate crisis and marine transgressions, the ancestor of the northern Mediterranean firs is hypothesized to have separated into two eastern groups, one on the Balkan Peninsula and the other in Asia Minor. However, land bridges may have permitted gene flow at times. A southward migration of A. alba to refugia, where older fir species may have remained isolated since the Miocene, could explain recent findings indicating that morphologically distant species are more closely related than expected based on such morphological classification. Main conclusions The Abies genus appears to have undergone significant morphological differentiation that does not necessarily imply reproductive isolation. That is, long‐term Mediterranean Basin dryness along a south‐eastern to north‐western gradient may have caused an initial Miocene–Pliocene speciation sequence. Pleistocene glacial cycles probably forced migrations to occur, leading to repeated contact between fir species in glacial refugia.  相似文献   

15.
16.
    
Aim  Establishing possible relationships between the magnitudes of the glacial distribution of the European beech, Fagus sylvatica L., and its post-glacial spread.
Location  Europe.
Methods  A database of over 400 pollen records has been used to locate Fagus populations at the end of the last glacial and during the post-glacial in Europe and to assess the areal extent of their past distribution.
Results  The rate of late-glacial and post-glacial increase in the number of pollen sites where Fagus was locally present conforms well to a logistic model of population growth. This suggests that the area occupied by beech populations expanded exponentially from the glacial refugia for a duration of over 10,000 years, until about 3500 yr bp . In the past three millennia beech populations increased at a slower rate, tending towards an equilibrium value.
Main conclusions  The conformity of the increase in beech distribution to the classical logistic model of population growth indicates that: (1) a multiplicative biological process was the main factor shaping the pattern of the post-glacial expansion of F. sylvatica in Europe, (2) climate conditions, human activity and competition may have influenced its rate of spread, and (3) beech populations did not expand with a moving closed front, but with a diffuse spread from scattered nuclei. The distribution of Fagus in Europe at the end of the last glacial appears to have been of two orders of magnitude less extensive than at present. Pleistocene refugia were likely to have been a mosaic of sparse stands of small populations scattered in multiple regions. Fagus populations appear to have increased very slowly and to a moderate extent in southern Europe, where they are now declining slightly. The central European populations increased quickly and extensively, reaching northern Europe, and are now approaching their carrying capacity.  相似文献   

17.
Question: Can we predict the spatial distribution of plant communities in semi‐arid rangelands based on a limited set of environmental variables? Where are priority areas for conservation located? Location: Al Jabal al Akhdar, Sultanate of Oman. Methods: A Classification Tree Analysis (CTA) was used to model the presence/absence of seven rangeland communities and agricultural areas based on seven selected environmental predictor variables. The latter were either obtained from existing digital datasets or derived from a digital elevation model and satellite images, whereas the grazing intensity was spatially modelled with the kernel density estimation technique. The resulting decision rules of a CTA were applied for predictive mapping within the study area (400 km2, resolution of 5 m) by means of ENVI's decision tree classifier. Plant communities of natural rangelands were subsequently evaluated to determine priority areas for nature conservation. Results: Altitude, grazing intensity and landform revealed the highest predictive power. Most of the rangelands were predicted as Sideroxylon–Oleetum. The overall classification accuracy was 89%, whereby agricultural areas and the Ziziphus spina‐christi‐Nerium oleander community at wadi sites had no misclassification. Inaccuracies occurred mainly because of low sample numbers and errors in available maps of predictor variables. The highest rank for nature conservation was observed for the Teucrio‐Juniperetum occupying 20% of the study area. Conclusions: Vegetation mapping using CTA is a valuable tool for rangeland monitoring and identification of key representative areas for nature conservation. An extrapolation of the model used might be feasible to regions adjacent to the central Hajar Mountains.  相似文献   

18.
19.
    
Aim We discuss the hypotheses proposed by Kullman [Geo‐Öko 21 (2000) 141; Nordic Journal of Botany 21 (2001) 39; Journal of Biogeography 29 (2002) 1117] on the basis of radiocarbon‐dated megafossils of late‐glacial age from the central Swedish mountains that boreal trees survived the glaciation along the south‐west coast of Norway and subsequently migrated eastward early in the late‐glacial to early deglaciated parts of the central Swedish Scandes mountains. Methods We assess these hypotheses on the basis of glacial geological evidence and four lines of palaeoecological evidence, namely macrofossil records of the tree species, vegetation and climate reconstructions from plant evidence, independent climate reconstructions from other proxies for the late‐glacial environment of south‐west Norway, and the patterns of post‐glacial spread of the tree species. Location South and west Norway, central Swedish Scandes mountains (Jämtland). Results and conclusions South‐west Norway and the adjacent continental shelf were under ice at the last‐glacial maximum (LGM). The late‐glacial vegetation of south‐west Norway was treeless and summer temperatures were below the thermal limits for Betula pubescens Ehrh., Pinus sylvestris L. and Picea abies (L.) Karst. Instead of spreading immediately after the onset of Holocene warming, as might have been expected if local populations were surviving, B. pubescens showed a lag of local arrival of 600 to > 1000 years, Pinus lagged by 1500 to > 2000 years, and Picea only reached southern Norway c. 1500 years ago and has not colonized most of south‐west Norway west of the watershed. Glacial geological evidence shows the presence of an ice sheet in the Scandes at the LGM and in the Younger Dryas, which was cold‐based near or at the area where the late‐glacial‐dated megafossils were recovered by Kullman. We conclude that the samples dated by Kullman (2002) should be evaluated carefully for possible sources of contamination. All the available evidence shows that the biogeographical hypotheses, based on these radiocarbon dates taken at face value, of late‐glacial tree survival at the Norwegian coast and subsequent eastwards spread to the mountains, are unsupportable.  相似文献   

20.
Despite being rich in later prehistoric and historic archaeology that includes megalithic monuments, Bronze age copper mines and medieval castles, the Mizen Peninsula, south-west Ireland, has revealed little about its stone age past. Evidence for a Mesolithic presence in SW Ireland is rare and, to date, all archaeological finds of this age in Co. Cork are further north and east of the Mizen Peninsula. However a recent palaeoecological study of pollen, non-pollen palynomorph, plant macrofossil and microscopic charcoal data from a peat bog located near Mount Gabriel has provided evidence for disturbances, characterised by fire disturbance of woodland and exploitation of wetlands, since ca. 8400 years b.p. Two working hypotheses are considered to explain these disturbances: human activity or natural agencies. If the human activity hypothesis is accepted, they represent the first possible evidence of a Mesolithic presence on the Mizen Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号