首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recruitment limitation may limit the ability of sites to regenerate after disturbances such as weed invasion and weed management. We investigated seed bank constraints and dispersal limitation in coastal dune communities on the east coast of Australia. The ability of sites to regenerate naturally following weed removal was assessed in coastal dune communities invaded by the invasive alien, bitou bush (Chrysanthemoides monilifera subsp. rotundata). To investigate recruitment limitation, seed banks and vegetation of invaded, native, intensively managed (selective application of herbicide and some re-vegetation) and extensively managed (large-scale, non-selective herbicide application) sites were compared. We investigated the dispersal mechanisms of species in the seed bank and vegetation to determine if communities might be dispersal-limited, i.e. contain significant numbers of species with only short-distance dispersal capabilities. Species richness and composition of soil seed banks differed from the vegetation in foredunes and hinddunes. Invasion depleted seed banks further. About half of the species had short-distance dispersal mechanisms indicating the potential for dispersal limitation. Secondary weed invasion following management was evident although alien species occurred in both seed banks and vegetation. Our results indicated that coastal dune communities suffer recruitment limitation. Native, managed and invaded dune communities appear to be both seed bank and dispersal-limited although management and invasion exacerbates recruitment. Regeneration of coastal dune communities will require active reintroduction of species, particularly those with short-distance dispersal mechanisms.  相似文献   

2.
T. J. Mason  K. French  D. Jolley 《Oecologia》2013,173(2):557-568
Different arrival order scenarios of native functional groups to a site may influence both resource use during development and final community structure. Arrival order may then indirectly influence community resistance to invasion. We present a mesocosm experiment of constructed coastal dune communities that monitored biotic and abiotic responses to different arrival orders of native functional groups. Constructed communities were compared with unplanted mesocosms. We then simulated a single invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata), a dominant exotic shrub of coastal communities. We evaluated the hypothesis that plantings with simultaneous representation of grass, herb and shrub functional groups at the beginning of the experiment would more completely sequester resources and limit invasion than staggered plantings. Staggered plantings in turn would offer greater resource use and invasion resistance than unplanted mesocosms. Contrary to our expectations, there were few effects of arrival order on abiotic variables for the duration of the experiment and arrival order was unimportant in final community invasibility. All planted mesocosms supported significantly more invader germinants and significantly less invader abundance than unplanted mesocosms. Native functional group plantings may have a nurse effect during the invader germination and establishment phase and a competitive function during the invader juvenile and adult phase. Arrival order per se did not affect resource use and community invasibility in our mesocosm experiment. While grass, herb and shrub functional group plantings will not prevent invasion success in restored communities, they may limit final invader biomass.  相似文献   

3.
A pervasive problem in invasion ecology is the limited recovery of native communities following removal of invaders. Little evidence exists on the causes of variation in post-invasion recovery. In a 4-year experiment using 65 sets of matched plots, we imposed an invader removal treatment (with control) on heterogeneous grassland plots invaded or uninvaded by an aggressive recent arrival, Aegilops triuncialis (barb goatgrass). We tested the validity of plot matching using transplants and soil analyses. We analyzed the community-level correlates of invader impacts, removal treatment side effects, and community recovery, each defined in two ways: by compositional similarity to uninvaded plots, and by relative native species richness. Recovery of native species richness in invaded and treated plots was high (approaching 100 %) although recovery of composition was not high (median 71 % Bray–Curtis dissimilarity to uninvaded untreated plots). We measured resilience as the residuals of community recovery in models that controlled for invader impacts and removal treatment side effects. Compositional resilience was highest where the uninvaded communities had the least cover by other invaders in the same functional group as the focal invader. Richness resilience was highest where the uninvaded communities had the lowest native species richness. Our study suggests that the recovery of native species per se may be a more relevant goal than the recovery of the exact pre-invasion species composition of particular sites, particularly in cases where pre-invasion species composition included exotic species other than the focal invader.  相似文献   

4.
K. French 《Plant Ecology》2012,213(10):1667-1673
To investigate the effect of increased nutrient availability on competition amongst invasive and native plants, I measured changes in above and below ground biomass of Chrysanthemoides monilifera spp. rotundata (bitou bush) and Asparagus aethiopicus (asparagus fern) competing with two native species, Banksia integrifolia and Ficinia nodosa, under high- and low-nutrient regimes. Bitou bush, as a primary invader, was competitive under all conditions lowering the growth of native species in both high and low nutrients. Asparagus fern as a secondary invader, did not influence growth of native species but responded, like bitou bush, to high nutrients. Native species were generally negatively affected by increases in nutrients. With bitou bush soils often providing higher nutrients, the chance of secondary invasion by asparagus fern is more likely, although asparagus fern is unlikely to invade low nutrient soils quickly. The invasive species, therefore, differed in their competitive ability in these coastal dune communities.  相似文献   

5.
The invasion by alien macrophytes in aquatic ecosystems may produce a strong alteration of the native aquatic vegetation leading to heavy impacts for both plant and faunal native diversity. Myriophyllum aquaticum is an aquatic plant native of Southern America, invasive in several part of the world. We studied the effects of M. aquaticum invasion on plant and macro-arthropod communities in the canals around a protected wetland in the Mediterranean basin. We sampled plant and macro-arthropod communities in 10 transects in invaded and non-invaded tracts of the canals. We assessed the differences in plant and macro-arthropod species richness, diversity, taxonomic diversity and species composition between invaded and non-invaded habitats by means of univariate and multivariate analyses. Our study shows a significant loss of plant diversity between non-invaded to invaded sites, leading to communities numerically and taxonomically impoverished and highly divergent in the species composition. We also detected significant differences in arthropod species composition between invaded and non-invaded transects. Some taxa such as mosquitoes and malacostraca were more frequent in the M. aquaticum-dominated stands. Furthermore, the study shows a positive relation between invaded habitats and juvenile individuals of the invasive alien crayfish Procambarus clarkii.  相似文献   

6.
Chemical interference is increasingly suggested as a mechanism facilitating exotic plant invasion and plant community composition. In order to explore this further, we employed a comprehensive extract-bioassay technique that facilitated detection and demarcation of phytotoxicity, direct allelopathy and indirect allelopathy of bitou bush (Chrysanthemoides monilifera spp. rotundata) compared to an indigenous dominant of the invaded system, acacia (Acacia longifolia var. sophorae). Extracts of the leaves and roots of both species exhibited phytotoxic effects against five indigenous plant species. Evidence for allelopathy between co-evolved indigenous plants was detected between acacia and Isolepis nodosa. Allelopathy between bitou bush and four indigenous plant species was also detected. Therefore we propose that both the acacia and bitou bush have the potential to chemically inhibit the establishment of indigenous plants. Eventual dominance of bitou bush is predicted, however, based on more ubiquitous effects on seedling growth.  相似文献   

7.
Theory and empirical work have demonstrated that diverse communities can inhibit invasion. Yet, it is unclear how diversity influences invader impact, how impact varies among exotics, and what the relative importance of diversity is versus extrinsic factors that themselves can influence invasion. To address these issues, we established plant assemblages that varied in native species and functional richness and crossed this gradient in diversity with resource (water) addition. Identical assemblages were either uninvaded or invaded with one of three exotic forbs: spotted knapweed (Centaurea maculosa), dalmatian toadflax (Linaria dalmatica), or sulfur cinquefoil (Potentilla recta). To determine impacts, we measured the effects of exotics on native biomass and, for spotted knapweed, on soil moisture and nitrogen levels. Assemblages with high species richness were less invaded and less impacted than less diverse assemblages. Impact scaled with exotic biomass; spotted knapweed had the largest impact on native biomass compared with the other exotics. Although invasion depressed native biomass, the net result was to increase total community yield. Water addition increased invasibility (for knapweed only) but had no effect on invader impact. Together, these results suggest that diversity inhibits invasion and reduces impact more than resource additions facilitate invasion or impact.  相似文献   

8.
ABSTRACT

Background: Invasive plants can negatively impact native communities, but the majority of the effects of these invasions have been demonstrated only for temperate ecosystems. Tropical ecosystems, including the Cerrado, a biodiversity hotspot, are known to be invaded by numerous non-native species, but studies of their impacts are largely lacking.

Aims: Our research aimed at quantifying how Pinus spp. presence and density affected Cerrado plant communities.

Methods: We sampled areas invaded and non-invaded by Pinus spp. to determine if pine invasion affected native tree richness, diversity, evenness, and density. We also evaluated if community composition differed between invaded and non-invaded sites.

Results: We found invaded plots had lower native tree densities than non-invaded plots and that Pinus spp. invasions changed native tree communities by reducing native species abundances.

Conclusion: Invasive pines had negative impacts on the native Cerrado tree community by reducing native plant density and changing species abundances. Reduced density and abundance at early invasion stages can result in reduction in biodiversity in the long term.  相似文献   

9.
Changes to ecosystem abiotic parameters are regarded as possible mechanisms facilitating plant invasion and community composition shifts. This study compared the hydrophobic chemical signatures of soil from exotic bitou bush (Chrysanthemoides monilifera spp. rotundata) invaded, indigenous acacia (Acacia longifolia var. sophorae) dominated and bare sand (unvegetated) habitats using a novel, rapid, capturing technique which utilised Amberlite® XAD4 resin filled bags that were placed in situ. The hydrophobic chemical signature of the bitou bush soil extract was significantly different to the acacia soil and bare sand extracts. High concentrations of 18 sesquiterpenes dominated the hydrophobic signature of the bitou bush extract. Low concentrations of all three extracts did not significantly affect the seedling growth of three indigenous test species under laboratory conditions, however, at higher concentrations, the extracts from soil inhabited by plants, whether exotic or indigenous, similarly inhibited the seedling growth of two species, while seedling growth of the third species was inhibited by extracts from all three soil types. These results do not support the hypothesis that exotic invasive species are more likely to exhibit allelopathic effects than indigenous plant species.  相似文献   

10.
The safety of biological control is a contentious issue. We suggest that constructing and analyzing food webs may be a valuable addition to standard biological control research techniques, as they offer a means of assessing the post-release safety of control agents. Using preliminary data to demonstrate the value of food webs in biocontrol programs, we quantified the extent to which a key agent has infiltrated natural communities in Australia and, potentially, impacted on non-target species. Using these data, we also demonstrate how food webs can be used to generate testable hypotheses regarding indirect interactions between introduced agents and non-target species. We developed food webs in communities invaded to varying degrees by an exotic weed, bitou bush, Chrysanthemoides monilifera ssp. rotundata, and a key biocontrol agent for this weed in Australia, the tephritid fly, Mesoclanis polana. Three food webs were constructed during springtime showing the interactions between plants, seed-feeding insects and their parasitoids. One food web was constructed in a plot of native Australian vegetation that was free of bitou bush (‘bitou-free’), another in a plot of Australian vegetation surrounded by an invasion of bitou bush (‘bitou-threatened’) and a third from a plot infested with a monoculture of bitou bush (‘bitou-infested’). The bitou-free web contained 36 species, the bitou-threatened plot 9 species and the bitou-infested web contained 6 species. One native Australian herbivore attacked the seeds of bitou bush. M. polana, a seed-feeding fly, was heavily attacked by native parasitoids, these being more abundant than the parasitoids feeding on the native seed feeders. A surprising result is that none of the three species of native parasitoids reared from M. polana were reared from any of the native herbivores. The food webs revealed how a highly host-specific biocontrol agent, such as M. polana has the potential to change community structure by increasing the abundance of native parasitoids. The webs also suggest that indirect interactions between M. polana and native non-target species are possible, these been mediated by shared parasitoids. The experiments necessary to determine the presence of these interactions are outlined.  相似文献   

11.
Sand dune ecosystems have a high conservation value worldwide, but they are highly threatened by exotic plant invasion. We investigated the impacts of the exotic invasive species Carpobrotus edulis on the composition and structure (spatial pattern, total cover, species diversity and species co-occurrence) of native sand dune communities in the western coast of Portugal. We studied eight sites following a north-south gradient; in each site we established 8–10 transects of 25 contiguous quadrats of one square meter. C. edulis had a significantly clumped pattern in five of the study sites, which, however, was not related to the spatial pattern of native species. The effects of climate on the community structure variables were on average three times stronger than those of C. edulis. This species also had small effects on the floristic composition of native species. Our results indicate that the success and impacts of C. edulis are habitat-dependent and context-specific. They also provide evidence of a strong resilience to the impacts of invasion in the studied sand dune ecosystems: C. edulis did not reach large abundances or exert negative impacts on native communities to the extent expected. These ecosystems provide a unique opportunity to increase our understanding on the origin of impacts by invasive species, and on how particular communities resist the impacts of an invader.  相似文献   

12.
Alien species can represent a threat to several ecosystems because they can alter species relationships and ecosystem function. In Italy, Acacia saligna is a major invader and it forms dense stands in coastal environments. We analyze the impact of A. saligna in Italian Mediterranean dune systems. We randomly sampled coastal dune vegetation and investigated its floristic composition with ordination techniques. We compared species richness in invaded and non-invaded plots with rarefaction curves and analyzed the frequency of focal and ruderal species. A. saligna invaded Mediterranean scrub (habitats 2250* and 2260) and coastal Pinus dune wood (habitat 2270*) and it is particularly prevalent in sunny areas of habitat 2270*. We observed an increase in ruderal species and a decrease in focal species in the invaded plots of habitat 2270*. We suggest that more open and disturbed areas are more prone to A. saligna invasion.  相似文献   

13.
In water-limited ecosystems, where potential evapotranspiration exceeds precipitation, it is often assumed that plant invasions will not increase total ecosystem water use, because all available water is evaporated or transpired regardless of vegetation type. However, invasion by exotic species, with high water use rates, may potentially alter ecosystem water balance by reducing water available to native species, which may in turn impact carbon assimilation and productivity of co-occurring species. Here, we document the impact of invasion by an understory exotic woody species (Acacia longifolia) in a semi-arid Mediterranean dune pine forest. To quantify the effects of this understory leguminous tree on the water use and carbon fixation rates of Pinus pinaster we compare an invaded and a non-invaded stand. A. longifolia significantly altered forest structure by increasing plant density and leaf area index in the mid-stratum of the invaded forest. A. longifolia contributed significantly to transpiration in the invaded forest (up to 42%) resulting in a slight increase in stand transpiration in the invaded relative to non-invaded forest. More importantly, both water use and carbon assimilation rates of P. pinaster were significantly reduced in the invaded relative to non-invaded stand. Therefore, this study shows that exotic plant invasions can have significant impacts on hydrological and carbon cycling even in water-limited semi-arid ecosystems through a repartitioning of water resources between the native and the invasive species.  相似文献   

14.
《Acta Oecologica》2006,29(2):171-177
Invasion by alien species is threatening the conservation of native plant communities and the integrity of ecosystems. To gain a better understanding of such impacts, many studies have examined the traits that make alien species successful invaders as well as the factors involved in community invasibility. However, it is necessary to link invader effects on community structure and on ecosystem processes in order to unravel the mechanisms of impact. Cortaderia selloana is a perennial grass native to South America that is invading abandoned agricultural lands close to coastal human settlements in Catalonia (NE Spain). In invaded pastures, we examined the association between C. selloana invasion, soil properties and vegetation structure changes in pastures, comparing the neighbourhood area of influence of C. selloana with areas far from C. selloana. Areas under the influence of C. selloana had lower total soil nitrogen values and higher C/N values than in areas far from C. selloana. Furthermore, the areas affected by C. selloana had lower species, family and life form richness and diversity, and less plant cover. In addition, C. selloana also increased the vertical vegetation structure and changed species composition (only 44% similarity between invaded and non-invaded areas). Our results point out that C. selloana has an effect on its neighbourhood leading to an increase in small-scale variability within invaded fields.  相似文献   

15.
The biotic resistance hypothesis predicts that more diverse communities should have greater resistance to invasions than species-poor communities. However for facultative and obligate epiphytic invaders a high native species richness, abundance and community complexity might provide more resources for the invader to thrive to. We conducted surveys across space and time to test for the influence of native algal species abundance and richness on the abundance of the invasive facultative epiphytic filamentous alga Lophocladia lallemandii in a Mediterranean Cystoseira balearica seaweed forest. By removing different functional groups of algae, we also tested whether these relationships were dependent on the complexity and abundance of the native algal community. When invasion was first detected, Lophocladia abundance was positively related to species richness, but the correlation became negative after two years of invasion. Similarly, a negative relationship was also observed across sites. The removal experiment revealed that more complex native communities were more heavily invaded, where also a positive relationship was found between native algal richness and Lophocladia, independently of the native algal abundance. Our observational and experimental data show that, at early stages of invasion, species-rich seaweed forests are not more resistant to invasion than species-poor communities. Higher richness of native algal species may increase resource availability (i.e. substrate) for invader establishment, thus facilitating invasion. After the initial invasion stage, native species richness decreases with time since invasion, suggesting negative impacts of invasive species on native biodiversity.  相似文献   

16.
Allelopathy has been suggested as a mechanism promoting the monoculture formation of some invasive exotic plants. Previous studies have shown that hydrophobic extracts of the roots and soil of exotic bitou bush (Chrysanthemoides monilifera spp. rotundata (DC.) T. Norl.) inhibited the seedling growth of five Australian native plants, including the dominant acacia (Acacia longifolia var. sophorae (Labill.) F. Muell.). Based on this finding, we compared the hydrophobic root and soil chemical profiles of bitou bush and acacia to determine whether bitou bush roots release allelopathic compounds that are novel to the invaded system. We detected three compounds that were exclusive to the bitou bush root and soil, and seven compounds that were common to the bitou bush and acacia roots but only present in the bitou bush soil. The compounds unique to the bitou bush invaded soil were all sesqui- and diterpenes. Several of these compounds were found to inhibit the seedling growth of a native sedge, Isolepis nodosa (Rott.) R. Br. Of particular interest are the sesquiterpenes: β-maaliene, α-isocomene, β-isocomene, δ-cadinene, 5-hydroxycalamenene and 5-methoxycalamenene which were found in high concentrations in the bitou bush root and soil extracts and exhibited phytotoxic activity. Therefore, we present evidence to suggest that bitou bush exudes low molecular weight volatile compounds into the soil which inhibit native plant seedling growth. The reduced establishment of native plants via allelopathy is likely to create space and contribute to the invasion of bitou bush on the eastern Australian coast.  相似文献   

17.
Question: How do two shrubs with contrasting life‐history characteristics influence abundance of dominant plant taxa, species richness and aboveground biomass of grasses and forbs, litter accumulation, nitrogen pools and mineralization rates? How are these shrubs – and thus their effects on populations, communities and ecosystems – distributed spatially across the landscape? Location: Coastal hind‐dune system, Bodega Head, northern California. Methods: In each of 4 years, we compared vegetation, leaf litter and soil nitrogen under canopies of two native shrubs –Ericameria ericoides and the nitrogen‐fixing Lupinus chamissonis– with those in adjacent open dunes. Results: At the population level, density and cover of the native forb Claytonia perfoliata and the exotic grass Bromus diandrus were higher under shrubs than in shrub‐free areas, whereas they were lower under shrubs for the exotic grass Vulpia bromoides. In contrast, cover of three native moss species was highest under Ericameria and equally low under Lupinus and shrub‐free areas. At community level, species richness and aboveground biomass of herbaceous dicots was lower beneath shrubs, whereas no pattern emerged for grasses. At ecosystem level, areas beneath shrubs accumulated more leaf litter and had larger pools of soil ammonium and nitrate. Rates of nitrate mineralization were higher under Lupinus, followed by Ericameria and then open dune. At landscape level, the two shrubs – and their distinctive vegetation and soils – frequently had uniform spatial distributions, and the distance separating neighbouring shrubs increased as their combined sizes increased. Conclusions: Collectively, these data suggest that both shrubs serve as ecosystem engineers in this coastal dune, having influences at multiple levels of biological organization. Our data also suggest that intraspecific competition influenced the spatial distributions of these shrubs and thus altered the distribution of their effects throughout the landscape.  相似文献   

18.
Although individual ecosystems vary greatly in the degree to which they have been invaded by exotic species, it has remained difficult to isolate mechanisms influencing invader success. One largely anecdotal observation is that polluted or degraded areas will accumulate more invaders than less-impacted sites. However, the role of abiotic factors alone in influencing invisibility has been difficult to isolate, often because the supply of potential invaders is confounded with conditions thought to increase vulnerability to invasion. Here, we conducted a field experiment to test how the assemblages of exotic versus native marine invertebrates changed during community assembly under different exposure levels of a common pollutant, copper. The experiment was conducted by deploying fouling panels in a Randomized Block Design in San Francisco Bay. Panels were periodically removed, placed into buckets with differing copper concentrations, and returned to the field after 3 days. This design allowed propagule availability to the plates to be statistically independent of short-term copper exposure. The results demonstrate that copper caused significant differences in community structure. Average native species richness was significantly affected by copper exposure, but average exotic richness was not. The total native species pool within treatments exhibited a greater than 40% decline within increasing copper, while the exotic species pool did not change significantly. These results confirm that anthropogenic alteration of abiotic factors influences invader success, indicating that management strategies to reduce invader impacts should include both efforts to improve environmental conditions as well as reduce invader supply.  相似文献   

19.
Coastal dune grasslands are fragile ecosystems that have historically been subjected to various types of uses and human activities. In Buenos Aires Province (Argentina), these areas are frequently afforested for urban and touristic development. The introduction and subsequent spread of exotic tree species is one of the main threats to conservation of natural grasslands as invasive trees strongly transform their structure and composition. The aim of this study was to identify patterns of woody plant invasion comparing plant communities and environmental variables between invaded and non-invaded areas surrounding the coastal village of Mar Azul, Argentina. Coastal grasslands in this area are being invaded by Populus alba (white poplar) and Acacia longifolia (coast wattle). The height of the saplings and the richness of the accompanying vegetation were evaluated in relation to the distance from the edge of the mature tree patches. Also, the cover, richness and diversity of all species in the invaded and non-invaded areas were measured, as well as soil pH, temperature and particle size. Negative correlations were found between the height of the saplings and distance to mature tree patches in all areas. The richness of the accompanying vegetation was negatively and positively correlated with the distance from the poplar and acacia area, respectively. The most abundant native species was Cortaderia selloana. Less cover, richness and diversity of native plant species and greater soil particle size were found in invaded areas, where the proportion of bare soil was higher. Also, a higher proportion of leaf litter in the invaded areas was registered. The results emphasize the invasive capacity of P. alba and A. longifolia advancing on the native communities and reducing their richness. Knowledge of the impact of invasive woody plants in coastal grasslands is important to design active management strategies for conservation purposes.  相似文献   

20.
Invasive exotic species pose an important threat to biodiversity worldwide. However, there is little information on the effects that specific exotic bird species have on native biota. The House Sparrow is an excellent ecological model to evaluate the effect that an invasive exotic species has on native bird communities. Our study describes the relationship of the presence and abundance of House Sparrows with the structure, diversity, and composition of native bird communities in West Mexico. We used two approaches to compare House Sparrow invaded and non-invaded bird communities: (1) at a small geographic-scale that allowed us to evaluate shifts in avian communities with presence of the House Sparrow under similar environmental conditions; and (2) at the landscape-level to evaluate the effect of this species under a scenario of greater environmental heterogeneity. Results from both approaches show that areas invaded by House Sparrows have heavily-dominated avian communities with low species richness, while non-invaded areas exhibit highly-even and species-rich bird communities. Species turnover analysis indicates that the decrease in the number of bird species in House Sparrow invaded areas is caused by species loss, rather than a shift in species composition. Our results indicate that the invasion of an area by the House Sparrow, through synergistic interactions with human activities, determines the composition, structure, and diversity of native bird communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号