首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A probable neurovisceral lysosomal storage disease is reported, for the first time, in immature red and grey kangaroos (Macropus rufus and M. giganteus). Foamy, pale eosinophilic, periodic acid-Schiff positive, intracytoplasmic material was stored in the liver, lymphoid tissue, kidney, adrenal gland, stomach, blood vessels and central nervous system. Extensive Wallerian-type degeneration was present in the central nervous system. Electron microscopic study of one animal revealed electron dense, cytoplasmic lamellar bodies in neurons and foamy visceral cells. The disease differs from other reported storage diseases in the distribution and nature of the lesions.  相似文献   

2.
The cytological distribution of microtubule-associated protein 4 (MAP 4) (L. M. Parysek, C. F. Asnes, J. B. Olmsted, 1984, J. Cell Biol., 99:1309-1315) in mouse tissues has been examined. Adjacent 0.5-0.9- micron sections of polyethylene glycol-embedded tissues were incubated with affinity-purified MAP 4 or tubulin antibodies, and the immunofluorescent images were compared. Tubulin antibody labeling showed distinct microtubules in all tissues examined. MAP 4 antibody also labeled microtubule-like patterns, but the extent of MAP 4 reactivity was cell type-specific within each tissue. MAP 4 antibody labeled microtubules in vascular elements of all tissues and in other cells considered to have supportive functions, including Sertoli cells in the testis and glial elements in the nervous system. Microtubule patterns were also observed in cardiac, smooth, and skeletal (eye) muscle, podocytes in kidney, Kuppfer cells in liver, and spermatid manchettes. The only MAP 4-positive cells in which the pattern was not microtubule-like were the principal cells of the collecting ducts in kidney cortex, in which diffuse fluorescence was seen. MAP 4 antibody did not react with microtubule-rich neuronal elements of the central and peripheral nervous system, skeletal muscle from anterior thigh, liver parenchymal cells, columnar epithelial cells of the small intestine, and absorptive cells of the tubular component of the nephron. These observations indicate that MAP 4 may be associated with only certain kinds of cell functions as demonstrated by the preferential distribution with microtubules of defined cell types.  相似文献   

3.
In vitro assays involving primary cells are used routinely to evaluate organ-specific toxic effects, for instance, the use of primary hepatocytes to evaluate hepatotoxicity. A major drawback of an in vitro system is the lack of multiple organ interactions as observed in a whole organism. A novel cell culture system, the integrated discrete multiorgan cell culture system (IdMOC), is described here. The IdMOC is based on the "wells within a well" concept, consisting of a cell culture plate with larger, containing wells, within each of which are multiple smaller wells. Cells from multiple organs can be cultured initially in the small wells (one organ per well, each in its specialized medium). On the day of toxicity testing, a volume of drug-containing medium is added to the containing well to flood all inner wells, thereby interconnecting all the small wells. After testing, the overlying medium is removed and each cell type is evaluated for toxicity using appropriate endpoints. We report here the application of IdMOC in the evaluation of the cytotoxicity of tamoxifen, an anticancer agent with known human toxicity, on primary cells from multiple human organs: liver (hepatocytes), kidney (kidney cortical cells), lung (small airway epithelial cells), central nervous system (astrocytes), blood vessels (aortic endothelial cells) as well as the MCF-7 human breast adenocarcinoma cells. IdMOC produced results that can be used for the quantitative evaluation of its anticancer effects (i.e., cytotoxicity towards MCF-7 cells) versus its toxicity toward normal organs (i.e., liver, kidney, lung, CNS, blood vessels).  相似文献   

4.
Excess weight gain contributes to increased blood pressure in most patients with essential hypertension. Although the mechanisms of obesity hypertension are not fully understood, increased renal sodium reabsorption and impaired pressure natriuresis play key roles. Several mechanisms contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system, which appears to be mediated in part by increased levels of the adipocyte-derived hormone leptin, stimulation of pro-opiomelanocortin neurons, and subsequent activation of central nervous system melanocortin 4 receptors.  相似文献   

5.
Immunohistochemical evidence of ubiquitous distribution of the metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, and spleen) and on a cell microarray of 31 tumor cell lines of different origin, as well as trophoblast cells and normal blood lymphocytes and granulocytes. IDE protein was expressed in all the tissues assessed and all the tumor cell lines except for Raji and HL-60. Trophoblast cells and granulocytes, but not normal lymphocytes, were also IDE-positive.  相似文献   

6.
Monoclonal M6 antibody binds to the surface of murine central nervous system neurons as well as to apical surfaces of epithelial cells in the choroid plexus and proximal tubules of the kidney. M6 antigen is expressed in the central nervous system as early as embryonic day 10, most strongly in the marginal zone of the neural tube, and remains detectable in adulthood. IgG or Fab fragments of M6 antibody interfere with the extension of neurites by cultured cerebellar neurons. Effects of the antibody on neurite extension are readily detectable after 24 h. No reduction of cell viability is detected during the first 3 days of antibody treatment. Cultures maintained in the presence of antibody for longer than 5 days exhibit reduced viability of neurons. This reduction in long-term viability in the presence of M6 antibody is largely avoided when 25 mM KCl is included in the culture medium. The antibody-mediated perturbation of neurite outgrowth is not blocked by the presence of elevated KCl. The unusually short and flattened appearance of neurites in these cultures suggests that the M6 antibody selectively affects neurite extension. Time-lapse cinematography of anti-M6-treated neurons reveals no apparent effect on movement of lamellipodia and filopodia of growth cones. Only the overall extension of the neurite appears to be inhibited. M6 antigen is a 35 kD glycoprotein that can be isolated from a deoxycholate- (DOC) solubilized membrane fraction from adult mouse brain.  相似文献   

7.
Toxicity of Soviet polymyxin B and its effect on the central peripheral nervous system, blood circulation, respiration, smooth muscles, functional liver and kidney state, growth and development of young animals, the picture of the peripheral blood were studied in acute and chronic experiments on various species of animals. It was found that polymyxin B had a suppressing effect on the peripheral n-cholinoreactive systems of the neuromuscle synapses of the skeletal muscles and ganglia of the sympathic and parasympathic innervation and deprimizing effect on the central nervous system. Caffeine, adrenaline and calcium chloride proved to be the antagonists of the neurotoxic effects of polymyxin B. The chronic experiments revealed that polymyxin B induced disorders in the kidney function and morphological changes in the glomeruli after its repeated administration. No significant effect of polymyxin B on the growth and development of the young animals, the functional state of the liver and the picture of the peripheral blood was observed when the drug was used in doses corresponding to the therapeutic ones in clinics.  相似文献   

8.
9.
A commercially available polyclonal antibody against a rClC-3/GST fusion protein was used in order to investigate the tissue distribution of the ClC-3 chloride channel protein. The antibody appeared to be specific to rClC-3 since no cross-reaction could be observed with rClC-4 or rClC-5 proteins when overexpressed in Xenopus oocytes. In mouse, mClC-3 was preferentially expressed in the central nervous system, intestine, and kidney. To a lower extent, mClC-3 protein was also detected in liver, lung, skeletal muscle, and heart. Surprisingly, the electrophoretic mobility of mClC-3 differed in the various tissues. After enzymatic digestion of N-linked oligosaccharide residues of membrane proteins from brain, intestine, and kidney, mClC-3 was found to migrate at its calculated molecular mass. This study provides important information regarding the specificity of the used antibody, indicates that ClC-3 is widely expressed in mouse, and that mClC-3 undergoes differential tissue-specific N-glycosylation.  相似文献   

10.
Monoclonal M6 antibody binds to the surface of murine central nervous system neurons as well as to apical surfaces of epithelial cells in the choroid plexus and proximal tubules of the kidney. M6 antigen is expressed in the central nervous system as early as embryonic day 10, most strongly in the marginal zone of the neural tube, and remains detectable in adulthood. IgG or Fab fragments of M6 antibody interfere with the extension of neurites by cultured cerebellar neurons. Effects of the antibody on neurite extension are readily detectable after 24 h. No reduction of cell viability is detected during the first 3 days of antibody treatment. Cultures maintained in the presence of antibody for longer than 5 days exhibit reduced viability of neurons. This reduction in long-term viability in the presence of M6 antibody is largely avoided when 25 mM KCl is included in the culture medium. The antibody-mediated perturbation of neurite outgrowth is not blocked by the presence of elevated KCl. The unusually short and flattened appearance of neurites in these cultures suggests that the M6 antibody selectively affects neurite extension. Time-lapse cinematography of anti-M6-treated neurons reveals no apparent effect on movement of lamellipodia and filopdia of growth cones. Only the overall extension of the neurite appears to be inhibited. M6 antigen is a 35 kD glycoprotein that can be isolated from a deoxycholate- (DOC) solubilized membrane fraction from adult mouse brain.  相似文献   

11.
As ambient pressure increases, hydrostatic compression of the central nervous system, combined with increasing levels of inspired Po2, Pco2, and N2 partial pressure, has deleterious effects on neuronal function, resulting in O2 toxicity, CO2 toxicity, N2 narcosis, and high-pressure nervous syndrome. The cellular mechanisms responsible for each disorder have been difficult to study by using classic in vitro electrophysiological methods, due to the physical barrier imposed by the sealed pressure chamber and mechanical disturbances during tissue compression. Improved chamber designs and methods have made such experiments feasible in mammalian neurons, especially at ambient pressures <5 atmospheres absolute (ATA). Here we summarize these methods, the physiologically relevant test pressures, potential research applications, and results of previous research, focusing on the significance of electrophysiological studies at <5 ATA. Intracellular recordings and tissue Po2 measurements in slices of rat brain demonstrate how to differentiate the neuronal effects of increased gas pressures from pressure per se. Examples also highlight the use of hyperoxia (相似文献   

12.
13.
Family 3A mammalian liver cytochromes P450 (3A1, rat; 3A3/4, human) catalyze the 6 beta-hydroxylation of endogenous steroids and are steroid inducible. Our recent finding that A6 cells (a toad kidney epithelial cell line) contain corticosterone 6 beta-hydroxylase activity as a steroid-inducible microsomal cytochrome P450 raised the possibility that corticosterone 6 beta-hydroxylase activity in the A6 cells is catalyzed by a member of the 3A family. We found that incubation of A6 cell microsomes from dexamethasone-induced cells with antibodies against family 3A proteins specifically inhibited corticosterone 6 beta-hydroxylase activity. Microsomes from A6 cells analyzed on immunoblots developed with family 3A specific antibodies revealed immunoreactive proteins and treatment of A6 with corticosterone or dexamethasone increased the amounts of 3A immunoreactive protein(s). Furthermore, A6 RNA hybridized with 3A cDNAs on Northern blots and genomic DNA from A6 cells hybridized with a 3A cDNA on a Southern blot. Thus, toad kidney A6 cells express a family 3A P450 that is immunochemically, functionally, and genetically related to the mammalian liver 3A proteins. Prompted by these findings in amphibian kidney, we examined mammalian kidney for evidence of family 3A proteins. Immunocytochemical studies of frozen cryostat sections of normal adult rat kidney incubated with 3A1 antibody showed immunoreactivity only with collecting duct. Immunoblot analysis of human kidney microsomes found three protein bands representing 3A3/4, 3A5, and a 53-kDa Mr protein immunoreactive with human 3A antibody. An unexpected finding was the polymorphic expression of 3A3/4 in human kidney with only one of seven (14%) adult human kidneys tested expressing this protein while 3A5, a protein which is polymorphically expressed in adult human livers, was routinely present in the adult human kidney samples tested. Since human fetal liver contains a family 3A P450 we examined human fetal kidney microsomes by immunoblot analysis with human liver 3A antibody and found expression of a protein tentatively identified as 3A7. Thus, like A6 amphibian cells, family 3A P450 proteins and mRNAs are prominent, functional components in the kidney of mammals, including man.  相似文献   

14.
The mineralocorticoid receptor (MR) is expressed in kidney and plays a central role in the control of sodium, homeostatic fluid, and blood pressure. It has also been implicated in other functions in cardiovascular system, central nervous system, and adipose tissue. This study revealed a novel role of MR in the gene regulation related to hepatic glucose production. RNAi-mediated MR silencing led to a decrease in the expression of glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase 1, the enzymes known to be involved in glucose production in liver. The MR-specific antagonists also down-regulated the expression of G6Pase, while the specific agonist enhanced G6Pase expression. These observations, for the first time, revealed a novel role for MR and its ligands in the regulation of de novo glucose synthesis in hepatocytes. It also suggests the potential of liver-specific MR modulation for the treatment of hyperglycemia.  相似文献   

15.
16.
qBrain-2, a POU domain gene expressed in quail embryos   总被引:3,自引:0,他引:3  
  相似文献   

17.
Carnosinase (aminoacyl-L-histidine hydrolase, EC 3.4.13.3) hydrolyzes the dipeptide carnosine (beta-alanyl-L-histidine), which is thought to play a role in cerebral and skeletal muscular function and has been implicated as a neuroaffector in the olfactory bulb. Carnosinase activity is present in many tissues of the mouse including heart, liver and lung, but it is most active in kidney, uterus and nasal olfactory mucosa. Kinetic measurements with 1H-NMR spectroscopy indicate that the enzyme is stereospecific and can hydrolyze L-but not D-carnosine. Anserine is a poorer substrate, while homocarnosine is essentially a non-substrate. However, these two dipeptides are effective inhibitors of the hydrolysis of L-carnosine. Carnosinase activity is unaffected when assayed in 2H2O at 99% isotopic purity. From considerations of the effect of Mn2+ on (1) substrate concentration velocity curves; (2) thermostability, and (3) inhibitor behavior, tissues with carnosinase can be divided into two groups. Kidney, uterus and olfactory mucosa represent one group, while central nervous system, muscle, spleen, etc. represent the second. The validity of this classification is confirmed by immunological evidence. Antiserum prepared against carnosinase purified from kidney cross-reacts with and inhibits the activity of olfactory mucosa, kidney and uterus but not that from central nervous system, heart or liver.  相似文献   

18.
9 alpha,11 beta-prostaglandin F2 was formed from prostaglandin D2 by its 11-ketoreductases in 100,000 x g supernatants of various bovine tissues in the presence of an NADPH-generating system. The reductase activities were high in liver (51.09 nmol/h/mg of protein), lung (24.99), and spleen (14.20); moderate in heart and pancreas (3.09-3.61); weak in stomach, intestine, colon, kidney, uterus, adrenal gland, and thymus (0.11-2.63); and undetectable in brain, retina, carotid artery, and blood (less than 0.10). No formation of prostaglandin F2 alpha from prostaglandin D2 was detected in all tissues. In immunotitration analyses with a polyclonal antibody specific for prostaglandin F synthetase, the reductase activities in lung and spleen showed identical titration curves to that of the purified synthetase and decreased to less than 15% of the initial activity under the condition of antibody excess. Prostaglandin F synthetase-immunoreactive protein in these two tissues showed peptide fingerprints identical to that of the purified enzyme after partial digestion with Staphylococcus aureus V8 protease. The antibody was partially cross-reactive to the reductase in liver (about 20% of that to the synthetase) but not to the reductase(s) in other tissues. The Km value for prostaglandin D2 of the reductase activity was the same in lung and spleen as that of the purified prostaglandin F synthetase (120 microM) but differed in liver (6 microM), heart, and pancreas (15 microM). The predominant distribution of prostaglandin F synthetase in lung and spleen was confirmed by radioimmunoassay (2.8 and 1.0 micrograms/mg protein, respectively) and Northern blot analyses. In immunoperoxidase staining, this enzyme was localized in alveolar interstitial cells and nonciliated epithelial cells in lung, histiocytes and/or dendritic cells in spleen, and a few interstitial cells in kidney and adrenal cortex.  相似文献   

19.
Carbonyl reductase, an NADPH-dependent oxidoreductase of broad specificity, is present in many human tissues. Its precise localization, however, has remained unclear, as well as its physiological and possible pathophysiological significance. The present study reports the immunohistochemical localization of the enzyme in normal human tissues. Immunostaining was detectable in all organs investigated. The highest concentrations were found in the parenchymal cells of the liver, the epithelial cells of the stomach and small intestine, the epidermis, the proximal tubules of the kidney, neuronal and glial cells of the central nervous system, and certain cells of the anterior lobe of the pituitary gland. Consistently pronounced staining was also observed in smooth muscle fibers and the endothelium of blood vessels. The results are in agreement with a housekeeping function of carbonyl reductase in the elimination of reactive carbonyl compounds.  相似文献   

20.
The role of humoral immunity in the protection of vaccinated SJL/J mice from central nervous system disease induced by the DA strain (DAV) of Theiler's murine encephalomyelitis virus was investigated in B-cell-deficient mice. Mice were depleted of B cells by treatment with a mouse monoclonal antibody specific for immunoglobulin M. DAV-vaccinated, B-cell-deficient mice failed to clear viral infection and were no longer protected from Theiler's murine encephalomyelitis virus-mediated central nervous system disease. CD4+ T cells are required in this model of protection to provide help for the development of an antiviral antibody response in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号