首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stomata are small pores surrounded by guard cells that regulate gas exchange between plants and the atmosphere. Guard cells integrate multiple environmental signals and control the aperture width to ensure appropriate stomatal function for plant survival. Leaf temperature can be used as an indirect indicator of stomatal conductance to environmental signals. In this study, leaf thermal imaging of 374 Arabidopsis ecotypes was performed to assess their stomatal responses to changes in environmental CO2 concentrations. We identified three ecotypes, Köln (Kl-4), Gabelstein (Ga-0), and Chisdra (Chi-1), that have particularly low responsiveness to changes in CO2 concentrations. We next investigated stomatal responses to other environmental signals in these selected ecotypes, with Col-0 as the reference. The stomatal responses to light were also reduced in the three selected ecotypes when compared with Col-0. In contrast, their stomatal responses to changes in humidity were similar to those of Col-0. Of note, the responses to abscisic acid, a plant hormone involved in the adaptation of plants to reduced water availability, were not entirely consistent with the responses to humidity. This study demonstrates that the stomatal responses to CO2 and light share closely associated signaling mechanisms that are not generally correlated with humidity signaling pathways in these ecotypes. The results might reflect differences between ecotypes in intrinsic response mechanisms to environmental signals.  相似文献   

2.
Stomatal sensing of the environment   总被引:1,自引:0,他引:1  
The effects of environmental factors on stomatal behaviour are reviewed and the questions of whether photosynthesis and transpiration eontrol stomata or whether stomata themselves control the rates of these processes is addressed. Light affects stomata directly and indirectly. Light can act directly as an energy source resulting in ATP formation within guard cells via photophosphorylation, or as a stimulus as in the case of the blue light effects which cause guard cell H+ extrusion. Light also acts indirectly on stomata by affecting photosynthesis which influences the intercellular leaf CO2 concentration ( C i). Carbon dioxide concentrations in contact with the plasma membrane of the guard cell or within the guard cell acts directly on cell processes responsible for stomatal movements. The mechanism by which CO2 exerts its effect is not fully understood but, at least in part, it is concerned with changing the properties of guard cell plasma membranes which influence ion transport processes. The C i may remain fairly constant for much of the day for many species which is the result of parallel responses of stomata and photosynthesis to light. Leaf water potential also influences stomatal behaviour. Since leaf water potential is a resultant of water uptake and storage by the plant and transpirational water loss, any factor which affects these processes, such as soil water availability, temperature, atmospheric humidity and air movement, may indirectly affect stomata. Some of these factors, such as temperature and possibly humidity, may affect stomata directly. These direct and indirect effects of environmental factors interact to give a net opening response upon which is superimposed a direct effect of stomatal circadian rhythmic activity.  相似文献   

3.
Guard cells regulate CO2 uptake and water loss of a leaf by controlling stomatal movement in response to environmental factors such as CO2, humidity, and light. The mechanisms by which stomata respond to red light are actively debated in the literature, and even after decades of research it is still controversial whether stomatal movement is related to photosynthesis or not. This review summarizes the current knowledge of the red-light response of stomata. A comparison of published evidence suggests that stomatal movement is controlled by the redox state of photosynthetic electron transport chain components, in particular the redox state of plastoquinone. Potential consequences for the modeling of stomatal conductance are discussed.  相似文献   

4.
Light perception in guard cells   总被引:2,自引:1,他引:1  
Abstract. Guard cells perceive light via two photoreceptor systems: a blue-light-dependent photosystem and the guard cell chloroplast. Chloroplasts stimulate stomatal opening by transducing photosynthetic active radiation into proton pumping at the guard cell plasma membrane. In addition, guard cell chloroplasts fix CO2 photosynthetically. Sugar from guard cell photosynthesis can contribute to the osmotic build-up required for opening. The blue-light-dependent photosystem activates proton pumping at the guard cell plasma membrane and stimulates starch hydrolysis. Available information on the photobiological properties of guard cells makes it possible to describe stomatal function in terms of the cellular components regulating stomatal movements. The blue light response is involved in stomatal opening in the early morning and stomatal responses to sunflecks. The guard cell chloroplast is likely to be involved in stomatal adaptations to sun, shade and to temperature. Interactions between these photosystems, a third photoreceptor in guard cells, phytochrome, and other mechanisms transducing stomatal responses such as VPD and carbon dioxide, provide the cellular basis for stomatal regulation.  相似文献   

5.
Sensory transduction and electrical signaling in guard cells   总被引:4,自引:3,他引:1       下载免费PDF全文
Guard cells are a valuable model system for the study of photoreception, ion transport, and osmoregulation in plant cells. Changes in stomatal apertures occur when sensing mechanisms within the guard cells transduce environmental stimull into the ion fluxes and biosynthesis of organic solutes that regulate turgor. The electrical events mediating sensory transduction in guard cells can be characterized with a variety of electrophysiological recording techniques. Recent experiments applying the patch clamp method to guard cell protoplasts have demonstrated activation of electrogenic pumps by blue and red light as well as the presence of potassium channels in guard cell plasmalemma. Light activation of electrogenic proton pumping and the ensuing gating of voltage-dependent ion channels appear to be components of sensory transduction of the stomatal response to light. Mechanisms underlying stomatal control by environmental signals can be understood by studying electrical events associated with ion transport.  相似文献   

6.
Guard cells, which form stomata in leaf epidermes, sense a multitude of environmental signals and integrate this information to regulate stomatal movements. Compared with the advanced understanding of light and water stress responses in guard cells, the molecular mechanisms that underlie stomatal CO(2) signalling have remained relatively obscure. With a high-throughput leaf thermal imaging CO(2) screen, we report the isolation of two allelic Arabidopsis mutants (high leaf temperature 1; ht1-1 and ht1-2) that are altered in their ability to control stomatal movements in response to CO(2). The strong allele, ht1-2, exhibits a markedly impaired CO(2) response but shows functional responses to blue light, fusicoccin and abscisic acid (ABA), indicating a role for HT1 in stomatal CO(2) signalling. HT1 encodes a protein kinase that is expressed mainly in guard cells. Phosphorylation assays demonstrate that the activity of the HT1 protein carrying the ht1-1 or ht1-2 mutation is greatly impaired or abolished, respectively. Furthermore, dominant-negative HT1(K113W) transgenic plants, which lack HT1 kinase activity, show a disrupted CO(2) response. These findings indicate that the HT1 kinase is important for regulation of stomatal movements and its function is more pronounced in response to CO(2) than it is to ABA or light.  相似文献   

7.
Guard cells in intact leafs display light-induced membrane potential changes, which alter the direction of K+-transport across the plasma membrane (Roelfsema et al., 2001). A beam of blue light, but not red light, directed at the impaled guard cell triggers this response, while both light qualities induce opening of stomata. To gain insight into this apparent contradiction, we explored the possible interaction between red light and CO2. Guard cells in the intact plant were impaled with double-barrelled electrodes and illuminated with red light. Cells that were hyperpolarized in CO2-free air, depolarized after a switch to air with 700 micro l l(-1) CO2, in a reversible manner. As a result, K+-fluxes across the plasma membrane changed direction, to favour K+ extrusion and stomatal closure in the presence of CO2. Concurrent with the depolarization, an inward current across the plasma membrane appeared, most likely due to activation of anion channels. Guard cell responses to CO2 could be recorded in darkness as well as in red light. However, in darkness some cells spontaneously depolarized, these cells hyperpolarized again in red light. Here, red light was projected on a large area of the leaf and decreased the intracellular CO2 concentration by about 250 micro l l(-1), as measured with a miniature CO2 sensor placed in the substomatal cavity. We conclude, that in intact leaves the red light response of guard cells is mediated through a decrease of the intercellular CO2 concentration.  相似文献   

8.
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO_2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO_2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species(ROS). Under abiotic and bioticstress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network,primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO_2 signaling, and immunity responses.Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.  相似文献   

9.
Carbon dioxide uptake and water vapour release in plants occur through stomata, which are formed by guard cells. These cells respond to light intensity, CO2 and water availability, and plant hormones. The predicted increase in the atmospheric concentration of CO2 is expected to have a profound effect on our ecosystem. However, many aspects of CO2-dependent stomatal movements are still not understood. Here we show that the ABC transporter AtABCB14 modulates stomatal closure on transition to elevated CO2. Stomatal closure induced by high CO2 levels was accelerated in plants lacking AtABCB14. Apoplastic malate has been suggested to be one of the factors mediating the stomatal response to CO2 (Refs 4,5) and indeed, exogenously applied malate induced a similar AtABCB14-dependent response as high CO2 levels. In isolated epidermal strips that contained only guard cells, malate-dependent stomatal closure was faster in plants lacking the AtABCB14 and slower in AtABCB14-overexpressing plants, than in wild-type plants, indicating that AtABCB14 catalyses the transport of malate from the apoplast into guard cells. Indeed, when AtABCB14 was heterologously expressed in Escherichia coli and HeLa cells, increases in malate transport activity were observed. We therefore suggest that AtABCB14 modulates stomatal movement by transporting malate from the apoplast into guard cells, thereby increasing their osmotic pressure.  相似文献   

10.
The stomatal complex of Zea mays consists of two guard cells with the pore in between them and two flanking subsidiary cells. Both guard cells and subsidiary cells are important elements for stoma physiology because a well-coordinated transmembrane shuttle transport of potassium and chloride ions occurs between these cells during stomatal movement. To shed light upon the corresponding transport systems from subsidiary cells, subsidiary cell protoplasts were enzymatically isolated and in turn, analyzed with the patch-clamp technique. Thereby, two K(+)-selective channel types were identified in the plasma membrane of subsidiary cells. With regard to their voltage-dependent gating behavior, they may act as hyperpolarization-dependent K(+) uptake and depolarization-activated K(+) release channels during stomatal movement. Interestingly, the K(+) channels from subsidiary cells and guard cells similarly responded to membrane voltage as well as to changes in the K(+) gradient. Further, the inward- and outward-rectifying K(+) current amplitude decreased upon a rise in the intracellular free Ca(2+) level from 2 nM to the micro M-range. The results indicate that the plasma membrane of subsidiary cells and guard cells has to be inversely polarized in order to achieve the anti-parallel direction of K(+) fluxes between these cell types during stomatal movement.  相似文献   

11.
Signalling drought in guard cells   总被引:15,自引:1,他引:14  
A number of environmental conditions including drought, low humidity, cold and salinity subject plants to osmotic stress. A rapid plant response to such stress conditions is stomatal closure to reduce water loss from plants. From an external stress signal to stomatal closure, many molecular components constitute a signal transduction network that couples the stimulus to the response. Numerous studies have been directed to resolving the framework and molecular details of stress signalling pathways in plants. In guard cells, studies focus on the regulation of ion channels by abscisic acid (ABA), a chemical messenger for osmotic stress. Calcium, protein kinases and phosphatases, and membrane trafficking components have been shown to play a role in ABA signalling process in guard cells. Studies also implicate ABA-independent regulation of ion channels by osmotic stress. In particular, a direct osmosensing pathway for ion channel regulation in guard cells has been identified. These pathways form a complex signalling web that monitors water status in the environment and initiates responses in stomatal movements.  相似文献   

12.
近年来,国际上十分关注气孔运动的调控机理,在保卫细胞内外的信息传递和转导途径的研究方面取得重要进展。保卫细胞的特殊结构和气孔功能密切相关,对保卫细胞壁特性、质膜上的各种结合蛋白、质膜和液泡膜上的离子通道的研究,以及对细胞骨架和气孔运动的关系的探索为阐明气孔运动的机理提供了更多的依据。  相似文献   

13.
The role of microtubules in guard cell function   总被引:11,自引:0,他引:11       下载免费PDF全文
Marcus AI  Moore RC  Cyr RJ 《Plant physiology》2001,125(1):387-395
Guard cells are able to sense a multitude of environmental signals and appropriately adjust the stomatal pore to regulate gas exchange in and out of the leaf. The role of the microtubule cytoskeleton during these stomatal movements has been debated. To help resolve this debate, in vivo stomatal aperture assays with different microtubule inhibitors were performed. We observed that guard cells expressing the microtubule-binding green fluorescent fusion protein (green fluorescent protein::microtubule binding domain) fail to open for all major environmental triggers of stomatal opening. Furthermore, guard cells treated with the anti-microtubule drugs, propyzamide, oryzalin, and trifluralin also failed to open under the same environmental conditions. The inhibitory conditions caused by green fluorescent protein::microtubule binding domain and these anti-microtubule drugs could be reversed using the proton pump activator, fusicoccin. Therefore, we conclude that microtubules are involved in an upstream event prior to the ionic fluxes leading to stomatal opening. In a mechanistic manner, evidence is presented to implicate a microtubule-associated protein in this putative microtubule-based signal transduction event.  相似文献   

14.
水通道或水通道蛋白是水分运动的主要通道.以RD28 cDNA和RD28抗体为探针证明了蚕豆(Vicia fabaL.)保卫细胞中存在水通道蛋白,并以气孔运动为指标,结合抗体和抑制剂处理证明水通道蛋白是水分运动的主要通道.研究表明编码质膜水通道蛋白的RD28转录体在叶片保卫细胞、叶肉细胞和维管束中高表达,尤以保卫细胞中最多;荧光免疫染色和Confocal显微镜观察表明,RD28抗体反应主要位于保卫细胞质膜.进一步采用RD28抗体和水通道蛋白抑制剂--HgCl2 (25μmol/L)处理可抑制壳梭孢素(FC)、光照诱导的气孔开放和原生质体体积膨胀以及ABA诱导的气孔关闭,但这种抑制作用可以被水通道抑制剂的逆转剂β-巯基乙醇(ME)逆转.表明蚕豆保卫细胞中存在水通道蛋白并参与蚕豆保卫细胞的运动过程.  相似文献   

15.
气孔功能的结构基础   总被引:7,自引:0,他引:7  
孟繁霞  张蜀秋 《植物学通报》2000,17(1):27-33,38
近年来,国际上十分关注气孔动动的调控机理,在保卫细胞内外的信息传递和转导途径的研究方面取得重要进展。保卫细胞的特殊结构和气孔功能密切相关,对保卫细胞壁特性、质膜上的各种结合蛋白、质膜和液泡膜上的离子通道的研究,以及对细胞骨架和气孔运动的关系的探索为阐明气孔运动的机理提供了更多的依据。  相似文献   

16.
Previous work has shown that stomata of growth chamber-grown Vicia faba leaves have an enhanced CO2 response when compared with stomata of greenhouse-grown plants. This guard cell response to CO2 acclimatizes to the environmental conditions on the transfer of plants between the two environments. In the present study, air relative humidity is identified as a key environmental factor mediating the changes in stomatal sensitivity to CO2. In the greenhouse environment, elevation of relative humidity to growth chamber levels resulted in an enhanced CO2 response, whereas a reduction in the light level to that comparable to growth chamber conditions had no effect on stomatal CO2 sensitivity. The transfer of plants between humidified and normal greenhouse conditions resulted in an acclimation response with a time-course matching that previously obtained in transfers of plants between greenhouse and growth chamber environments. The high stomatal sensitivity to CO2 of growth chamber-grown plants could be reduced by lowering growth chamber relative humidity and then restored with its characteristic acclimation time-course by an elevation of relative humidity. Leaf temperature was unchanged during this restoration, eliminating it as a primary factor in the acclimation response. Humidity regulation of stomatal CO2 sensitivity could function as a signal for leaves inside dense foliage canopies, promoting stomatal opening under low light, low CO2 conditions.  相似文献   

17.
A new mechanism for stomatal responses to humidity and temperature is proposed. Unlike previously-proposed mechanisms, which rely on liquid water transport to create water potential gradients within the leaf, the new mechanism assumes that water transport to the guard cells is primarily through the vapour phase. Under steady-state conditions, guard cells are assumed to be in near-equilibrium with the water vapour in the air near the bottom of the stomatal pore. As the water potential of this air varies with changing air humidity and leaf temperature, the resultant changes in guard cell water potential produce stomatal movements. A simple, closed-form, mathematical model based on this idea is derived. The new model is parameterized for a previously published set of data and is shown to fit the data as well as or better than existing models. The model contains mathematical elements that are consistent with previously-proposed mechanistic models based on liquid flow as well as empirical models based on relative humidity. As such, it provides a mechanistic explanation for the realm of validity for each of these approaches.  相似文献   

18.
Guard cell chloroplasts are unable to perform significant photosynthetic CO2 fixation via Rubisco. Therefore, guard cells depend on carbon supply from adjacent cells even during the light period. Due to their reversible turgor changes, this import cannot be mediated by plasmodesmata. Nevertheless, guard cells of several plants were shown to use extracellular sugars or to accumulate sucrose as an osmoticum that drives water influx to increase stomatal aperture. This paper describes the first localization of a guard cell-specific Arabidopsis sugar transporter involved in carbon acquisition of these symplastically isolated cells. Expression of the AtSTP1 H+-monosacharide symporter gene in guard cells was demonstrated by in situ hybridization and by immunolocalization with an AtSTP1-specific antiserum. Additional RNase protection analyses revealed a strong increase of AtSTP1 expression in the dark and a transient, diurnally regulated increase during the photoperiod around midday. This transient increase in AtSTP1 expression correlates in time with the described guard cell-specific accumulation of sucrose. Our data suggest a function of AtSTP1 in monosaccharide import into guard cells during the night and a possible role in osmoregulation during the day.  相似文献   

19.
20.
Guard cells allow land plants to survive under restricted or fluctuating water availability. They control the exchange of gases between the external environment and the interior of the plant by regulating the aperture of stomatal pores in response to environmental stimuli such as light intensity, and are important regulators of plant productivity. Their turgor driven movements are under the control of a signalling network that is not yet fully characterised. A reporter gene fusion confirmed that the Arabidopsis APK1b protein kinase gene is predominantly expressed in guard cells. Infrared gas analysis and stomatal aperture measurements indicated that plants lacking APK1b are impaired in their ability to open their stomata on exposure to light, but retain the ability to adjust their stomatal apertures in response to darkness, abscisic acid or lack of carbon dioxide. Stomatal opening was not specifically impaired in response to either red or blue light as both of these stimuli caused some increase in stomatal conductance. Consistent with the reduction in maximum stomatal conductance, the relative water content of plants lacking APK1b was significantly increased under both well-watered and drought conditions. We conclude that APK1b is required for full stomatal opening in the light but is not required for stomatal closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号