首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BopE is a type III secreted protein from Burkholderia pseudomallei, the aetiological agent of melioidosis. Like its Salmonella homologues SopE and SopE2, BopE is a guanine nucleotide exchange factor for Rho GTPases. It is thought that, in order to be secreted by the type III system, proteins must be unfolded or only partially folded. As part of a study of B. pseudomallei virulence proteins, we have expressed, purified and characterized the catalytic domain of BopE (amino acids 78-261). Analytical ultracentrifugation experiments in conjunction with analytical size exclusion chromatography show that BopE(78-261) is monomeric in aqueous solution. CD spectroscopy indicates that the protein is predominantly alpha-helical, with predicted secondary structure composition of 59% alpha-helix and 7% beta-strand. NMR spectroscopy confirms that BopE(78-261) adopts a single, stable conformation. In differential scanning calorimetry experiments, thermal denaturation of BopE(78-261) (T(m) 52 degrees C) is reversible. Also, the secondary structure composition of BopE(78-261) changes little over a range of pH values from 3.5 to 10.5. BopE may therefore fold spontaneously to a functional form upon secretion into the host cell cytoplasm, and retains a native or native-like fold in varied environments. These properties are likely to be advantageous for a secreted bacterial effector protein.  相似文献   

2.
BopE is a type III secreted protein from Burkholderia pseudomallei, the aetiological agent of melioidosis. Like its Salmonella homologues SopE and SopE2, BopE is a guanine nucleotide exchange factor for Rho GTPases. It is thought that, in order to be secreted by the type III system, proteins must be unfolded or only partially folded. As part of a study of B. pseudomallei virulence proteins, we have expressed, purified and characterized the catalytic domain of BopE (amino acids 78–261). Analytical ultracentrifugation experiments in conjunction with analytical size exclusion chromatography show that BopE78–261 is monomeric in aqueous solution. CD spectroscopy indicates that the protein is predominantly α-helical, with predicted secondary structure composition of 59% α-helix and 7% β-strand. NMR spectroscopy confirms that BopE78–261 adopts a single, stable conformation. In differential scanning calorimetry experiments, thermal denaturation of BopE78–261 (Tm 52 °C) is reversible. Also, the secondary structure composition of BopE78–261 changes little over a range of pH values from 3.5 to 10.5. BopE may therefore fold spontaneously to a functional form upon secretion into the host cell cytoplasm, and retains a native or native-like fold in varied environments. These properties are likely to be advantageous for a secreted bacterial effector protein.  相似文献   

3.
Salmonella typhimurium translocates effector proteins into host cells via the SPI1 type III secretion system to induce responses such as membrane ruffling and internalization by non-phagocytic cells. Activation of the host cellular RhoGTPase Cdc42 is thought to be a key event during internalization. The translocated Salmonella protein SopE is an activator for Cdc42. Because SopE is absent from most S. typhimurium strains it remains unclear whether all S. typhimurium strains rely on activation of Cdc42 to invade host cells. We have identified SopE2, a translocated effector protein common to all S. typhimurium strains. SopE2 is a guanine nucleotide exchange factor for Cdc42 and shows 69% sequence similarity to SopE. Analysis of S. typhimurium mutants demonstrated that SopE2 plays a role in recruitment of the actin-nucleating Arp2/3 complex to the membrane ruffles and in efficient host cell invasion. Transfection experiments showed that SopE2 is sufficient to activate host cellular Cdc42, to recruit the actin-nucleating Arp2/3 complex and to induce actin cytoskeletal rearrangements and internalization. In conclusion, as a result of SopE2 all S. typhimurium strains tested have the capacity to activate Cdc42 signalling inside host cells which is important to ensure efficient entry.  相似文献   

4.
Type III secreted Sop protein effectors are delivered into target eukaryotic cells and elicit cellular responses underlying Salmonella pathogenicity. In this work, we have identified another secreted protein, SopE2, and showed that SopE2 is an important invasion-associated effector. SopE2 is encoded by the sopE2 gene which is present and conserved in pathogenic strains of Salmonella. SopE2 is highly homologous to SopE, a protein encoded by a gene within a temperate bacteriophage and present in only some pathogenic strains.  相似文献   

5.
Williams C  Galyov EE  Bagby S 《Biochemistry》2004,43(38):11998-12008
SopE and SopE2 are delivered by the Salmonella type III secretion system into eukaryotic cells to promote cell invasion. SopE and SopE2 are potent guanine nucleotide exchange factors (GEFs) for Rho GTPases Cdc42 and Rac1 and constitute a novel class of Rho GEFs. Although the sequence of SopE-like GEFs is not at all homologous to those of the Dbl homology domain-containing eukaryotic GEFs, the mechanism of nucleotide release seems to have significant similarities. We have determined the solution structure of the catalytic domain (residues 69-240) of SopE2, showing that SopE2(69-240) comprises two three-helix bundles (alpha1alpha4alpha5 and alpha2alpha3alpha6) arranged in a Lambda shape. Compared to the crystal structure of SopE(78-240) in complex with Cdc42, SopE2(69-240) exhibits a less open Lambda shape due to movement of SopE(78-240) helices alpha2 and alpha5 to accommodate binding to the Cdc42 switch regions. In an NMR titration to investigate the SopE2(69-240)-Cdc42 interaction, the SopE2(69-240) residues affected by binding Cdc42 were very similar to the SopE(78-240) residues that contact Cdc42 in the SopE(78-240)-Cdc42 complex. Analysis of the backbone (15)N dynamics of SopE2(69-240) revealed flexibility in residues that link the two three-helix bundles, including the alpha3-alpha4 linker that incorporates a beta-hairpin and the catalytic loop, and the alpha5-alpha6 loop, and flexibility in residues involved in interaction with Cdc42. Together, these observations provide experimental evidence of a previously proposed mechanism of GEF-mediated nucleotide exchange based on the Rac1-Tiam1 complex structure, with SopE/E2 flexibility, particularly in the interbundle loops, enabling conformational rearrangements of the nucleotide binding region of Cdc42 through an induced fit type of binding. Such flexibility in SopE/E2 may also facilitate interaction through adaptive binding with alternative target proteins such as Rab5, allograft inflammatory factor 1, and apolipoprotein A-1.  相似文献   

6.
RhoGTPases are key regulators of eukaryotic cell physiology. The bacterial enteropathogen Salmonella typhimurium modulates host cell physiology by translocating specific toxins into the cytoplasm of host cells that induce responses such as apoptotic cell death in macrophages, the production of proinflammatory cytokines, the rearrangement of the host cell actin cytoskeleton (membrane ruffling), and bacterial entry into host cells. One of the translocated toxins is SopE, which has been shown to bind to RhoGTPases of the host cell and to activate RhoGTPase signaling. SopE is sufficient to induce profuse membrane ruffling in Cos cells and to facilitate efficient bacterial internalization. We show here that SopE belongs to a novel class of bacterial toxins that modulate RhoGTPase function by transient interaction. Surface plasmon resonance measurements revealed that the kinetics of formation and dissociation of the SopE.CDC42 complex are in the same order of magnitude as those described for complex formation of GTPases of the Ras superfamily with their cognate guanine nucleotide exchange factors (GEFs). In the presence of excess GDP, dissociation of the SopE.CDC42 complex was accelerated more than 1000-fold. SopE-mediated guanine nucleotide exchange was very efficient (e.g. exchange rates almost 10(5)-fold above the level of the uncatalyzed reaction; substrate affinity), and the kinetic constants were similar to those described for guanine nucleotide exchange mediated by CDC25 or RCC1. Far-UV CD spectroscopy revealed that SopE has a high content of alpha-helical structure, a feature also found in Dbl homology domains, Sec7-like domains, and the Ras-GEF domain of Sos. Despite the lack of any obvious sequence similarity, our data suggest that SopE may closely mimic eukaryotic GEFs.  相似文献   

7.
RhoGTPases are central switches in all eukaryotic cells. There are at least two known families of guanine nucleotide exchange factors that can activate RhoGTPases: the Dbl-like eukaryotic G nucleotide exchange factors and the SopE-like toxins of pathogenic bacteria, which are injected into host cells to manipulate signaling. Both families have strikingly different sequences, structures, and catalytic core elements. This suggests that they have emerged by convergent evolution. Nevertheless, both families of G nucleotide exchange factors also share some similarities: (a) both rearrange the G nucleotide binding site of RhoGTPases into virtually identical conformations, and (b) two SopE residues (Gln-109SopE and Asp-124SopE) engage Cdc42 in a similar way as equivalent residues of Dbl-like G nucleotide exchange factors (i.e. Asn-810Dbs and Glu-639Dbs). The functional importance of these observations has remained unclear. Here, we have analyzed the effect of amino acid substitutions at selected SopE residues implicated in catalysis (Asp-124SopE, Gln-109SopE, Asp-103SopE, Lys-198SopE, and Gly-168SopE) on in vitro catalysis of G nucleotide release from Cdc42 and on in vivo activity. Substitutions at Asp-124SopE, Gln-109SopE, and Gly-168SopE severely reduced the SopE activity. Slight defects were observed with Asp-103SopE variants, whereas Lys-198SopE was not found to be required in vitro or in vivo. Our results demonstrate that G nucleotide exchange by SopE involves both catalytic elements unique to the SopE family (i.e. 166GAGA169 loop, Asp-103SopE) and amino acid contacts resembling those of key residues of Dbl-like guanine nucleotide exchange factors. Therefore, besides all of the differences, the catalytic mechanisms of the SopE and the Dbl families share some key functional aspects.  相似文献   

8.
The bacterial enteropathogen Salmonella typhimurium employs a specialized type III secretion system to inject toxins into host cells, which trigger signaling cascades leading to cell death in macrophages, secretion of pro-inflammatory cytokines, or rearrangements of the host cell cytoskeleton and thus to bacterial invasion. Two of the injected toxins, SopE and the 69% identical protein SopE2, are highly efficient guanine nucleotide exchange factors for the RhoGTPase Cdc42 of the host cell. However, it has been a puzzle why S. typhimurium might employ two toxins with redundant function. We hypothesized that SopE and SopE2 might have different specificities for certain host cellular RhoGTPases. In vitro guanine nucleotide exchange assays and surface plasmon resonance measurements revealed that SopE is an efficient guanine nucleotide exchange factor for Cdc42 and Rac1, whereas SopE2 was interacting efficiently only with Cdc42, but not with Rac1. Affinity precipitation of Cdc42.GTP and Rac1.GTP from lysates and characteristic cytoskeletal rearrangements of infected tissue culture cells confirmed that SopE is highly efficient at activating Cdc42 and Rac1 in vivo, whereas SopE2 was efficiently activating Cdc42, but not Rac1. We conclude that the translocated effector proteins SopE and SopE2 allow S. typhimurium to specifically activate different sets of RhoGTPase signaling cascades.  相似文献   

9.
Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.  相似文献   

10.
Kubori T  Galán JE 《Cell》2003,115(3):333-342
Salmonella enterica invasion of host cells requires the reversible activation of the Rho-family GTPases Cdc42 and Rac1 by the bacterially encoded GEF SopE and the GAP SptP, which exert their function at different times during infection and are delivered into host cells by a type III secretion system. We found that SopE and SptP are delivered in equivalent amounts early during infection. However, SopE is rapidly degraded through a proteosome-mediated pathway, while SptP exhibits much slower degradation kinetics. The half-lives of these effector proteins are determined by their secretion and translocation domains. Chimeric protein analysis indicated that delivery of SptP into host cells by the SopE secretion and translocation domain drastically shortened its half-life. Conversely, delivery of SopE by the SptP secretion and translocation signals significantly increased its half-life, resulting in persistent actin cytoskeleton rearrangements. This regulatory mechanism constitutes a remarkable example of a pathogen's adaptation to modulate cellular functions.  相似文献   

11.
The entry of Salmonella into cultured epithelial cells is dependent on genes located in several adjacent chromosomal loci. One of these loci encodes the recently identified secretory proteins, denoted Sips ( Salmonella invasion proteins). SipB,C,D proteins are essential for the ability of the pathogen to invade epithelial cells. To examine if additional invasion-associated proteins were secreted by Salmonella dublin , the genes encoding already characterized secretory proteins were inactivated to facilitate this analysis. The proteins produced and secreted by a double fliM /polar sipB mutant of S. dublin were analysed; this revealed a set of novel secreted proteins. These proteins, which we denoted Sops ( Salmonella outer proteins), formed large filamentous aggregates in the medium of bacterial culture growing at 37°C. These aggregates contained five predominant proteins. Here we report the identification and characterization of one of these proteins, SopE, which is a novel invasion-associated secretory protein of S. dublin . A specific sopE mutant of S. dublin was found to be defective for invasion into epithelial cells. Upon interaction of Salmonella with HeLa cells, SopE was found to be translocated into the cytoplasm of the target cell by extracellular bacteria. The translocation of SopE was shown to be dependent on the Sip proteins because a polar sipB mutant did not translocate SopE across the HeLa cell membrane.  相似文献   

12.
Salmonella enterica serovar Typhimurium (S. Tm) is a facultative intracellular pathogen that induces entry into non‐phagocytic cells by a Type III secretion system (TTSS) and cognate effector proteins. Upon host cell entry, S. Tm expresses a second TTSS and subverts intracellular trafficking to create a replicative niche – the Salmonella‐containing vacuole (SCV). SopE, a guanidyl exchange factor (GEF) for Rac1 and Cdc42, is translocated by the TTSS‐1 upon host cell contact and promotes entry through triggering of actin‐dependent ruffles. After host cell entry, the bulk of SopE undergoes proteasomal degradation. Here we show that a subfraction is however detectable on the nascent SCV membrane up to ~ 6 h post infection. Membrane localization of SopE and the closely related SopE2 differentially depend on the Rho‐GTPase‐binding GEF domain, and to some extent involves also the unstructured N‐terminus. SopE localizes transiently to the early SCV, dependent on continuous synthesis and secretion by the TTSS‐1 during the intracellular state. Mutant strains lacking SopE or SopE2 are attenuated in early intracellular replication, while complementation restores this defect. Hence, the present study reveals an unanticipated role for SopE and SopE2 in establishing the Salmonella replicative niche, and further emphasizes the importance of entry effectors in later stages of host‐cell manipulation.  相似文献   

13.
SopE is a bacteriophage-encoded effector protein of Salmonella enterica serovar Typhimurium that is translocated into the cytosol of eukaryotic cells by a type III secretion system (TTSS) (W.-D. Hardt, H. Urlaub, and J. E. Galán, Proc. Natl. Acad. Sci. USA 95:2574-2579, 1998; M. W. Wood, R. Rosqvist, P. B. Mullan, M. H. Edwards, and E. E. Galyov, Mol. Microbiol. 22:327-338, 1996). In this study, we provide evidence that an unlinked gene carried within the Salmonella pathogenicity island 1 (SPI-1), invB (K. Eichelberg, C. Ginocchio, and J. E. Galán, J. Bacteriol. 176:4501-4510, 1994), is required for the secretion of SopE through the SPI-1 TTSS. Furthermore, far-Western blotting analysis shows that SopE directly interacts with InvB through a domain located at its amino terminus. We conclude that InvB is the TTSS-associated chaperone for SopE.  相似文献   

14.
15.
Salmonella enterica, the cause of food poisoning and typhoid fever, has evolved sophisticated mechanisms to modulate Rho family guanosine triphosphatases (GTPases) to mediate specific cellular responses such as actin remodeling, macropinocytosis, and nuclear responses. These responses are largely the result of the activity of a set of bacterial proteins (SopE, SopE2, and SopB) that, upon delivery into host cells via a type III secretion system, activate specific Rho family GTPases either directly (SopE and SopE2) or indirectly (SopB) through the stimulation of an endogenous exchange factor. We show that different Rho family GTPases play a distinct role in Salmonella-induced cellular responses. In addition, we report that SopB stimulates cellular responses by activating SH3-containing guanine nucleotide exchange factor (SGEF), an exchange factor for RhoG, which we found plays a central role in the actin cytoskeleton remodeling stimulated by Salmonella. These results reveal a remarkable level of complexity in the manipulation of Rho family GTPases by a bacterial pathogen.  相似文献   

16.
Type III secretion systems (TTSS) are virulence-associated components of many gram-negative bacteria that translocate bacterial proteins directly from the bacterial cytoplasm into the host cell. The Salmonella translocated effector protein SopE has no consensus cleavable amino-terminal secretion sequence, and the mechanism leading to its secretion through the Salmonella pathogenicity island 1 (SPI-1) TTSS is still not fully understood. There is evidence from other bacteria which suggests that the TTSS signal may reside within the 5' untranslated region (UTR) of the mRNA of secreted effectors. We investigated the role of the 5' UTR in the SPI-1 TTSS-mediated secretion of SopE using promoter fusions and obtained data indicating that the mRNA sequence is not involved in the secretion process. To clarify the proteinaceous versus RNA nature of the signal, we constructed frameshift mutations in the amino-terminal region of SopE of Salmonella enterica serovar Typhimurium SL1344. Only constructs with the native amino acid sequence were secreted, highlighting the importance of the amino acid sequence versus the mRNA sequence for secretion. Additionally, we obtained frameshift mutation data suggesting that the first 15 amino acids are important for secretion of SopE independent of the presence of the chaperone binding site. These data shed light on the nature of the signal for SopE secretion and highlight the importance of the amino-terminal amino acids for correct targeting and secretion of SopE via the SPI-1-encoded TTSS during host cell invasion.  相似文献   

17.
Salmonella spp. are pathogenic enterobacteria that employ type III secretion systems to translocate effector proteins and modulate responses of host cells. The repertoire of translocated effector proteins is thought to define host specificity and epidemic virulence, and varies even between closely related Salmonella strains. Therefore, horizontal transfer of effector protein genes between Salmonella strains plays a key role in shaping the Salmonella-host interaction. Several effector protein genes are located in temperate phages. The P2-like phage SopE Phi encodes SopE and the lambda-like GIFSY phages encode several effector proteins of the YopM/IpaH-family. Lysogenic conversion with these phages is responsible for much of the diversity of the effector protein repertoires observed among Salmonella spp. However, free exchange of effector proteins by lysogenic conversion can be restricted by superinfection immunity. To identify genetic mechanisms that may further enhance horizontal transfer of effector genes, we have analyzed sopE loci from Salmonella spp. that do not harbor P2-like sequences of SopE Phi. In two novel sopE loci that were identified, the 723 nt sopE gene is located in a conserved 1.2 kb cassette present also in SopE Phi. Most strikingly, in Salmonella enterica subspecies I serovars Gallinarum, Enteritidis, Hadar and Dublin, the sopE-cassette is located in a cryptic lambda-like prophage with similarity to the GIFSY phages. This provides the first evidence for transfer of virulence genes between different phage families. We show that such a mechanism can circumvent restrictions to phage-mediated gene transfer and thereby enhances reassortment of the effector protein repertoires in Salmonella spp.  相似文献   

18.
The bacterial enteropathogen Salmonella typhimurium employs a type III secretion system to inject bacterial toxins into the host cell cytosol. These toxins transiently activate Rho family GTP-binding protein-dependent signaling cascades to induce cytoskeletal rearrangements. One of these translocated Salmonella toxins, SopE, can activate Cdc42 in a Dbl-like fashion despite its lack of sequence similarity to Dbl-like proteins, the Rho-specific eukaryotic guanine nucleotide exchange factors. To elucidate the mechanism of SopE-mediated guanine nucleotide exchange, we have analyzed the structure of the complex between a catalytic fragment of SopE and Cdc42. SopE binds to and locks the switch I and switch II regions of Cdc42 in a conformation that promotes guanine nucleotide release. This conformation is strikingly similar to that of Rac1 in complex with the eukaryotic Dbl-like exchange factor Tiam1. However, the catalytic domain of SopE has an entirely different architecture from that of Tiam1 and interacts with the switch regions via different amino acids. Therefore, SopE represents the first example of a non-Dbl-like protein capable of inducing guanine nucleotide exchange in Rho family proteins.  相似文献   

19.
Salmonella pathogenesis is a complex phenomenon and a Type III secretion system plays a central role in the development of Salmonella-induced enteritis. One such Type III secretion protein is Salmonella outer protein E (SopE). Prevalence of sopE gene and its phenotypic expression (SopE protein) among different serovars of Salmonella enterica isolated from man and animals were investigated. Of 305 strains of S. enterica belonging to 11 serovars tested for the presence of sopE, 130 strains belonging to three serovars viz., Enteritidis, Gallinarum and Virchow were found to carry sopE gene irrespective of their source of isolation when tested by PCR amplification technique using its specific primers. Of these 130 strains, 112 strains were found to express SopE protein phenotypically as detected by Dot-ELISA using SopE antibody. Among the different serovars tested only serovars Gallinarum, Enteritidis and Virchow expressed SopE protein phenotypically in vitro. Role of SopE protein in pathogenesis of salmonellosis has been discussed.  相似文献   

20.
The hallmark of Salmonella entry into host cells is extensive rearrangements of the host actin cytoskeleton at the site of Salmonella contact with intestinal epithelial cells. SopE, SopE2 and SopB, three type III effectors of Salmonella pathogenicity island 1 (SPI-1), activate the Cdc42 and Rac1 signal transduction pathways to promote these rearrangements. SipA and SipC, two Salmonella type III-secreted actin-binding proteins, directly modulate host actin dynamics to facilitate bacterial uptake. Salmonella-induced actin cytoskeleton rearrangements are therefore the result of the coordinated action of a group of type III-secreted effector proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号