首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The relationship between the water stability of microaggregates and the residual carbohydrate content of soil was examined in 15 soils from 7 soil series under various cultivations. The carbohydrate was progressively removed by increasing the time of treatment with 0.02M periodate and 0.1M tetraborate. The resulting decrease in reducing sugar content was significantly correlated with an increased disruption of microaggregates (>45 m) as determined by a turbidimetric method. The most effective treatment removed about 80% of the soil carbohydrate and caused an increase of about 75% in the fraction of microaggregates (<45 m) compared to untreated soil.15–20 percent of the soil carbohydrate was resistant to oxidation by periodate, even after prolonged reaction times and contained a higher relative proportion of glucose, arabinose, and xylose than the oxidised material. Sugars typical of microbial sources, mannose, galactose, rhamnose and fucose, were therefore preferentially oxidised by the periodate treatment.The grassland soils generally had higher carbohydrate contents than the arable soils and initially had a greater degree of aggregation. However, periodate oxidation affected each soil in its own characteristic manner. A significant inverse linear relationship between the degree of disruption and the residual sugar content was found with 13 of the 15 soils. Over the range measured aggregate stability was therefore related to the presence of carbohydrate predominantly from microbial sources.  相似文献   

2.

Background and aims

The impact of salinity on microbes has been studied extensively but little is known about the response of soil microbial activity and biomass to increasing salinity in rhizosphere compared to bulk (non-rhizosphere) soil.

Methods

Barley was grown for 5 weeks in non-saline loamy sand to which salt (NaCl) was added. The electrical conductivity in the saturated extract (ECe) was 1, 13 and 19 dS m?1 for non-saline and two saline soils. Pots without plants were prepared in the same manner and placed next to those with plants. The water content in all pots was maintained at 75 % of water-holding capacity by weight. After 5 weeks the planted and unplanted pots were harvested to collect rhizosphere and bulk soil, respectively. The collected soil was then used for an incubation experiment. The EC levels in the pot experiment (EC1, EC13 and EC19, referred to as original) were either maintained or increased by adding NaCl to adjust the EC to 13, 19, 31 and 44 dS m?1. CO2 release was measured continuously for 20 days, microbial biomass C (MBC) was measured at the start and the end of the incubation experiment.

Results

In general, cumulative respiration and microbial biomass C concentration in rhizosphere and bulk soil decreased to a similar extent with increasing adjusted EC. However, compared to the treatments where the EC was maintained, the percentage decrease in cumulative respiration when the EC was increased to EC44 was smaller in rhizosphere than in bulk soil.

Conclusion

Overall, the reduction of cumulative respiration with increasing salinity did not differ between rhizophere and bulk soil. But microbes in rhizosphere soil were more tolerant to high EC than those in bulk soil which could be due to the greater substrate availability in the rhizosphere even after the soil was removed from the roots.  相似文献   

3.
Chickpea and white lupin roots are able to exude large amounts of carboxylates, but the resulting concentrations in the rhizosphere vary widely. We grew chickpea in pots in eleven different Western Australian soils, all with low phosphorus concentrations. While final plant mass varied more than two-fold and phosphorus content almost five-fold, there were only minor changes in root morphological traits that potentially enhance phosphorus uptake (e.g., the proportion of plant mass allocated to roots, or the length of roots per unit root mass). In contrast, the concentration of carboxylates (mainly malonate, citrate and malate, extracted using a 0.2 mM CaCl2 solution) varied ten-fold (averaging 2.3 mol g–1 dry rhizosphere soil, approximately equivalent to a soil solution concentration of 23 mM). Plant phosphorus uptake was positively correlated with the concentration of carboxylates in the rhizosphere, and it was consistently higher in soils with a smaller capacity to sorb phosphorus. Phosphorus content was not correlated with bicarbonate-extractable phosphorus or any other single soil trait. These results suggest that exuded carboxylates increased the availability of phosphorus to the plant, however, the factors that affected root exudation rates are not known. When grown in the same six soils, three commonly used Western Australian chickpea cultivars had very similar rhizosphere carboxylate concentrations (extracted using a 0.2 mM CaCl2 solution), suggesting that there is little genetic variation for this trait in chickpea. Variation in the concentration of carboxylates in the rhizosphere of white lupin did not parallel that of chickpea across the six soils. However, in both species the proportion of citrate decreased and that of malate increased at lower soil pH. We conclude that patterns of variation in root exudates need to be understood to optimise the use of this trait in enhancing crop phosphorus uptake.  相似文献   

4.
应用高通量测序技术对西北干旱区两种盐生植物黑果枸杞和里海盐爪爪根际土壤细菌的多样性和群落结构进行研究,旨在揭示两种耐盐植物根际土壤细菌之间以及根际与非根际细菌群落结构间的差异,为深入研究盐生植物根际土壤微生物与耐盐性之间的关系提供理论基础。结果表明:黑果枸杞、里海盐爪爪根际细菌多样性丰度高于非根际土,黑果枸杞根际土壤细菌多样性丰度高于里海盐爪爪。根际和非根际土壤细菌群落的组成和丰度存在差异,从黑果枸杞和里海盐爪爪根际土壤中分别检测出细菌21门289属和22门304属,而从非根际土壤中分别检测出28门285属和24门336属;在两种盐生植物根际土壤中,变形菌门和厚壁菌门均为优势门;拟杆菌门、放线菌门、蓝细菌门及浮霉菌门在根际土壤中的丰度显著高于非根际土壤,而厚壁菌门在根际土壤中的丰度低于非根际土壤。两种植物根际土壤中的细菌优势门和优势属的数量均高于非根际土壤,在黑果枸杞和里海盐爪爪的根际土壤中的细菌优势属分别有10个和9个,而二者非根际土壤中的细菌优势属各有4个,其中假单胞菌属是根际和非根际土壤中的共有优势属。黑果枸杞和里海盐爪爪根系细菌群落组成和丰度存在差异,只有假单胞菌属和盐单胞菌属是两种植物根际土壤中的共有优势属。Unifrac分析和聚类分析表明,两种盐生植物根际土壤细菌之间的相似性大于根际和非根际细菌群落间的相似性。细菌多样性与土壤有机碳、有机质、总氮正相关,与pH、电导率负相关,电导率和pH,有机碳和总氮分别是非根际土,根际土壤细菌群落物种组成的主要影响因素。  相似文献   

5.

Background and aims

Vineyards harbour a variety of weeds, which are usually controlled since they compete with grapevines for water and nutrients. However, weed plants may host groups of fungi and bacteria exerting important functions.

Methods

We grew three different common vineyard weeds (Taraxacum officinalis, Trifolium repens and Poa trivialis) in four different soils to investigate the effects of weeds and soil type on bacterial and fungal communities colonising bulk soil, rhizosphere and root compartments. Measurements were made using the cultivation-independent technique Automated Ribosomal Intergenic Spacer Analysis (ARISA).

Results

Weeds have a substantial effect on roots but less impact on the rhizosphere and bulk soil, while soil type affects all three compartments, in particular the bulk soil community. The fungal, but not the bacterial, bulk soil community structure was affected by the plants at the late experimental stage. Root communities contained a smaller number of Operational Taxonomic Units (OTUs) and different bacterial and fungal structures compared with rhizosphere and bulk soil communities.

Conclusions

Weed effect is localised to the rhizosphere and does not extend to bulk soil in the case of bacteria, although the structure of fungal communities in the bulk soil may be influenced by some weed plants.  相似文献   

6.
J. M. Oades 《Plant and Soil》1984,76(1-3):319-337
Summary The stability of pores and particles is essential for optimum growth of plants. Two categories of aggregates macro- (> 250 m) and micro- (<250 m) depend on organic matter for stability against disruptive forces caused by rapid wetting. Dispersion of clay particles from microaggregates is promoted by adsorption of complexing organic acids which increase the negative charge on clays. The acids are produced by plants, bacteria and fungi. However, the dispersibility of clay in microaggregates is offset by the binding action of polysaccharides, mainly mucilages produced by bacteria, but also by plant roots and fungal hyphae. The stability of microaggregates is also enhanced by multivalent cations which act as bridges between organic colloids and clays. Macroaggregates are enmeshed by plant roots, both living and decomposing, and are thus sensitive to management, and increase in number when grasses are grown and the soil is not disturbed. Lack of root growth,i.e. fallow, has the opposite effect. Various implications for management of soil structure are discussed.Introductory lecture  相似文献   

7.
Zhang  Junling  George  Eckhard 《Plant and Soil》2002,243(2):209-217
Nutrient concentrations in the rhizosphere soil can be higher, lower or remain unchanged compared to the bulk soil, but relatively little is known about such changes for basic cations in the rhizosphere of tree roots. A modified root container technique of studying rhizosphere processes was employed. Plexiglas cylinders were horizontally split by a membrane with 30 M mesh size into an upper compartment for root growth and a root-free lower compartment, each with an inner diameter of 5 cm and a height of 10 cm. One 2-year-old Norway spruce (Picea abies) seedling was transplanted from a nursery into each cylinder. Plants were not specifically inoculated, but roots were colonised by a mix of ectomycorrhizal fungi originating from the nursery. The nutrient poor mineral soil used in the experiment was taken from a forest site in Bayerischer Wald, southern Germany. The soil was either supplied with a mix of Ca, Mg and K, or not supplied with these cations. Plants were harvested 30 weeks after transplanting. The nylon membrane between the root compartments restricted root growth to the upper compartment, so that by the end of the experiment a root mat was formed at the top side of the membrane. In the lower compartment, soil nearest to the root mat was regarded as rhizosphere soil while soil in a distance from the root mat was regarded as bulk soil. In the upper compartment, rhizosphere soil was obtained at the end of the experiment by gently shaking the roots. The soils were analysed for Ca, Mg and K contents following two different soil extraction methods. In the fertilised treatment, H2O-extractable Ca and Mg were accumulated in the rhizosphere. In contrast, K (NH4Cl-extraction) was depleted in the rhizosphere. In the bottom tube, the depletion of K (NH4Cl-extraction) was restricted to 1 cm distance from the root mat. In unfertilised soil, Ca, Mg and K concentrations did not differ clearly between rhizosphere and bulk soils. The results indicated that the occurrence of cation gradients in the rhizosphere depended on the level of soil nutrient supply. Distinct rhizosphere effects were measured by conventional soil extraction methods only when the soil was freshly fertilised with mineral elements prior to the experiment. In this case, K depletion in the rhizosphere reflected higher K uptake by the fertilised Norway spruce plants. For low-nutrient soils, novel techniques are required to follow subtle changes in the rhizosphere.  相似文献   

8.

Aims

Aluminum-tolerant wheat plants often produce more root exudates such as malate and phosphate than aluminum-sensitive ones under aluminum (Al) stress, which provides environmental differences for microorganism growth in their rhizosphere soils. This study investigated whether soil bacterial community composition and abundance can be affected by wheat plants with different Al tolerance.

Methods

Two wheat varieties, Atlas 66 (Al-tolerant) and Scout 66 (Al-sensitive), were grown for 60 days in acidic soils amended with or without CaCO3. Plant growth, soil pH, exchangeable Al content, bacterial community composition and abundance were investigated.

Results

Atlas 66 showed better growth and lower rhizosphere soil pH than Scout 66 irrespective of CaCO3 amendment or not, while there was no significant difference in the exchangeable Al content of rhizosphere soil between the two wheat lines. The dominant bacterial community composition and abundance in rhizosphere soils did not differ between Atlas 66 and Scout 66, although the bacterial abundance in rhizosphere soil of both wheat lines was significantly higher than that in bulk soil. Sphingobacteriales, Clostridiales, Burkholderiales and Acidobacteriales were the dominant bacteria phylotypes.

Conclusions

The difference in wheat Al tolerance does not induce the changes in the dominant bacterial community composition or abundance in the rhizosphere soils.  相似文献   

9.
通过对刺槐林和农田魔芋健株根区、根表及根外土壤微生物区系及养分含量比较,探索刺槐林魔芋健康高产的土壤微生态机制。结果表明:(1)刺槐林魔芋根外和根表土壤细菌数量分别较农田增加11.8%和588.9%,根区土壤真菌数量较农田显著减少74.4%。(2)刺槐林魔芋根区、根表及根外土壤中的有益优势微生物数量及其比例远高于农田魔芋,有害微生物数量远低于农田魔芋;在刺槐林魔芋根区、根表及根外土壤中,3种优势细菌为放射型根瘤菌(Rhizobium radiobacter)、苏云金芽孢杆菌(Bacillus thuringiensis)及摩氏假单胞菌(Pseudomonas mosselii),其中,根表土壤中放射型根瘤菌及苏云金芽孢杆菌数量分别为农田的25.7倍及13.0倍;2种优势真菌为黒附球菌(Epicoccum nigrum)和疣孢青霉(Penicillium verruculosum),1种优势放线菌为绿淀粉酶链霉菌(Streptomyces viridodiastaticus),其中刺槐林魔芋根表和根外土壤中黒附球菌数量分别较农田高159.2%和120.3%;大量存在于刺槐林下魔芋根外土壤中的疣孢青霉、以及根区、根表、根外土壤中的绿淀粉酶链霉菌在农田魔芋相应部位均未检出。(3)刺槐林下魔芋根外、根区土壤有机质含量分别较农田显著增加167.6%、39.6%,但速效P、K含量较农田分别显著降低85.6%~91.3%、12.4%~13.0%。研究认为,刺槐林魔芋健康高产与其根区、根表及根外土壤中特有的有益优势微生物数量多、有害微生物数量少以及土壤有机质含量高密切相关。  相似文献   

10.
Phytoextraction is the removal of metals from contaminated soils into harvested plant tissues. The rate of phytoextraction is governed by both soil and plant characteristics. Most effort has focused on identifying appropriate plants for phytoextraction, but the benefits from this effort will be marginal unless the metals are in phytoavailable forms in the rhizosphere. The concentration of a metal in the rhizosphere can be estimated using solute transfer models that incorporate: the metal concentration in the bulk soil solution, the buffer power of the soil, diffusion coefficient for the metal, water movement, root size and morphology, and the rate of entry of metal into the roots. Here a solute transfer model is developed to predict the concentration of Zn in the rhizosphere solution ([Zn]ext) of Thlaspi caerulescens, a hyperaccumulator species that could be exploited for Zn phytoextraction. The model predicts that Zn accumulation by T. caerulescens is sub-optimal when the Zn concentration in the bulk soil solution is <27 M. Such a high [Zn]ext is rare in contaminated agricultural soils, but is possible in the metalliferous substrates where T. caerulescens is endemic. Sensitivity analyses indicate that Zn diffusion is more important than transpiration-driven mass flow for Zn delivery to the root, implying that management of soil physical and hydrological properties will improve phytoextraction. Sensitivity analyses also imply that strategies to enhance the Zn absorption power of the root will not necessarily be successful for enhancing phytoextraction per se. Thus, research into enhancing Zn availability and mobility in soil will be as important as understanding and manipulating Zn uptake by plants. In general, such models can be used to identify constraints to efficient phytoextraction (whether plant or soil) and to determine whether commercial phytoextraction is feasible.  相似文献   

11.
The survival of lux-marked recombinants of Escherichia coli and Bacillus subtilis was studied in the rhizosphere of bean (Phaseolus vulgaris L.) and in bulk soil. The number of E. coli (pSB343) containing a complete lux operon did not differ significantly according to whether they were introduced into soil separately or together with a non-luminescent mutant Pseudomonas fluorescens R2fN. When genetically altered strains of E. coli and B. subtilis bearing a complete or an incomplete lux-reporter system were introduced into soil, the numbers of surviving cells were the same both in the rhizosphere and bulk soil. The insertion of lux genes into bacterial strains therefore does not affect their competitiveness and survival in the rhizosphere and bulk soil.The author is with the Department of Microbiology, University of Silesia, Jagielloska 28, 40-032 Katowice, Poland  相似文献   

12.
盐生植物种类及其所具有的不同耐盐调节方式影响着根际微生物群落的结构与组成。为明确不同类型盐生植物根际与非根际土壤中真菌群落结构与组成的差异及其与土壤环境间的相互关系,该研究采集了黄河三角洲地区芦苇、盐地碱蓬、獐毛3种不同类型盐生植物0~20 cm土层的根际和非根际土壤,通过高通量测序对其真菌群落多样性和结构进行了分析,以探究真菌群落特征与土壤理化因子间的关系。结果表明:(1)3种不同类型盐生植物根际土壤真菌群落丰富度显著大于各自非根际土,且獐毛根际土壤真菌群落丰富度显著大于芦苇和盐地碱蓬的根际土。(2)距离热图分析表明,芦苇和盐地碱蓬非根际土壤真菌群落间的相似性最大。(3)土壤真菌多样性和丰富度与土壤总碳、总氮、有效磷、pH呈正相关关系,与土壤盐分含量呈负相关关系。(4)3种不同类型盐生植物的根际与非根际土壤中,球囊菌门(Glomeromycota)均为绝对优势门,盾巨孢囊霉属(Scutellospora)为优势属。(5)RDA分析表明,土壤盐分含量是影响土壤真菌群落结构的重要因子,球囊菌门丰度与土壤总氮、总碳、有效磷、有机碳、pH呈正相关关系,与盐分呈负相关关系。(6)植物土壤真菌群...  相似文献   

13.
A field experiment was carried out to assess the effectiveness of the addition of sugar beet, rock phosphate, and Aspergillus niger directly into the planting hole, and the mycorrhizal inoculation of seedlings with Scleroderma verrucosum, for promotion of plant growth of Cistus albidus L. and Quercus coccifera L. and enhancement of soil physicochemical, biochemical, and biological properties, in a degraded semiarid Mediterranean area. One year after planting, the available phosphorus content in the amended soils of both species was about fourfold higher than in the nonamended soil. Amendment addition increased the aggregate stability of the rhizosphere of C. albidus (by 56% with respect to control soil) while the mycorrhizal inoculation increased only the aggregate stability of the rhizosphere of Q. coccifera (by 13% with respect to control soil). Biomass C content and enzyme activities (dehydrogenase, urease, protease-BAA, acid phosphatase, and -glucosidase) of the rhizosphere of C. albidus were increased by amendment addition but not by mycorrhizal inoculation. Both treatments increased enzyme activities of the rhizosphere of Q. coccifera. The mycorrhizal inoculation of the seedlings with S. verrucosum was the most effective treatment for stimulating the growth of C. albidus (by 469% with respect to control plants) and Q. coccifera (by 74% with respect to control plants). The combined treatment, involving mycorrhizal inoculation of seedlings and addition of the amendment directly into soil, had no additive effect on the growth of either shrub species.  相似文献   

14.

Background and aims

The rhizosphere, the soil immediately surrounding roots, provides a critical bridge for water and nutrient uptake. The rhizosphere is influenced by various forms of root–soil interactions of which mechanical deformation due to root growth and its effects on the hydraulics of the rhizosphere are the least studied. In this work, we focus on developing new experimental and numerical tools to assess these changes.

Methods

This study combines X-ray micro-tomography (XMT) with coupled numerical simulation of fluid and soil deformation in the rhizosphere. The study provides a new set of tools to mechanistically investigate root-induced rhizosphere compaction and its effect on root water uptake. The numerical simulator was tested on highly deformable soil to document its ability to handle a large degree of strain.

Results

Our experimental results indicate that measured rhizosphere compaction by roots via localized soil compaction increased the simulated water flow to the roots by 27 % as compared to an uncompacted fine-textured soil of low bulk density characteristic of seed beds or forest topsoils. This increased water flow primarily occurred due to local deformation of the soil aggregates as seen in the XMT images, which increased hydraulic conductivity of the soil. Further simulated root growth and deformation beyond that observed in the XMT images led to water uptake enhancement of ~50 % beyond that due to root diameter increase alone and demonstrated the positive benefits of root compaction in low density soils.

Conclusions

The development of numerical models to quantify the coupling of root driven compaction and fluid flow provides new tools to improve the understanding of plant water uptake, nutrient availability and agricultural efficiency. This study demonstrated that plants, particularly during early growth in highly deformable low density soils, are involved in active mechanical management of their surroundings. These modeling approaches may now be used to quantify compaction and root growth impacts in a wide range of soils.  相似文献   

15.
三峡库区消落带植被修复过程中,物种的更替对库区土壤的地球化学循环产生潜在影响。以三峡库区忠县石宝寨汝溪河消落带植被修复示范基地165-170 m海拔段人工种植狗牙根、牛鞭草、落羽杉以及立柳根际与非根际土为试验对象,探究其根际与非根际土壤的养分含量及酶活性差异,以阐明不同物种的生长适应性及其根际养分利用策略,比较不同物种对库区土壤的营养改良作用。结果表明:(1)三峡库区消落带4种适生植物根系活动导致根际与非根际土壤养分因子以及土壤酶活性产生差异,不同物种的栽植均在一定程度上使库区土壤营养条件得以改善;(2)碳、氮两种元素在4种适生植物根际土壤中发生不同程度的富集,但磷素与钾素在不同物种根际与非根际土壤之间的变化不一致;(3)蔗糖酶、脲酶以及酸性磷酸酶在4种适生植物根际土中均表现出一定程度的根际正效应(R/S>1),且狗牙根对3种土壤酶的根际活化效果最为明显,其根际效应分别高达2.39、1.89和2.7;(4)在植物根系的调控下,根际土中有机质与氮素、磷素以及钾素的相关性更为显著,而非根际土壤中,仅钾素与有效氮、有效磷呈显著负相关,其余各土壤养分因子之间均无显著相关性;(5)与落羽杉和立柳两木本植物相比,狗牙根与牛鞭草两草本植物根际具有更为合理的养分调节模式,对库区土壤的改良效果更好。  相似文献   

16.
The effects of kanamycin and streptomycin added to soil on the survival of transposon Tn5 modified Pseudomonas fluorescens strain R2f were investigated. Kanamycin in high (180 g g-1 dry soil) or low (18 g g-1) concentration or streptomycin in low concentration in Ede loamy sand soil had no noticeable effect on inoculant population dynamics in soil and wheat rhizosphere, whereas streptomycin in high concentration had a consistent significant stimulatory effect, in particular in the wheat rhizosphere. Streptomycin exerted its effect by selecting P. fluorescens with Tn5 insertion whilst suppressing the unmodified sensitive parent strain, as evidenced by comparing the behaviour of these two strains in separate and mixed inoculation studies.Soil textural type influenced the effect of streptomycin on the Tn5 carrying inoculant; the effect was consistently detected in rhizosphere and rhizoplane samples of wheat grown in Ede loamy sand after 7 and 14 days incubation, whereas it was only apparent after 7 days in rhizoplane or rhizosphere (and bulk soil) samples of wheat grown in two silt loam soils. Modification of soil pH by the addition of CaCO3 or bentonite clay resulted in an enhancement of the selective effect of streptomycin by CaCO3 and its abolishment by bentonite clay.The addition to soil of malic acid or wheat root exudate, but not of glucose, enhanced the streptomycin selective effect on the Tn5-modified P. fluorescens strain. Neither the streptomycin producer Streptomyces griseus nor two non-inhibiting mutants obtained following UV irradiation affected the dynamics of P. fluorescens (chr::Tn5) in soil and wheat rhizosphere.The effect of streptomycin in soil on inoculant Tn5 carrying bacteria depends on conditions such as soil type, the presence of (wheat) root exudates and the type of available substrate.  相似文献   

17.
不同生境黑果枸杞根际与非根际土壤微生物群落多样性   总被引:2,自引:0,他引:2  
李岩  何学敏  杨晓东  张雪妮  吕光辉 《生态学报》2018,38(17):5983-5995
研究典型生境黑果枸杞根际与非根际土壤微生物群落多样性及其与土壤理化性质间的关系,为进一步研究黑果枸杞抗逆性提供理论数据。采集新疆精河县艾比湖地区(EB)盐碱地、乌苏市(WS)路旁荒地、五家渠市(WQ)人工林带的黑果枸杞根际与非根际土壤,利用Illumina-MiSeq高通量测序技术分析细菌和真菌群落组成和多样性。结果表明:根际土壤细菌多样性高于非根际土壤(WQ除外),而根际真菌多样性低于非根际土壤。WQ非根际土壤细菌和真菌多样性均高于EB和WS;根际细菌多样性排序为EBWSWQ,根际真菌多样性排序为WSEBWQ。根际土壤优势细菌门依次是变形菌门、拟杆菌门、放线菌门、酸杆菌门,真菌优势门为子囊菌门、担子菌门。根际土壤细菌变形菌门、拟杆菌门、酸杆菌门的相对丰度高于非根际土壤,而厚壁菌在根际土壤中的丰度显著降低,真菌优势门丰度在根际土和非根际土中的变化趋势因地区而异; Haliea、Gp10、Pelagibius、Microbulbifer、假单胞菌属、Thioprofundum、Deferrisoma是根际土壤细菌优势属;多孢子菌属、支顶孢属、Corollospora、Cochlonema是根际真菌优势属。细菌、真菌优势类群(门、属)的组成以及丰富度存在地区间差异,厚壁菌门在EB地区的丰富度显著高于含盐量较低的WS、WQ;盐碱生境EB中根际土壤嗜盐细菌的丰度高于非盐碱生境(WQ、WS),如盐单胞菌属、动性球菌属、Geminicoccu、Pelagibius、Gracilimonas、Salinimicrobium等。小囊菌属是EB根际真菌的最优势属,Melanoleuca是WQ和WS的最优势属,地孔菌属、Xenobotrytis、Brachyconidiellopsis、多孢子菌属等在EB根际土壤中的丰度显著高于WQ和WS。非盐碱生境(WS和WQ)的微生物群落之间的相似性较高,并且高于与盐碱环境(EB)之间的相似性,表明土壤含盐量对微生物群落组成丰度具有重要的影响。  相似文献   

18.
ABSTRACT

The rhizosphere soils of two durum wheat (Triticum turgidum var. durum L.) cultivars Kyle and Areola grown in two selected soils of southern Saskatchewan were collected both at 2-week and 7-week plant growth stages. The cadmium availability index (CAI), determined as M NH4CI-extractable Cd, pH and the distribution of the particulate- bound Cd species of the soils were carried out and the data were discussed in comparison with those of the corresponding bulk soil. At the 2-week growth stage, the pH of the rhizosphere soil was less than that of the corresponding bulk soil and the CAI values were higher in the rhizosphere soil, indicating that more Cd was complexed with the low-molecular-weight organic acids (LMWOAs) at the soil-root interface and was extractable by M NH4CI. Compared with the bulk soils, the CAI values were 2–9 times higher in the soil rhizosphere of the plots fertilized with Idaho monoammonium phosphate fertilizer at 2-week growth stage, which is attributed to the combined effects of the Cd introduced into the soil rhizosphere from the fertilizer (Cd content of the fertilizer was 144 mg kg?1) and complexation reactions of phosphate and LMWOAs with soil Cd. At 7-week plant growth stage, such differences were not observed. The increased amounts of carbonate-bound and metal-organic complex-bound Cd species of the rhizosphere soils are due to the increased amounts of carbonate, a product of plant respiration, and the LMWOAs at the soil-root interface, respectively. Simple correlation analysis of the data showed that the CAI of the rhizosphere soils of the control plots correlated at least two orders of magnitude better with the metal-organic complex-bound Cd whereas the CAI of the rhizosphere soils treated with Idaho phosphate correlated better with carbonate-bound Cd species in comparison to other species.  相似文献   

19.
Rhizosphere soil contains important sources of nutrients for microorganisms resulting in high number of microorganisms capable of degrading various types of chemicals in the soil. Thus, this study investigated a carbofuran dissipation in rhizosphere soils of 6 weeds namely, umbrella sedge (Cyperus iria L.), fuzzy flatsedge (C. pilosus V.), small flower umbrella plant (C. difformis L.), tall-fringe-rush hoorah grass (Fimbristylis miliacea V.), cover fern (Marsilea crenata P.), and water primrose (Jussiaea linifolia V.). Rhizosphere soil of fuzzy flatsedge showed the shortest half-life (t1/2) of carbofuran (15 days) among other soils. So, it was selected to be used in the bioaugmentation experiment using carbofuran degrader namely Burkholderia cepacia, PCL3, as inoculum in order to examine whether they would improve carbofuran degradation in soil. The results showed that the addition of PCL3 into rhizosphere soil did not improve carbofuran degradation suggesting that microorganisms in rhizosphere soil might be capable enough to remove carbofuran from soil. The number of carbofuran degraders in the rhizosphere soils was greater than in bulk soil 10–100 times which might be responsible to a rapid degradation of carbofuran in rhizosphere soils without the addition of PCL3. The ability of PCL3 to degrade carbofuran was evident in bulk soil (t1/2 of 12 days) and autoclaved soils (t1/2 13–14 days) when compared to soils without an inoculation (t1/2 of 58 days) indicated that the addition of a degrader was useful in improving carbofuran degradation in soil.  相似文献   

20.
The distribution of labile Cd and Zn in two contrasting soils was investigated using isotopic exchange techniques and chemical extraction procedures. A sewage sludge amended soil from Great Billings (Northampton, UK) and an unamended soil of the Countesswells Association obtained locally (Aberdeen, UK) were used. 114Cd and 67Zn isotopes were added to a water suspension of each soil and the labile metal pool (E-value) determined from the isotope dilution. Samples were obtained at 13 time points from 1h to 50 days. For the sewage sludge amended soil, 29 g Cd g–1 (86% of total) and 806 g Zn g–1 (65% of total) were labile and for the Countesswells soil the value was 8.6 g Zn g–1 (13% of total); limits of detection prevented a Cd E-value from being measured in this soil. The size of the labile metal pool was also measured by growing plants for 90 days and determining the isotopic content of the plant tissue (L-value). Thlaspi caerulescensJ. & C. Presl (alpine penny cress), a hyperaccumulator of Zn and Cd, Taraxacum officinale Weber (dandelion) and Hordeum vulgare L. (spring barley) were used. L-values were similar across species and lower than the E-values. On average the L-values were 23±0.8 g Cd g–1 and 725±14 g Zn g–1 for the Great Billings soil and 0.29±0.16 g Cd g–1 and 7.3±0.3 g Zn g–1 for the Countesswells soil. The extractable metal content of the soils was also quantified by extraction using 0.1 M NaNO3, 0.01 M CaCl2, 0.5 M NaOH, 0.43 M CH3COOH and 0.05 M EDTA at pH 7.0. Between 1.3 and 68% of the total Cd and between 1 and 50% of the total Zn in the Great Billings soil was extracted by these chemicals. For the Countesswells soil, between 6 and 83% of the total Cd and between 0.1 and 7% of the total Zn was extracted. 0.05 M EDTA and 0.43 M CH3COOH yielded the greatest concentrations for both soils but these were less than the isotopic estimates. On the whole, E-values were numerically closer to the L-values than the chemical extraction values. The use of isotopic exchange provides an alternative estimate of the labile metal pool within soils compared to existing chemical extraction procedures. No evidence was obtained that T. caerulescens is able to access metal within the soil not freely available to the other plants species. This has implications for long term remediation strategies using hyperaccumulating plant species, which are unlikely to have any impact on non-labile Cd and Zn in contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号