首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Variation in the susceptibility of lepidopterous pest larvae of different ages to transgenic crops and the potential for survivors to reproduce could have important consequences for the development of resistance in such pests. Experiments were undertaken in the laboratory to determine if larvae of the potato tuber moth, Phthorimaea operculella, of different ages (0 (< 1 day old), 3, 5, 7 days) varied in their susceptibility to cry1Ac9–transgenic potato (Solanum tuberosum) foliage grown in the glasshouse or field. The survival and fecundity of larvae reared on transgenic tubers was also determined in the laboratory. There were no apparent differences in susceptibility of larvae of different ages to transgenic foliage. Larvae fed glasshouse or field‐grown non‐transgenic foliage had significantly larger relative growth indices and more larvae pupated, than those fed transgenic foliage, regardless of larval age. Eggs from a laboratory colony were placed on transgenic or non‐transgenic tubers to measure survival and fecundity. Between 6% and 15% of eggs placed on transgenic tubers developed into pupae for three of the four transgenic potato lines tested. On one transgenic line, only six adults emerged from 1300 eggs. In contrast, between 71% and 97% of the eggs placed on non‐transgenic tubers developed into pupae. Male and female pupae from transgenic lines weighed less than those from non‐transgenic lines. The fecundity of females from two of four transgenic lines was lower than from the non‐transgenic parent cultivar. Although larvae of different ages did not exhibit any overall age‐dependent pattern of increasing or decreasing susceptibility to transgenic foliage of glasshouse or field‐grown plants, the ability of larvae to survive and reproduce on transgenic tubers suggests this pest has the ability to evolve resistance to the transgenic plants used in the present study.  相似文献   

2.
Potato tuber worm (PTW), Phthorimaea operculella (Zeller), is a world-wide pest of potato. In rustic stores, PTW larvae can infest 100% of stored tubers. Treatment of tubers in rustic stores with the PTW granulovirus (PoGV) has been demonstrated to protect stored tubers. This is the first study to show the effects of PoGV for protection of tubers stored in refrigerated warehouse conditions. Tubers were treated by dipping in aqueous suspensions of PoGV or water. An estimated 0.0819 larval equivalents of virus or 1.88×109 viral occlusion bodies were deposited on each kilogram of tubers. They were held at 16°C for 11 days before lowering the temperature by 0.5°C per day until 10°C was reached. The tubers were stored at this temperature for 53 days. Mean numbers of infested tubers at the end of the assay was affected by both pre-infestation rate and virus treatment. Mean numbers of infested tubers in the control treatment was 3 tubers per chamber higher than in the virus treatment providing strong evidence that PoGV controlled larvae and minimized spread into un-infested tubers. Of the larvae that were retrieved in virus-treated infested tubers, the mean mortality was 87% compared to 37% in controls.  相似文献   

3.
    
Alternating the daily feeding of potato tuber moth (Phthorimaea operculella) larvae (PTM) between isogenic pairs of potato plants provides an effective experimental approach to simulate transgene pyramiding in a clonal crop. This involves an experimental design with all six possible pairwise combinations of two transgenic lines expressing different cry genes and the non‐transgenic control. In this manner, we have simulated the pyramiding of pairwise combinations of cry1Ac9, cry9Aa2 and cry1Ba1 genes in potato and evaluated how pairs of these three cry genes interact to influence the growth rate of PTM larvae. The results show that all combinations of the three cry genes were largely consistent with additive impacts on PTM larval growth, although results from the combination of the cry1Ac9 and cry9Aa2 genes were suggestive of slight synergistic effects. Pyramiding the cry1Ac9, cry9Aa2 and cry1Ba1 genes in potato could therefore provide a more effective strategy to control PTM compared to single cry gene transgenic plants.  相似文献   

4.
    
Tubers produced from crosses between the wild potato, Solanum berthaultii Hawkes (Solanaceae), and the cultivated species Solanum tuberosum L. (Solanaceae) are resistant to potato tuber worm (PTW), Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), infestation compared to those of the popular commercial North American cultivars Allegany, Atlantic, Chieftain, Katahdin, MaineChip, NorDonna, Norwis, Russet Norkotah, Snowden, and Yukon Gold. Given a choice between Atlantic and hybrid tubers, female PTW deposited ca. 50% fewer eggs on hybrid tubers than on those of Atlantic; larval survival and production of prepupae on hybrid tubers were reduced similarly. Time needed for neonates to penetrate eye buds was ca. 100 min greater on hybrid tubers compared to that on cv. Atlantic. Periderm of hybrid tubers is thicker than that of cv. Atlantic and may contribute to the delay in larval penetration of tubers and the success of initial establishment.  相似文献   

5.
    
The potato tuber moth (PTM), Phthorimaea operculella (Zeller), is an important pest of Solanaceae crops and especially devastating to potatoes. There is no significant difference in morphological characteristics of PTM from the first to third instar larvae; therefore, it is difficult to directly determine the number of instars of this pest based on morphology. In the present study, head capsule width and length and mandible width of 340 PTM individuals were measured. Density‐based spatial clustering of applications with noise (DBSCAN) clustering was used for instar grouping. The results of DBSCAN clustering were compared with those obtained using Gaussian mixture models and k‐means clustering; the results of the three clustering methods were verified using Brooks–Dyar rule, Crosby rule and linear regression model. The clusters obtained using the three methods were the same and comprised four PTM instars with three morphological characteristics. Moreover, the results of the three methods fit the Brooks–Dyar rule, Crosby rule, frequency analysis and logarithmic regression model well. Head capsule width was the best morphological characteristic for determining the number of instars of PTM, and this characteristic may be used for determining PTM instars in the field. These results show that the DBSCAN clustering method is a promising tool for the identification of insect instars.  相似文献   

6.
ABSTRACT

The potato tuber moth (PTM) Phthorimaea operculella is a critical potato pest. Larvae infest both foliage and tubers and mature larvae pupate in the soil or other safe places. Cordyceps tenuipes, an entomopathogenic fungus, infect lepidopteran pupae. To determine the effectiveness of this fungus as a biocontrol agent for PTM, we evaluated the time-concentration-mortality (TCM) response of PTM pupae to C. tenuipes using the following bioassays: (1) direct immersion in conidial suspensions, (2) incubation in sterilised or (3) unsterilised soilpremixed with conidia, and (4) incubation in unsterilised soil drenched with conidial suspensions to simulate field conditions. Fungal infection caused 100%, 83.3%, 73.3%, and 85.0% mortality of PTM pupae in assays 1–4, respectively. At 108 conidia/mL or conidia/g concentration, assays 1 and 4 had short lethal times (LT50) of 2.2 and 2.6 days compared with 3.7 and 4.8 days for assays 2 and 3, respectively. On day 7 after inoculation, assays 1 and 4 also had low lethal concentrations (LC50) of 1.69 × 103 conidia/mL and 1.10 × 105 conidia/g compared with those of assays 2 and 3, which showed low virulence, with LC50 of 3.50 × 105 and 3.60 × 106 conidia/mL, respectively. Our results demonstrate that C. tenuipes is a promising candidate for PTM biocontrol at the pupal stage. Drenching the soil surface with conidial suspensions may be the most effective method of field application.  相似文献   

7.
    
This study examines the response of tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), during the initial stages of attack, to variability in trichome density and composition on foliage of Solanum berthaultii (Hawkes) and Solanum tarijense (Hawkes) (Solanaceae). Solanum berthaultii bears two types of glandular trichome (type A and type B) that together reduced oviposition by the moth. Females were often completely deterred from ovipositing on foliage with >300 trichomes per cm2. In contrast, neonate establishment on S. berthaultii was generally positively related to trichome densities, indicating that trichomes may be a poor defense against P. operculella when the moth oviposits in soil and neonate larvae select the host plant. Solanum tarijense has only one type of glandular trichome (type A) and eglandular hairs. Most eggs were deposited on the adaxial leaf surfaces that had lower trichome densities. Although the density of type A trichomes was negatively related to oviposition, high densities of hairs on the abaxial and adaxial leaf surfaces appeared to stimulate oviposition, leading to stronger positive relations between hair densities and oviposition. Larvae generally established on the abaxial surface where hair densities were greatest. Relationships between the abaxial densities of leaf hairs and neonate establishment on S. tarijense were positive. The results indicate that the responses by P. operculella to the types and density of trichomes are complex. Whereas type A and type B trichomes may act synergistically to reduce oviposition by the moth, leaf hairs do not defend against oviposition and neither leaf hairs nor type A and B trichomes reduce neonate establishment by this herbivore species.  相似文献   

8.
    
Lycopersicon esculentum and L. chmielewskii are respectively susceptible and resistant to the potato tuber moth (Phthorimaea operculella Zeller) in the field. Feeding bioassays were conducted with the herbivore caterpillars reared on callus derived from both tomato species and grown in vitro, and the influence of carbohydrate supplements to the callus culture medium, on the insect's feeding behavior was investigated. Newly-hatched larvae fed with L. esculentum or L. chmielewskii callus raised on a medium with 88 mM sucrose, reached a weight of 12–15 mg and 1.5–3.0 mg, respectively, within 9 days. Restriction of larval weight increase in insects reared on L. chmielewskii callus, disappeared when the host tissue was transferred 24 h prior to the callus-insect assay to a medium supplemented with 264 mM of either sucrose, glucose, fructose or mannose. The capability of L. chmielewskii callus to restrict growth of larvae was restored in host tissue retransferred from a medium with 264 mM sucrose to a 24-h incubation on one supplemented with 264 mM of either mannitol, sorbitol, glycerol or myo-inositol, before the callus-insect bioassay. The larval growth response remained unaltered by callus incubated on a medium with 264 mM xylose. The ameliorating effect on insect growth of high sucrose in the callus medium was not due to sucrose as an ingredient of the insect's diet. The diverse response of L. chmielewskii callus, and its dependence on the type of carbohydrate in the medium, rule out effects of these substances as nonspecific medium osmotica. The swift callus responses to carbohydrates (within hours of a change in medium composition), as reflected in the insect's growth, were not accompanied by visible morphological variations in the host tissue. We suggest that suppression by high levels of exogenously applied saccharides and derepression by exogenous polyols and myo-inositol of the impedement to growth of the potato tuber moth larva, reflect the existence in L. chmielewskii of a carbon metabolic control mechanism of gene expression whose products affect insect growth.  相似文献   

9.
    
The oviposition deterrent effect of water extract of Spodoptera littoralis and Agrotis ipsilon larval frass on Phthorimaea operculella adult females was studied using two types of larval food “Natural host and Semi-artificial diet” under laboratory and storage simulation (semi-field) conditions. Extracted frass of fed larvae on semi-artificial diet showed complete oviposition deterrent effect at treatments with 4th, 5th and 6th instars of S. littoralis, also at treatments with 1st–3rd and 6th instars of A. ipsilon, while the same effect was observed when the larvae fed on castor oil leaves as a natural host only at treatment with frass extract of A. ipsilon 6th instar larvae. Presence of low amounts of phenols and flavonoids in water extract of A. ipsilon larval frass resulted in relatively more effect as oviposition deterrent to fertile adult females on treated oviposition sites, while the opposite effect was obtained in S. littoralis larval frass experiments. At semi-field experiments, the percentage reduction of laid eggs reached 100% after two?days at treatments with frass extracts of 4th and 5th S. littoralis larval instars and A. ipsilon 6th instar larvae fed on semi-artificial diet and/or castor oil leaves. Percentage reduction of laid eggs for untreated sacks reached 93.24 and 48.95% after 2 and 30?days, respectively, when placed between treated sacks, in comparison with the mean number of laid eggs for isolated control.  相似文献   

10.
  总被引:1,自引:0,他引:1  
The chronological relationships between stolon formation, stolon tip swelling, tuber initiation, flowering, senescence, growth and resorption of tubers were studied under field conditions in a diploid population of potato with 238 genotypes, the parental clones and seven tetraploid cultivars. Timing of tuber initiation was not closely related to the timing of stolon formation, flowering and duration of the plant cycle. Tuber initiation very often preceded stolon branching. The number and size distribution of tubers were largely influenced by the degree of stolon branching, the length of the stolon swelling period and tuber resorption. The peak production of stolons and swollen stolon tips largely took place within the flowering period, although in most genotypes, some stolon tip swelling took place until the end of the plant cycle. More information on the general temporal relationships between events related to tuber formation and plant development will contribute to a better understanding of the physiological and genetic basis of the processes leading to the production of harvestable tubers.  相似文献   

11.
12.
  总被引:4,自引:0,他引:4  
Solanum tuberosum is a frost-sensitive species incapable of cold acclimation. A brief exposure to frost can significantly reduce its yields, while hard frosts can completely destroy entire crops. Thus, gains in freezing tolerance of even a few degrees would be of considerable benefit relative to frost damage. The S . tuberosum cv. Umatilla was transformed with three Arabidopsis CBF genes ( AtCBF1-3 ) driven by either a constitutive CaMV35S or a stress-inducible Arabidopsis rd29A promoter. AtCBF1 and AtCBF3 over-expression via the 35S promoter increased freezing tolerance about 2 °C, whereas AtCBF2 over-expression failed to increase freezing tolerance. Transgenic plants of AtCBF1 and AtCBF3 driven by the rd29A promoter reached the same level of freezing tolerance as the 35S versions within a few hours of exposure to low but non-freezing temperatures. Constitutive expression of AtCBF genes was associated with negative phenotypes, including smaller leaves, stunted plants, delayed flowering, and reduction or lack of tuber production. While imparting the same degree of freezing tolerance, control of AtCBF expression via the stress-inducible promoter ameliorated these negative phenotypic effects and restored tuber production to levels similar to wild-type plants. These results suggest that use of a stress-inducible promoter to direct CBF transgene expression can yield significant gains in freezing tolerance without negatively impacting agronomically important traits in potato.  相似文献   

13.
    
  1. The potato tuberworm (PTW) Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) is key pest of potato in tropical and subtropical regions. From 2002 onward, PTW has emerged as a problem in the Bologna province, the main potato production area in Northern Italy.
  2. Field investigations were performed to study the temporal and spatial dynamics of PTW. Adult moths were monitored using pheromone‐baited traps over 3 years (2009–2011). Traps were georeferenced and catches were analyzed by geostatistical maps. Each year, the percentage of damaged tubers at harvest was assessed.
  3. Pheromone trapping, integrated with temperature‐dependent developmental times, showed that PTW completed two generations throughout the potato‐growing season; the remaining generations developed in the noncrop season. Maps showed a clumped distribution of PTW at the landscape scale. The hot spots of infestation corresponded to the areas most intensively cropped with potato. Trap catches from hilling to harvesting were linearly and positively correlated with the percentage of damage in 2 out of 3 years and in the pooled data set.
  4. The present study demonstrated the widening of PTW areal to Northern Italy. In this area, georeferenced pheromone traps were validated as a useful monitoring technique for describing the phenology and distribution of PTW, thus providing crucial knowledge for the rational management of this pest.
  相似文献   

14.
Cysteine proteinase forms in sprouting potato tuber   总被引:1,自引:0,他引:1  
Transformation of plants with exogenous proteinase inhibitor genes represents an attractive strategy for the biological control of insect pests. However, such a strategy necessitates a thorough characterization of endogenous proteinases. which represent potential target enzymes for the exogenous inhibitors produced. In the present study. changes in general endoproteolytic activity were monitored during sprouting of potato ( Solanum tuberosum L. cv. Kennebec) tuber. Quantitative data obtained using standard procedures showed that an increase in cysteine proteinase (EC 3.4.22) activity occurs during sprouting. This increased activity results from the gradual appearance of new cysteine proteinase forms, as demonstrated by the use of class-specific proteinase activity gels. While only one cysteine proteinase form was present during early sprouting, at least six new active forms of the same class were shown to appear gradually after the mature tuber was sown, suggesting the involvement of a complex cysteine proteolytic system in the last stages of tuber protein breakdown. Interestingly, oryzacystatins I and II. two cysteine proleinase inhibitors potentially useful for insect control, had no effect on any tuber proteinase delected. Similar results were obtained with leaf, stem and stolon proteinases. This apparent absence of direct interference supports the potential of oryzacystatin genes for production of insect-tolerant transgenie potato plants.  相似文献   

15.
The effects of concanavalin A (ConA), a glucose/mannose-specific lectin from jackbean (Canavalia ensiformis), on insect crop pests from two different orders, Lepidoptera and Homoptera, were investigated. When fed to larvae of tomato moth (Lacanobia oleracea) at a range of concentrations (0.02–2.0% of total protein) in artificial diet, ConA decreased survival, with up to 90% mortality observed at the highest dose level, and retarded development, but had only a small effect on larval weight. When fed to peach-potato aphids (Myzus persicae) at a range of concentrations (1–9μM) in liquid artificial diet, ConA reduced aphid size by up to 30%, retarded development to maturity, and reduced fecundity (production of offspring) by >35%, but had little effect on survival. With both insects, there was a poor correlation between lectin dose and the quantitative effect. Constitutive expression of ConA in transgenic potatoes driven by the CaMV 35S promoter resulted in the protein accumulating to levels lower than predicted, possibly due to potato not being able to adequately reproduce the post-translational processing of this lectin which occurs in jackbean. However, the expressed lectin was functionally active as a haemagglutinin. Bioassay of L. oleracea larvae on ConA-expressing potato plants showed that the lectin retarded larval development, and decreased larval weights by >45%, but had no significant effect on survival. It also decreased consumption of plant tissue by the larvae. In agreement with the diet bioassay results, ConA-expressing potatoes decreased the fecundity of M. persicae by up to 45%. ConA thus has potential as a protective agent against insect pests in transgenic crops. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
  总被引:1,自引:0,他引:1  
Mating of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), was investigated in relation to the dispersal of males in laboratory and field trials. The effect of stimulating the flight of males to light sources in a large cage on their mating ability was estimated for three age groups, and compared with similar estimates for confined moths. Although the mating of males declined with ages of up to 15 days, simulated dispersal had no effect on subsequent mating when the males were paired with virgin females. The dispersal of male moths was also categorised by the initial flight activity of untethered moths to a light source. Scores for poor, moderate, and good flight provided a repeatable measure of initial male flight activity, but the degree of activity was not related to their subsequent mating ability. In the field, virgin female potato tuber moths were tethered at various distances from the edge of isolated potato crops and then dissected to determine their mating status. Female mating frequency averaged 75% at the crop margin, remained above 50% up to 200 m, and then declined to 19% at 360 m from the margin. Derivation of the mating probability for an individual male potato tuber moth confirmed earlier work by other researchers that has indicated a tendency for dispersal prior to mating, and that males retain their ability to mate as they disperse from a crop. The influence of dispersal and mating on gene flow between crops, and its potential effects on refuge size required to minimise the development of resistance to Bt transgenic potato crops was examined.  相似文献   

17.
18.
19.
20.
    
Tuber resistance can contribute to current management strategies against the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), in field and stored potatoes. Wild potatoes represent a potential source of novel resistance traits against the moth. We assessed resistance in three wild potato species, Solanum multiinterruptum Bitt., Solanum sparsipilum (Bitt.) Juz. & Buk., and Solanum wittmackii Bitt. against neonate and developing tuber moth larvae. All three species had high levels of resistance but accessions of S. sparsipilum and S. wittmackii were significantly more resistant. Resistance in S. multiinterruptum was generally concentrated in the tuber periderm, whereas in S. sparsipilum and S. wittmackii resistance was mainly cortex‐based. Unidentified cortex‐resistance factors in all three species reduced survival and increased larval and pupal development times, but had no apparent effects on the pupal weights of survivors. A high proportion of larvae abandoned or died within tubers of S. wittmackii, which has particularly high levels of unidentified cortex‐based defenses. Resistance decreased in S. multiinterruptum and S. sparsipilum as tubers sprouted but was more stable in S. wittmackii. Periderm‐based resistance was more stable than cortex‐based resistance in S. multiinterruptum during sprouting. In contrast, cortex‐based resistance was stable in tubers of S. wittmackii as these sprouted, and resistance may have increased on some older sprouting tubers. Solanum multiinterruptum and S. sparsipilum are proposed as potential sources of resistance against the potato tuber moth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号