首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 758 毫秒
1.
2.
3.
To elucidate mechanisms that regulate Vbeta rearrangement, we generated and analyzed mice with a V(D)J recombination reporter cassette of germline Dbeta-Jbeta segments inserted into the endogenous Vbeta14 locus (Vbeta14(Rep)). As a control, we first generated and analyzed mice with the same Dbeta-Jbeta cassette targeted into the generally expressed c-myc locus (c-myc(Rep)). Substantial c-myc(Rep) recombination occurred in both T and B cells and initiated concurrently with endogenous Dbeta to Jbeta rearrangements in thymocytes. In contrast, Vbeta14(Rep) recombination was restricted to T cells and initiated after endogenous Dbeta to Jbeta rearrangements, but concurrently with endogenous Vbeta14 rearrangements. Thus, the local chromatin environment imparts lineage and developmental stage-specific accessibility upon the inserted reporter. Although Vbeta14 rearrangements occur on only 5% of endogenous TCRbeta alleles, the Vbeta14(Rep) cassette underwent rearrangement on 80-90% of alleles, supporting the suggestion that productive coupling of accessible Vbeta14 segments and DJbeta complexes influence the frequency of Vbeta14 rearrangements. Strikingly, Vbeta14(Rep) recombination also occurs on TCRbeta alleles lacking endogenous Vbeta to DJbeta rearrangements, indicating that Vbeta14 accessibility per se is not subject to allelic exclusion.  相似文献   

4.
5.
6.
CD1d-dependent invariant Valpha14 (Valpha14i) NKT cells are innate T lymphocytes expressing a conserved semi-invariant TCR, consisting, in mice, of the invariant Valpha14-Jalpha18 TCR alpha-chain paired mostly with Vbeta8.2 and Vbeta7. The cellular requirements for thymic positive and negative selection of Valpha14i NKT cells are only partially understood. Therefore, we generated transgenic mice expressing human CD1d (hCD1d) either on thymocytes, mainly CD4+ CD8+ double positive, or on APCs, the cells implicated in the selection of Valpha14i NKT cells. In the absence of the endogenous mouse CD1d (mCD1d), the expression of hCD1d on thymocytes, but not on APCs, was sufficient to select Valpha14i NKT cells that proved functional when activated ex vivo with the Ag alpha-galactosyl ceramide. Valpha14i NKT cells selected by hCD1d on thymocytes, however, attained lower numbers than in control mice and expressed essentially Vbeta8.2. The low number of Vbeta8.2+ Valpha14i NKT cells selected by hCD1d on thymocytes was not reversed by the concomitant expression of mCD1d, which, instead, restored the development of Vbeta7+ Valpha14i NKT cells. Vbeta8.2+, but not Vbeta7+, NKT cell development was impaired in mice expressing both hCD1d on APCs and mCD1d. Taken together, our data reveal that selective CD1d expression by thymocytes is sufficient for positive selection of functional Valpha14i NKT cells and that both thymocytes and APCs may independently mediate negative selection.  相似文献   

7.
To investigate chromatin control of TCR beta rearrangement and allelic exclusion, we analyzed TCR beta chromatin structure in double negative (DN) thymocytes, which are permissive for TCR beta recombination, and in double positive (DP) thymocytes, which are postallelic exclusion and nonpermissive for Vbeta to DbetaJbeta recombination. Histone acetylation mapping and DNase I sensitivity studies indicate Vbeta and DbetaJbeta segments to be hyperacetylated and accessible in DN thymocytes. However, they are separated from each other by hypoacetylated and inaccessible trypsinogen chromatin. The transition from DN to DP is accompanied by selective down-regulation of Vbeta acetylation and accessibility. The level of DP acetylation and accessibility is minimal for five of six Vbeta segments studied but remains substantial for one. Hence, the observed changes in Vbeta chromatin structure appear sufficient to account for allelic exclusion of many Vbeta segments. They may contribute to, but not by themselves fully account for, allelic exclusion of others.  相似文献   

8.
To assess the role of the T cell receptor (TCR) beta gene enhancer (Ebeta) in regulating the processing of VDJ recombinase-generated coding ends, we assayed TCRbeta rearrangement of Ebeta-deleted (DeltaEbeta) thymocytes in which cell death is inhibited via expression of a Bcl-2 transgene. Compared with DeltaEbeta, DeltaEbeta Bcl-2 thymocytes show a small accumulation of TCRbeta standard recombination products, including coding ends, that involves the proximal Dbeta-Jbeta and Vbeta14 loci but not the distal 5' Vbeta genes. These effects are detectable in double negative pro-T cells, predominate in double positive pre-T cells, and correlate with regional changes in chromosomal structure during double negative-to-double positive differentiation. We propose that Ebeta, by driving long range nucleoprotein interactions and the control of locus expression and chromatin structure, indirectly contributes to the stabilization of coding ends within the recombination processing complexes. The results also illustrate Ebeta-dependent and -independent changes in chromosomal structure, suggesting distinct modes of regulation of TCRbeta allelic exclusion depending on the position within the locus.  相似文献   

9.
We investigated the thymic and peripheral T-lymphocyte subsets in BALB/c mice undergoing acute or chronic Trypanosoma cruzi infection, in terms of expression of particular Vbeta rearrangements of the T-cell receptor. We first confirmed the severe depletion of CD4(+)CD8(+) thymocytes following acute T. cruzi infection. By contrast, the numbers of CD4(+)CD8(+) cells in subcutaneous lymph nodes increased up to 16 times. In subcutaneous lymph nodes, we found CD4(+)CD8(+) cells that expressed prohibited segments TCRVbeta5 and TCRVbeta12 (which are physiologically deleted in the thymus of BALB/c mice), as did some mature single-positive cells (CD4(+)CD8(-) and CD4(-)CD8(+)). In the thymus of infected animals, although higher numbers of immature cells bearing such Vbeta segments were seen, they were no longer detected in the mature single-positive stage, suggesting that negative selection occurs normally. We also found increased numbers of cells bearing the potentially autoreactive phenotype TCRVbeta5(+) and TCRVbeta12(+) in T-lymphocyte subsets from subcutaneous lymph nodes of T. cruzi chronically infected mice. In conclusion, our data indicate that immature T lymphocytes bearing prohibited TCRVbeta segments leave the thymus and gain the lymph nodes, where they further differentiate into mature CD4(+) or CD8(+) cells. Conjointly, these findings show changes in the shaping of the central and peripheral T-cell repertoire in both acute and chronic phases of murine T. cruzi infection. The release of potentially autoreactive T cells in the periphery of the immune system may contribute to the autoimmune process found in both murine and human Chagas' disease.  相似文献   

10.
11.
Foreign Ag-specific TCR-transgenic (Tg) mice contain a small fraction of T cells bearing the endogenous Vbeta and Valpha chains as well as a population expressing an intermediate level of Tg TCR. Importantly, these minor nonclonotypic populations contain > or = 99% of the CD4(+)Foxp3(+) regulatory T cells (Treg) and, despite low overall Treg expression, peripheral tolerance is maintained. In the OT-II TCR (OVA-specific, Vbeta5(high)Valpha2(high)) Tg scurfy (Sf) mice (OT-II Sf) that lack Treg, nonclonotypic T cells markedly expanded in the periphery but not in the thymus. Expanded T cells expressed memory/effector phenotype and were enriched in blood and inflamed lungs. In contrast, Vbeta5(high)Valpha2(high) clonotypic T cells were not expanded, displayed the naive phenotype, and found mainly in the lymph nodes. Importantly, Vbeta5(neg) T cells were able to transfer multiorgan inflammation in Rag1(-/-) recipients. T cells bearing dual TCR (dual Vbeta or dual Valpha) were demonstrated frequently in the Vbeta5(int) and Valpha2(int) populations. Our study demonstrated that in the absence of Treg, the lack of peripheral expansion of clonotypic T cells is due to the absence of its high-affinity Ag OVA. Thus, the rapid expansion of nonclonotypic T cells in OT-II Sf mice must require Ag (self and foreign) with sufficient affinity. Our study has implications with respect to the roles of Ag and dual TCR in the selection and regulation of Treg and Treg-controlled Ag-dependent T cell expansion in TCR Tg and TCR Tg Sf mice, respectively.  相似文献   

12.
13.
14.
15.
RhoH, an atypical small Rho-family GTPase, critically regulates thymocyte differentiation through the coordinated interaction with Lck and Zap70. Therefore, RhoH deficiency causes defective T cell development, leading to a paucity of mature T cells. Since there has been no gain-of-function study on RhoH before, we decided to take a transgenic approach to assess how the overexpression of RhoH affects the development of T cells. Although RhoH transgenic (RhoHtg) mice expressed three times more RhoH protein than wild-type mice, β-selection, positive, and negative selection in the thymus from RhoHtg mice were unaltered. However, transgenic introduction of RhoH into Rag2 deficient mice resulted in the generation of CD4+CD8+ (DP) thymocytes, indicating that overexpression of RhoH could bypass β-selection without TCRβ gene rearrangement. This was confirmed by the in vitro development of DP cells from Rag2-/-RhoHtg DN3 cells on TSt-4/Dll-1 stroma in an Lck dependent manner. Collectively, our results indicate that an excess amount of RhoH is able to initiate pre-TCR signaling in the absence of pre-TCR complexes.  相似文献   

16.
Chemokines are likely to play an important role in regulating the trafficking of developing T cells within the thymus. By using anti-CD3varepsilon treatment of recombinase-activating gene 2 (Rag2-/-) mice to mimic pre-TCR signaling and drive thymocyte development to the double positive stage, we have identified murine GPR-9-6 as a chemokine receptor whose expression is strongly induced following pre-TCR signaling. GPR-9-6 mRNA is present at high levels in the thymus, and by RT-PCR analysis its expression is induced as normal thymocytes undergo the double negative to double positive transition. Furthermore we show that TECK (thymus-expressed chemokine), a chemokine produced by thymic medullary dendritic cells, is a functional ligand for GPR-9-6. TECK specifically induces a calcium flux and chemotaxis of GPR-9-6-transfected cells. In addition, TECK stimulates the migration of normal double positive thymocytes, as well as Rag2-/- thymocytes following anti-CD3varepsilon treatment. Hence, GPR-9-6 has been designated as CC chemokine receptor 9 (CCR9). Our results suggest that TECK delivers signals through CCR9 important for the navigation of developing thymocytes.  相似文献   

17.
18.
T cell receptor revision does not solely target recent thymic emigrants   总被引:14,自引:0,他引:14  
CD4(+)Vbeta5(+) T cells enter one of two tolerance pathways after recognizing a peripherally expressed superantigen encoded by an endogenous retrovirus. One pathway leads to deletion, while the other, termed TCR revision, results in cellular rescue upon expression of an alternate TCR that no longer recognizes the tolerogen. TCR revision requires the rearrangement of novel TCR beta-chain genes and depends on recombinase-activating gene (RAG) expression in peripheral T cells. In line with recent findings that RAG(+) splenic B cells are immature cells that have maintained RAG expression, it has been hypothesized that TCR revision is limited to recent thymic emigrants that have maintained RAG expression and TCR loci in a recombination-permissive configuration. Using mice in which the expression of green fluorescent protein is driven by the RAG2 promoter, we now show that in vitro stimulation can drive reporter expression in noncycling, mature, peripheral CD4(+) T cells. In addition, thymectomized Vbeta5 transgenic RAG reporter mice are used to demonstrate that TCR revision can target peripheral T cells up to 2 mo after thymectomy. Both sets of experiments strongly suggest that reinduction of RAG genes triggers TCR revision. Approximately 3% of CD4(+)Vbeta5(+) T cells in thymectomized Vbeta5 transgenic reporter mice have undergone TCR revision within the previous 4-5 days. TCR revision can also occur in Vbeta5(+) T cells from nontransgenic mice, illustrating the relevance of this novel tolerance mechanism in unmanipulated animals.  相似文献   

19.
During alphabeta T cell development, CD4(-)CD8(-) thymocytes first express pre-TCR (pTalpha/TCR-beta) before their differentiation to the CD4(+)CD8(+) stage. Positive selection of self-tolerant T cells is then determined by the alphabeta TCR expressed on CD4(+)CD8(+) thymocytes. Conceivably, an overlap in surface expression of these two receptors would interfere with the delicate balance of thymic selection. Therefore, a mechanism ensuring the sequential expression of pre-TCR and TCR must function during thymocyte development. In support of this notion, we demonstrate that expression of TCR-alpha by immature thymocytes terminates the surface expression of pre-TCR. Our results reveal that expression of TCR-alpha precludes the formation of pTalpha/TCR-beta dimers within the endoplasmic reticulum, leading to the displacement of pre-TCR from the cell surface. These findings illustrate a novel posttranslational mechanism for the regulation of pre-TCR expression, which may ensure that alphabeta TCR expression on thymocytes undergoing selection is not compromised by the expression of pre-TCR.  相似文献   

20.
The Tcrb locus is subject to a host of regulatory mechanisms that impart a strict cell and developmental stage-specific order to variable (V), diversity (D), and joining (J) gene segment recombination. The Tcrb locus is also regulated by allelic exclusion mechanisms, which restrict functional rearrangements to a single allele. The production of a functional rearrangement in CD4-CD8- double-negative (DN) thymocytes leads to the assembly of a pre-TCR and initiates signaling cascades that allow for DN to CD4+CD8+ double-positive (DP) differentiation, proliferation, and feedback inhibition of further Vbeta to DJbeta rearrangement. Feedback inhibition is believed to be controlled, in part, by the loss of Vbeta gene segment accessibility during the DN to DP transition. However, the pre-TCR signaling pathways that lead to the inactivation of Vbeta chromatin have not been determined. Because activation of the MAPK pathway is documented to promote DP differentiation in the absence of allelic exclusion, we characterized the properties of Vbeta chromatin within DP thymocytes generated by a constitutively active Raf1 (Raf-CAAX) transgene. Consistent with previous reports, we show that the Raf-CAAX transgene does not inhibit Tcrb recombination in DN thymocytes. Nevertheless, DP thymocytes generated by Raf-CAAX signals display normal down-regulation of Vbeta segment accessibility and normal feedback inhibition of the Vbeta to DJbeta rearrangement. Therefore, our results emphasize the distinct requirements for feedback inhibition in the DN and DP compartments. Although MAPK activation cannot impose feedback in DN thymocytes, it contributes to feedback inhibition through developmental changes that are tightly linked to DN to DP differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号