首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intra-abdominal pressure (IAP) increases during many tasks and has been argued to increase stability and stiffness of the spine. Although several studies have shown a relationship between the IAP increase and spinal stability, it has been impossible to determine whether this augmentation of mechanical support for the spine is due to the increase in IAP or the abdominal muscle activity which contributes to it. The present study determined whether spinal stiffness increased when IAP increased without concurrent activity of the abdominal and back extensor muscles. A sustained increase in IAP was evoked by tetanic stimulation of the phrenic nerves either unilaterally or bilaterally at 20 Hz (for 5 s) via percutaneous electrodes in three subjects. Spinal stiffness was measured as the force required to displace an indentor over the L4 or L2 spinous process with the subjects lying prone. Stiffness was measured as the slope of the regression line fitted to the linear region of the force-displacement curve. Tetanic stimulation of the diaphragm increased IAP by 27-61% of a maximal voluntary pressure increase and increased the stiffness of the spine by 8-31% of resting levels. The increase in spinal stiffness was positively correlated with the size of the IAP increase. IAP increased stiffness at L2 and L4 level. The results of this study provide evidence that the stiffness of the lumbar spine is increased when IAP is elevated.  相似文献   

2.
Intra-abdominal pressure (IAP), force and electromyographic (EMG) activity from the abdominal (intra-muscular) and trunk extensor (surface) muscles were measured in seven male subjects during maximal and sub-maximal sagittal lifting and lowering with straight arms and legs. An isokinetic dynamometer was used to provide five constant velocities (0.12–0.96 m·s–1) of lifting (pulling against the resistance of the motor) and lowering (resisting the downward pull of the motor). For the maximal efforts, position-specific lowering force was greater than lifting force at each respective velocity. In contrast, corresponding IAPs during lowering were less than those during lifting. Highest mean force occurred during slow lowering (1547 N at 0.24 m·s–1) while highest IAP occurred during the fastest lifts (17.8 kPa at 0.48–0.96 m·s–1). Among the abdominal muscles, the highest level of activity and the best correlation to variations in IAP (r=0.970 over velocities) was demonstrated by the transversus abdominis muscle. At each velocity the EMG activity of the primary trunk and hip extensors was less during lowering (eccentric muscle action) than lifting (concentric muscle action) despite higher levels of force (r between –0.896 and –0.851). Sub-maximal efforts resulted in IAP increasing linearly with increasing lifting or lowering force (r=0.918 and 0.882, respectively). However, at any given force IAP was less during lowering than lifting. This difference was negated if force and IAP were expressed relative to their respective lifting and lowering maxima. It appears that the IAP increase primarily accomplished by the activation of the transversus abdominis muscle can have the dual function of stabilising the trunk and reducing compression forces in the lumbar spine via its extensor moment. The neural mechanisms involved in sensing and regulating both IAP and trunk extensor activity in relation to the type of muscle action, velocity and effort during the maximal and sub-maximal loading tasks are unknown.  相似文献   

3.
Abdominal bracing is a voluntary method of increasing spine stiffness to restrict spine displacement. Previous investigations of abdominal bracing have measured effects on whole lumbar motion; however, how this effect is distributed across the lumbar spine is unknown. Therefore, this study was designed to test the influence of abdominal bracing on spine intersegmental (T9/T10 to L5/S1) flexion, measured via skin surface markers, in response to sudden loading perturbations applied through the hands in 16 young healthy participants. Abdominal and back muscle activation responses were also measured. The results demonstrated that abdominal bracing significantly reduced sagittal plane motion at intersegmental levels T12/L1 to L4/L5, by 45% (0.74 degrees) at L4/L5 to 94% (0.71 degrees) at L1/L2 compared to control. L5/S1 experienced a 50% (0.36 degrees) reduction, but this was not statistically significant. Additionally, abdominal bracing resulted in greater baseline activation of all abdominal and back muscles, but did not affect onset times or response magnitudes of any of the back muscles acting counter to the perturbation. Therefore, the elevated baseline activation of trunk musculature during an abdominal brace serves to restrict flexion motion at the majority of the intersegmental lumbar spine (T12/L1 to L4/5) in response to sudden trunk flexion perturbations.  相似文献   

4.
To resolve the trunk redundancy to determine muscle forces, spinal loads, and stability margin in isometric forward flexion tasks, combined in vivo-numerical model studies was undertaken. It was hypothesized that the passive resistance of both the ligamentous spine and the trunk musculature plays a crucial role in equilibrium and stability of the system. Fifteen healthy males performed free isometric trunk flexions of approximately 40 degrees and approximately 65 degrees +/- loads in hands while kinematics by skin markers and EMG activity of trunk muscles by surface electrodes were measured. A novel kinematics-based approach along with a nonlinear finite element model were iteratively used to calculate muscle forces and internal loads under prescribed measured postures and loads considered in vivo. Stability margin was investigated using nonlinear, linear buckling, and perturbation analyses under various postures, loads and alterations in ligamentous stiffness. Flexion postures significantly increased activity in extensor muscles when compared with standing postures while no significant change was detected in between flexed postures. Compression at the L5-S1 substantially increased from 570 and 771 N in upright posture, respectively, for +/-180 N, to 1912 and 3308 N at approximately 40 degrees flexion, and furthermore to 2332 and 3850 N at approximately 65 degrees flexion. Passive ligamentous/muscle components resisted up to 77% of the net moment. In flexion postures, the spinal stability substantially improved due both to greater passive stiffness and extensor muscle activities so that, under 180 N, no muscle stiffness was required to maintain stability. The co-activity of abdominal muscles and the muscle stiffness were of lesser concern to maintain stability in forward flexion tasks as compared with upright tasks. An injury to the passive system, on one hand, required a substantial compensatory increase in active muscle forces which further increased passive loads and, hence, the risk of injury and fatigue. On the other hand, it deteriorated the system stability which in turn could require greater additional muscle activation. This chain of events would place the entire trunk active-passive system at higher risks of injury, fatigue and instability.  相似文献   

5.
The hypothesis that control of lumbar spinal muscle synergies is biomechanically optimized was studied by comparing EMG data with an analytical model with a multi-component cost function that could include (1) trunk displacements, (2) intervertebral displacements, (3) intervertebral forces; (4) sum of cubed muscle stresses, and (5) eigenvalues for the first two spinal buckling modes. The model's independent variables were 180 muscle forces. The 36 displacements of 6 vertebrae were calculated from muscle forces and the spinal stiffness. Calculated muscle activation was compared with EMG data from 14 healthy human subjects who performed isometric voluntary ramped maximum efforts at angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees and 180 degrees to the right from the anterior direction. Muscle activation at each angle was quantified as the linear regression slope of the RMS EMG versus external force relationship, normalized by the maximum observed EMG.There was good agreement between the analytical model and EMG data for the dorsal muscles when the model included either minimization of intervertebral displacements or minimization of intervertebral forces in its cost function, but the model did not predict a realistic level of abdominal muscles activation. Agreement with EMG data was improved with the sum of the cubed muscle stresses added to the cost function. Addition of a cost function component to maximize the trunk stability produced higher levels of antagonistic muscle activation at low efforts than at greater efforts. It was concluded that the muscle activation strategy efficiently limits intervertebral forces and displacements, and that costs of higher muscle stresses are taken into account, but stability does not appear to be maximized. Trunk muscles are apparently not controlled solely to optimize any one of the biomechanical costs considered here.  相似文献   

6.
Reliable computation of spinal loads and trunk stability under whole body vibrations with high acceleration contents requires accurate estimation of trunk muscle activities that are often overlooked in existing biodynamic models. A finite element model of the spine that accounts for nonlinear load- and direction-dependent properties of lumbar segments, complex geometry and musculature of the spine, and dynamic characteristics of the trunk was used in our iterative kinematics-driven approach to predict trunk biodynamics in measured vehicle's seat vibrations with shock contents of about 4g (g: gravity acceleration of 9.8m/s(2)) at frequencies of about 4 and 20Hz. Muscle forces, spinal loads and trunk stability were evaluated for two lumbar postures (erect and flexed) with and without coactivity in abdominal muscles. Estimated peak spinal loads were substantially larger under 4Hz excitation frequency as compared to 20Hz with the contribution of muscle forces exceeding that of inertial forces. Flattening of the lumbar lordosis from an erect to a flexed posture and antagonistic coactivity in abdominal muscles, both noticeably increased forces on the spine while substantially improving trunk stability. Our predictions clearly demonstrated the significant role of muscles in trunk biodynamics and associated risk of back injuries. High-magnitude accelerations in seat vibration, especially at near-resonant frequency, expose the vertebral column to large forces and high risk of injury by significantly increasing muscle activities in response to equilibrium and stability demands.  相似文献   

7.
This paper addresses the role of lumbar spinal motion segment stiffness in spinal stability. The stability of the lumbar spine was modelled with loadings of 30 Nm or 60 Nm efforts about each of the three principal axes, together with the partial body weight above the lumbar spine. Two assumptions about motion segment stiffness were made: first the stiffness was represented by an 'equivalent beam' with constant stiffness properties; second the stiffness was updated based on the motion segment axial loading using a relationship determined experimentally from human lumbar spinal specimens tested with 0, 250 and 500 N of axial compressive preload. Two physiologically plausible muscle activation strategies were used in turn for calculating the muscle forces required for equilibrium. Stability analyses provided estimates of the minimum muscle stiffness required for stability. These critical muscle stiffness values decreased when preload effects were used in estimating spinal stiffness in all cases of loadings and muscle activation strategies, indicating that stability increased. These analytical findings emphasize that the spinal stiffness (as well as muscular stiffness) is important in maintaining spinal stability, and that the stiffness-increasing effect of 'preloading' should be taken into account in stability analyses.  相似文献   

8.
In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP--without concurrent activity of the abdominal or back extensor muscles--produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to approximately 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (approximately 6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability.  相似文献   

9.
The goal of this study was to quantify the relative contributions of each muscle group surrounding the spine to vertebral joint rotational stiffness (VJRS) during the push-up exercise. Upper-body kinematics, three-dimensional hand forces and lumbar spine postures, and 14 channels (bilaterally from rectus abdominis, external oblique, internal oblique, latissimus dorsi, thoracic erector spinae, lumbar erector spinae, and multifidus) of trunk electromyographic (EMG) activity were collected from 11 males and used as inputs to a biomechanical model that determined the individual contributions of 10 muscle groups surrounding the lumbar spine to VJRS at five lumbar vertebral joints (L1-L2 to L5-S1). On average, the abdominal muscles contributed 64.32 +/- 8.50%, 86.55 +/- 1.13%, and 83.84 +/- 1.95% to VJRS about the flexion/extension, lateral bend, and axial twist axes, respectively. Rectus abdominis contributed 43.16 +/- 3.44% to VJRS about the flexion/extension axis at each lumbar joint, and external oblique and internal oblique, respectively contributed 52.61 +/- 7.73% and 62.13 +/- 8.71% to VJRS about the lateral bend and axial twist axes, respectively, at all lumbar joints with the exception of L5-S1. Owing to changes in moment arm length, the external oblique and internal oblique, respectively contributed 55.89% and 50.01% to VJRS about the axial twist and lateral bend axes at L5-S1. Transversus abdominis, multifidus, and the spine extensors contributed minimally to VJRS during the push-up exercise. The push-up challenges the abdominal musculature to maintain VJRS. The orientation of the abdominal muscles suggests that each muscle primarily controls the rotational stiffness about a single axis.  相似文献   

10.
Posteroanterior spinal stiffness assessments are common in the evaluating patients with low back pain. The purpose of this study was to determine the effects of mechanical excitation frequency on dynamic lumbar spine stiffness. A computer-controlled voice coil actuator equipped with a load cell and LVDT was used to deliver an oscillatory dorsoventral (DV) mechanical force to the L3 spinous process of 15 adolescent Merino sheep. DV forces (48 N peak, approximately 10% body weight) were randomly applied at periodic excitation frequencies of 2.0, 6.0, 11.7 and a 0.5-19.7 Hz sweep. Force and displacement were recorded over a 13-22 s time interval. The in vivo DV stiffness of the ovine spine was frequency dependent and varied 3.7-fold over the 0.5-19.7 Hz mechanical excitation frequency range. Minimum and maximum DV stiffness (force/displacement) were 3.86+/-0.38 and 14.1+/-9.95 N/mm at 4.0 and 19.7 Hz, respectively. Stiffness values based on the swept-sine measurements were not significantly different from corresponding periodic oscillations (2.0 and 6.0 Hz). The mean coefficient of variation in the swept-sine DV dynamic stiffness assessment method was 15%, which was similar to the periodic oscillation method (10-16%). The results indicate that changes in mechanical excitation frequency and animal body mass modulate DV spinal stiffness.  相似文献   

11.
The purpose of this study was to clarify the effectiveness of expiration and abdominal bracing maneuvers in response to sudden trunk loading in healthy subjects. Fifteen healthy male subjects were anteriorly loaded under different experimental conditions. Tests were conducted at rest and while performing each of the stabilization maneuvers (expiration and abdominal bracing) at 15% of the maximal voluntary isometric contraction of the internal oblique muscle. Subjects had no knowledge of the perturbation timing. An electromyographic biofeedback system was used to control the intensity of internal oblique muscle activation. Muscular pre-activation of three trunk muscles (internal oblique, external oblique, and L3 erector spinae muscles) and lumbar acceleration in response to loading were measured. The expiration and abdominal bracing maneuvers promoted torso co-contraction, reduced the magnitude of lumbar acceleration, and increased spinal stability compared to the resting condition. There were no differences between the expiration and abdominal bracing maneuvers in the pre-activation of the three trunk muscles or in lumbar acceleration in response to loading. It appears that both expiration and abdominal bracing maneuvers are effective in increasing spinal stability in response to sudden anterior loading.  相似文献   

12.
Trunk stiffness was measured in healthy human subjects as a function of steady-state preload efforts in different horizontal loading directions. Since muscle stiffness increases with increased muscle activation associated with increasing effort, it is believed that coactivation of muscles helps to stiffen and stabilize the trunk. This paper tested whether increased steady-state preload effort increases trunk stiffness. Fourteen young healthy subjects each stood in an apparatus with the pelvis immobilized. They were loaded horizontally at directions of 0, 45, 90, 135 and 180 degrees to the forward direction via a thoracic harness. Subjects first equilibrated with a steady-state load of 20 or 40% of their maximum extension effort. Then a sine-wave force perturbation of nominal amplitude of 7.5 or 15% of maximum effort and nominal period of 250ms was applied. Both the applied force and subsequent motion were recorded. Effective trunk mass and trunk-driving point stiffness were estimated by fitting the experimental data to a second-order differential equation of the trunk dynamic behavior. The mean effective trunk mass was 14.1kg (s.d.=4.7). The trunk-driving point stiffness increased on average 36.8% (from 14.5 to 19.8N/mm) with an increase in the nominal steady-state preload effort from 20 to 40% (F(1,13)=204.96, p<0.001). There was a smaller, but significant variation in trunk stiffness with loading direction. The measured increase in trunk stiffness probably results from increased muscle stiffness with increased muscle activation at higher steady-state efforts.  相似文献   

13.
Activity of the abdominal muscles during symmetric lifting has been a consistent finding in many studies. It has been hypothesized that this antagonistic coactivation increases trunk stiffness to provide stability to the spine. To test this, we investigated whether abdominal activity in lifting is increased in response to destabilizing conditions.

Ten healthy male subjects lifted 35 l containers containing 15 l of water (unstable condition), or ice (stable condition). 3D-kinematics, ground reaction forces, and EMG of selected trunk muscles were recorded. Euler angles of the thorax relative to the pelvis were determined. Inverse dynamics was used to calculate moments about L5S1. Averaged normalized abdominal EMG activity was calculated to express coactivation and an EMG-driven trunk muscle model was used to estimate the flexor moment produced by these muscles and to estimate the L5S1 compression force.

Abdominal coactivation was significantly higher when lifting the unstable load. This coincided with significant increases in estimated moments produced by the antagonist muscles and in estimated compression forces on the L5S1 disc, except at the instant of the peak moment about L5S1. The lifting style was not affected by load instability as evidenced by the absence of effects on moments about L5S1 and angles of the thorax relative to the pelvis. The data support the interpretation of abdominal cocontraction during lifting as subserving spinal stability. An alternative function of the increased trunk stiffness due to cocontraction might be to achieve more precise control over the trajectory of lifted weight in order to avoid sloshing of the water mass in the box and the consequent perturbations.  相似文献   


14.
The objectives of this study were to obtain linearized stiffness matrices, and assess the linearity and hysteresis of the motion segments of the human lumbar spine under physiological conditions of axial preload and fluid environment. Also, the stiffness matrices were expressed in the form of an 'equivalent' structure that would give insights into the structural behavior of the spine. Mechanical properties of human cadaveric lumbar L2-3 and L4-5 spinal motion segments were measured in six degrees of freedom by recording forces when each of six principal displacements was applied. Each specimen was tested with axial compressive preloads of 0, 250 and 500 N. The displacements were four slow cycles of +/-0.5mm in anterior-posterior and lateral displacements, +/-0.35 mm axial displacement, +/-1.5 degrees lateral rotation and +/-1 degrees flexion-extension and torsional rotations. There were significant increases with magnitude of preload in the stiffness, hysteresis area (but not loss coefficient) and the linearity of the load-displacement relationship. The mean values of the diagonal and primary off-diagonal stiffness terms for intact motion segments increased significantly relative to values with no preload by an average factor of 1.71 and 2.11 with 250 and 500 N preload, respectively (all eight tests p<0.01). Half of the stiffness terms were greater at L4-5 than L2-3 at higher preloads. The linearized stiffness matrices at each preload magnitude were expressed as an equivalent structure consisting of a truss and a beam with a rigid posterior offset, whose geometrical properties varied with preload. These stiffness properties can be used in structural analyses of the lumbar spine.  相似文献   

15.
Intra-abdominal pressure mechanism for stabilizing the lumbar spine   总被引:8,自引:0,他引:8  
Currently, intra-abdominal pressure (IAP) is thought to provide stability to the lumbar spine but the exact principles have yet to be specified. A simplified physical model was constructed and theoretical calculations performed to illustrate a possible intra-abdominal pressure mechanism for stabilizing the spine. The model consisted of an inverted pendulum with linear springs representing abdominal and erector spinae muscle groups. The IAP force was simulated with a pneumatic piston activated with compressed air. The critical load of the model was calculated theoretically based on the minimum potential energy principle and obtained experimentally by increasing weight on the model until the point of buckling. Two distinct mechanisms were simulated separately and in combination. One was antagonistic flexor extensor muscle coactivation and the second was abdominal muscle activation along with generation of IAP. Both mechanisms were effective in stabilizing the model of a lumbar spine. The critical load and therefore the stability of the spine model increased with either increased antagonistic muscle coactivation forces or increased IAP along with increased abdominal spring force. Both mechanisms were also effective in providing mechanical stability to the spine model when activated simultaneously. Theoretical calculation of the critical load agreed very well with experimental results (95.5% average error). The IAP mechanism for stabilizing the lumbar spine appears preferable in tasks that demand trunk extensor moment such as lifting or jumping. This mechanism can increase spine stability without the additional coactivation of erector spinae muscles.  相似文献   

16.
Determination of physiological loads in human lumbar spine is critical for understanding the mechanisms of lumbar diseases and for designing surgical treatments. Computational models have been used widely to estimate the physiological loads of the spine during simulated functional activities. However, various assumptions on physiological factors such as the intra-abdominal pressure (IAP), centers of mass (COMs) of the upper body and lumbar segments, and vertebral centers of rotation (CORs) have been made in modeling techniques. Systematic knowledge of how these assumptions will affect the predicted spinal biomechanics is important for improving the simulation accuracy. In this paper, we developed a 3D subject-specific numerical model of the lumbosacral spine including T12 and 90 muscles. The effects of the IAP magnitude and COMs locations on the COR of each motion segment and on the joint/muscle forces were investigated using a global convergence optimization procedure when the subject was in a weight bearing standing position. The data indicated that the line connecting the CORs showed a smaller curvature than the lordosis of the lumbar spine in standing posture when the IAP was 0?kPa and the COMs were 10?mm anterior to the geometric center of the T12 vertebra. Increasing the IAP from 0 kPa to 10 kPa shifted the location of CORs toward the posterior direction (from 1.4?±?8.9 mm anterior to intervertebral disc (IVD) centers to 40.5?±?3.1 mm posterior to the IVD centers) and reduced the average joint force (from 0.78?±?0.11 Body weight (BW) to 0.31?±?0.07 BW) and overall muscle force (from 349.3?±?57.7 N to 221.5?±?84.2 N). Anterior movement of the COMs from -30 mm to 70 mm relative to the geometric center of T12 vertebra caused an anterior shift of the CORs (from 25.1?±?8.3 mm posterior to IVD centers to 7.8?±?6.2 mm anterior to IVD centers) and increases of average joint forces (from 0.78?±?0.1 BW to 0.93?±?0.1 BW) and muscle force (from 348.9?±?47.7 N to 452.9?±?58.6 N). Therefore, it is important to consider the IAP and correct COMs in order to accurately simulate human spine biomechanics. The method and results of this study could be useful for designing prevention strategies of spinal injuries and recurrences, and for enhancing rehabilitation efficiency.  相似文献   

17.
High anterior intervertebral shear loads could cause low back injuries and therefore the neuromuscular system may actively counteract these forces. This study investigated whether, under constant moment loading relative to L3L4, an increased externally applied forward force on the trunk results in a shift in muscle activation towards the use of muscles with more backward directed lines of action, thereby reducing the increase in total joint shear force. Twelve participants isometrically resisted forward forces, applied at several locations on the trunk, while moments were held constant relative to L3L4. Surface EMG and lumbar curvature were measured, and an EMG-driven muscle model was used to calculate compression and shear forces at all lumbar intervertebral joints. Larger externally applied forward forces resulted in a flattening of the lumbar lordosis and a slightly more backward directed muscle force. Furthermore, the overall muscle activation increased. At the T12L1 to L3L4 joint, resulting joint shear forces remained small (less than 200N) because the average muscle force pulled backward relative to those joints. However, at the L5S1 joint the average muscle force pulled the trunk forward so that the increase in muscle force with increasing externally applied forward force caused a further rise in shear force (by 102.1N, SD=104.0N), resulting in a joint shear force of 1080.1N (SD=150.4N) at 50Nm moment loading. It is concluded that the response of the neuromuscular system to shear force challenges tends to increase rather than reduce the shear loading at the lumbar joint that is subjected to the highest shear forces.  相似文献   

18.
People with a history of low back pain (LBP) are at high risk to encounter additional LBP episodes. During LBP remission, altered trunk muscle control has been suggested to negatively impact spinal health. As sudden LBP onset is commonly reported during trunk flexion, the aim of the current study is to investigate whether dynamic trunk muscle recruitment is altered in LBP remission. Eleven people in remission of recurrent LBP and 14 pain free controls performed cued trunk flexion during a loaded and unloaded condition. Electromyographic activity was recorded from paraspinal (lumbar and thoracic erector spinae, latissimus dorsi, deep and superficial multifidus) and abdominal muscles (obliquus internus, externus and rectus abdominis) with surface and fine-wire electrodes. LBP participants exhibited higher levels of co-contraction of flexor/extensor muscles, lower agonistic abdominal and higher antagonistic paraspinal muscle activity than controls, both when data were analyzed in grouped and individual muscle behavior. A sub-analysis in people with unilateral LBP (n = 6) pointed to opposing changes in deep and superficial multifidus in relation to the pain side. These results suggest that dynamic trunk muscle control is modified during LBP remission, and might possibly increase spinal load and result in earlier muscle fatigue due to intensified muscle usage. These negative consequences for spinal health could possibly contribute to recurrence of LBP.  相似文献   

19.
During level walking, lumbar spine is subjected to cyclic movements and intricate loading of the spinal discs and trunk musculature. This study aimed to estimate the spinal loads (T12–S1) and trunk muscles forces during a complete gait cycle.Six men, 24–33 years walk barefoot at self-selected speed (4–5 km/h). 3D kinematics and ground reaction forces were recorded using a motion capturing system and two force plates, implemented in an inverse dynamic musculoskeletal model to predict the spinal loads and trunk muscles forces. Additionally, the sensitivity of the intra-abdominal pressure and lumbar segment rotational stiffness was investigated.Peak spinal loads and trunk muscle forces were between the gait instances of heel strike and toe off. In L4–L5 segment, sensitivity analysis showed that average peak compressive, antero-posterior and medio-lateral shear forces were 130–179%, 2–15% and 1–6%, with max standard deviation (±STD) of 40%, 6% and 3% of the body weight. Average peak global muscles forces were 24–55% (longissimus thoracis), 11–23% (iliocostalis thoracis), 12–16% (external oblique), 17–25% (internal oblique) and 0–8% (rectus abdominus) of body weight whereas, the average peak local muscles forces were 11–19% (longissimus lumborum), 14–31% (iliocostalis lumborum) and 12–17% (multifidus). Maximum ± STD of the global and local muscles forces were 13% and 8% of the body weight.Large inter-individual differences were found in peak compressive and trunk muscles forces whereas the sensitivity analysis also showed a substantial variation.  相似文献   

20.
Stability of the lumbar spine is an important factor in determining spinal response to sudden loading. Using two different methods, this study evaluated how various trunk load magnitudes and directions affect lumbar spine stability. The first method was a quick release procedure in which effective trunk stiffness and stability were calculated from trunk kinematic response to a resisted-force release. The second method combined trunk muscle EMG data with a biomechanical model to calculate lumbar spine stability. Twelve subjects were tested in trunk flexion, extension, and lateral bending under nine permutations of vertical and horizontal trunk loading. The vertical load values were set at 0, 20, and 40% of the subject's body weight (BW). The horizontal loads were 0, 10, and 20% of BW. Effective spine stability as obtained from quick release experimentation increased significantly (p<0.01) with increased vertical and horizontal loading. It ranged from 785 (S.D.=580) Nm/rad under no-load conditions to 2200 (S.D.=1015) Nm/rad when the maximum horizontal and vertical loads were applied to the trunk simultaneously. Stability of the lumbar spine achieved prior to force release and estimated from the biomechanical model explained approximately 50% of variance in the effective spine stability obtained from quick release trials in extension and lateral bending (0.53相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号